the global detrital zircon database: quantifying the ... · this global detrital zircon manuscript...

282
The Global Detrital Zircon Database: Quantifying the Timing and Rate of Crustal Growth Peter James Voice Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Geosciences Michał J. Kowalewski, Chair Kenneth A. Eriksson Patricia Dove James F. Read Shuhai Xiao May 4, 2010 Blacksburg, Virginia Keywords: detrital zircon, U-Pb dating, Triassic, Dry Fork Formation Copyright © 2010 by Peter J. Voice

Upload: others

Post on 06-Jul-2020

8 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

The Global Detrital Zircon Database: Quantifying the Timing and Rate of Crustal Growth

Peter James Voice

Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

In Geosciences

Michał J. Kowalewski, Chair Kenneth A. Eriksson

Patricia Dove James F. Read Shuhai Xiao

May 4, 2010 Blacksburg, Virginia

Keywords: detrital zircon, U-Pb dating, Triassic, Dry Fork Formation

Copyright © 2010 by Peter J. Voice

Page 2: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

The Global Detrital Zircon Database: Quantifying the Timing and Rate of Crustal Growth

Peter James Voice

ABSTRACT

Published detrital zircon geochronological data was compiled to form the Global Detrital Zircon Database (GDZDb). This database provides a reference block for provenance analysis by future detrital zircon geochronological studies. This project entailed three subprojects: 1. crustal growth/crustal recycling patterns, 2. a provenance study of the Triassic Dry Fork Formation of the Danville-Dan River Rift basin of Virginia and North Carolina, and 3. sample size issues in detrital zircon studies.

The global detrital zircon age frequency distribution exhibits six prominent, statistically significant peaks: 3.2-3.0, 2.7-2.5, 2.0-1.7, 1.2-1.0, 0.7-0.5, and 0.3-0.1 Ga. These peaks are also observed when the data is sorted for continent of origin, the tectonic setting of the host sediment and for modern river sediments. Hf isotope model ages were also incorporated into the database where grains were dated with both U-Pb and Hf isotopes. The Hf isotope model ages suggest that the majority of detrital zircons U-Pb ages reflect crustal recycling events that generated granitic magmatism, as most grains exhibited Hf isotope ages that are much older than the corresponding U-Pb age.

The Triassic Dry Fork Formation was sampled from a site in southern Virginia in the Danville-Dan River Basin. The detrital zircon age frequency distribution for this formation was strongly unimodal with a peak at 400-450 Ma and a paucity of Grenville-age zircons. Comparison of the Dry Fork sample to published east coast data and to the North American record (from the GDZDb) illustrate the unusual nature of the Dry Fork Formation sample. It is probable that older Grenville zircons were blocked from the rift valley by the rift shoulder.

Using the GDZDb a study of sample size was conducted in order to estimate the best sample size to use when trying to constrain the maximum age of sedimentation of the host sediment. Rift basins and active margins exhibited smaller offsets from the youngest zircon grain age to host sediment maximum age than observed in samples from passive margins. This study recommends that at least 50 grains need to be age dated on average in order to best constrain the age of the host sediment.

Page 3: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

iii

ACKNOWLEDGEMENTS

I would like to acknowledge my advisor Mike Kowalewski who thought five years ago that detrital zircons would end up being a side project within my dissertation studies – who knew just how much we could do with this project. My committee members Ken Eriksson, Fred Read, Trish Dove and Shuhai Xiao provided many useful comments that have made this dissertation and the manuscripts that have come out of it much better. I need to thank Shuhai for patiently translating multiple articles published in Chineses and discussing these articles with me. Carolina Zabini graciously translated one study published in Portuguese that was incorporated in the Global Detrital Zircon Database. The Virginia Tech Department of Geosciences provided the following awards: Summer Research Assistantships (Petroleum Industry Geosciences Graduate Fellowship and Charles J. Gose Summer Fellowship) and Virginia Tech Department of Geosciences Summer Research Awards (Cooper Memorial Geology Fund and Charles J. Gose Jr. Endowed Fund). I would like to thank both the Department and Virginia Tech for the support of my research. I was awarded a Virginia Tech 2010 Fellowship that allowed me to compile the GDZDb instead of teaching labs for the first three years of my Ph.D.

This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove, Mark Harrison, Bob Tracy, and John Veevers. Oscar Lovera and Marty Grove kindly provided the probability density function code used in this study. Golde Holtzman and Dong-Yun Kim assisted with some of the statistical analysis of the data. Dirk Frei, Nergui Martin- Gombojav, Keith Sircombe and John Veevers provided datasets that we incorporated into the Global Detrital Zircon Database. Ian Campbell, George Gehrels, Tony Kemp, Bruce Wilkinson and David Rowley extensively reviewed previous versions of this manuscript and have made it a much better paper.

The Triassic project has benefitted from discussions with Bill Henika and John Aleinikoff. Bill Henika graciously took me on a tour of the Danville-Dan River basin. I also benefitted from a fieldtrip to the Solite Quarry run by the staff at the Virginia Museum of Natural History. I presented the initial results of the sample size study in the Fall 2009 Geobiology seminar series. My colleagues provided much useful feedback towards this project and I would like to acknowledge their tough questions forced me to think about this project very carefully. A database study of this nature also requires a great deal of legwork in order to compile all of the references necessary. The Virginia Tech Library staff provided much support during this phase of the project and they were able to find many obscure detrital zircon references for me. Thank you Jim Schiffbauer for helping me figure out the table of contents – I could not do this without your help. Finally, I would like to acknowledge my Parents for their support in getting this far.

Page 4: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

iv

TABLE OF CONTENTS Abstract………………………………………………………………………………… ......... ii

Table of Contents……………………………………………………………………………..iii Table of Figures……………………………………………………………………………… vi Table of Tables………………………………………………………………………………. ix Introduction to the Global Detrital Zircon Database……………………………………….....1 1.1 References Cited……………………………………………………………………......... 4

Quantifying the Timing and Rate of Crustal Evolution: Global Compilation of Radiometrically Dated Detrital Zircon Grains………………………………………………... 8 2.1 Introduction……………………………………………………………………………….. 8 2.2 Methods…………………………………………………………………………………..14

2.2.1 Comparison and Merging of Different Geochronological Systems…………... 16

2.2.2 Analytical Methods……………………………………………………………. 18 2.3 Results and Discussion…………………………………………………………………...21

2.3.1 U-Pb Age patterns……………………………………………………………... 21

2.3.2 Th-Pb Patterns…………………………………………………………………. 26

2.3.3 Hf isotope model ages and crustal recycling…………………………………...27 2.4 Comparisons with other compilations…………………………………………………... 29 2.5 Alternative Hypotheses………………………………………………………………….. 30 2.6 Conclusions……………………………………………………………………………… 31 2.7 References Cited………………………………………………………………………… 32 Detrital Zircon Geochronology and Provenance of Upper Triassic Sediments of the Danville-Dan River Basin, Southern Virginia………………………………………………………… 54

Page 5: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

v

3.1 Introduction……………………………………………………………………………… 55 3.2 Materials and Methods…………………………………………………………………... 57 3.3 Results and Discussion…………………………………………………………………...59 3.4 Conclusions……………………………………………………………………………… 64 3.5 References Cited………………………………………………………………………… 65 Constraints on the Age of the Host Sediment: Using an Empirical Study from the Global Detrital Zircon Database…………………………………………………………………….. 83 4.1 Introduction……………………………………………………………………………… 83 4.2 Methods…………………………………………………………………………………. 85 4.3 Results…………………………………………………………………………………… 88 4.4 Discussion……………………………………………………………………………….. 90 4.5 Conclusions and Recommendations…………………………………………………….. 92 4.6 References Cited………………………………………………………………………... 93 Conclusions………………………………………………………………………………… 100 Appendix A: Global Detrital Zircon Database References………………………………… 103 Appendix B: Codes used in the Global Detrital Zircon Database…………………………. 259 Appendix C: Global Detrital Zircon Database…………………………………………….. 266 Appendix D: SAS Code used in this study………………………………………………… 267

Page 6: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

vi

TABLE OF FIGURES Figure 1: Comparison of frequency of publication of articles with the keyword “detrital zircon” cited in the Georefs library database (for all citations [green] and for peer-reviewed citations [blue]) and the number of dated detrital zircons compiled in the GDZDb against calendar year. Note the steep increase in frequency of both publication rate and number of grains after 2000. The steep drop off for 2009-2010 represents the lagtime between publication of detrital zircon references and their addition to the Georefs library database………………………………………………………………………………………. 7 Figure 2. Comparison of ≤5% discordant-filtered U-Pb ages. A. Scatterplot of 206Pb-238U vs. corresponding 207Pb-206Pb age. B. Scatterplot of 207Pb-235U vs. corresponding 207Pb-206Pb age. C. Scatterplot of 207Pb-235U vs. corresponding 206Pb-238U age. Note all three pairs can be modeled with a simple linear regression model of the form: Y = 1.0X + 0. The R2-values show high correlation with values of 0.99………………………………………………….. 38 Figure 3. Comparison of the age distributions for each of the U-Pb ages. A. 207Pb-206Pb. B. 206Pb-238U. and C. 207Pb-235U. All three distributions are from the ≤5% discordant-filtered subset of the database. Peaks II through V are present in all three distributions…………... 39 Figure 4. Comparison of the ≤5% discordant-filtered subset of the database at different bin size intervals in order to illustrate that the peaks are independent of bin size. Peaks II, III, IV, and V are observed at A. 5 Ma bins. B. 10 Ma bins. C. 20 Ma bins. D. 50 Ma bins. E. 100 Ma bins. At greater bin size intervals, the peaks merge together, but one has to bin the data at 200 Ma or greater bins to do so……………………………………………………………... 40 Figure 5. Global Detrital Zircon Pooled Age Distribution: a.) unfiltered, b.) ≤10% discordant-filtered, c.) ≤5% discordant-filtered. Note the persistence of all peaks regardless of degree of filtering………………………………………………………………………… 41 Figure 6. Continental Detrital Zircon Age Distributions from the ≤5% discordant-filtered subset of the full database. A, North America. B, South America. C, Europe. D, Asia (without India). E, Africa. F, Australia. G, Antarctica. Note the persistence of peaks III, IV, and IV on all continents. Peak II is observed for North America, South America, Europe, Asia, and Antarctica. Africa and Australia exhibit a much reduced peak II………………...42 Figure 7. Age frequency distribution of detrital zircon U-Pb ages from North America with corresponding significant geologic events…………………………………………………... 43 Figure 8. Comparison of ≤5% discordant detrital zircon grains from A. Laurasia and B. Gondwana. Peaks II, III, IV, and V are present in both of these plate tectonic configurations. Laurasia exhibits a trough between peaks III and IV that is not as deep as observed from Gondwana…………………………………………………………………………………… 44

Page 7: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

vii

Figure 9. Comparison of detrital zircon (≤5% discordant-filtered) age distributions from different tectonic settings. A. Arc settings. B. Foreland Basins. C. Passive Margins and Intracratonic Basins. D. Rift Basins. Note that the tectonic setting is of the host sediment. The tectonic setting of the host sediment is not related to the crystallization of the zircons... 45 Figure 10. Detrital Zircon distribution from Modern Sediments compiled in this study…… 46 Figure 11. A. Comparison of 208Pb-232Th age versus pooled U-Pb age for corresponding detrital zircon grains. There is a high correlation between the two age systems (R2 = 0.956) and a regression line that is close to Y = 1X + 0. B. 208Pb-232Th distribution. Note the strong similarity between the 208Pb-232Th age distribution and the pooled U-Pb age distribution (from Figure 1c). All grains had a pooled U-Pb age that was ≤5% discordant……………...47 Figure 12. A. Comparison of Hf isotope model ages versus pooled U-Pb age from corresponding, ≤5% discordant detrital zircon grains. The majority of the grains fall above a Y = X line showing that the calculated Hf isotope model age is greater than or equal to the pooled U-Pb age. B. Hf isotope model age distribution. The distribution is multimodal. However, the peaks are offset from those observed in the U-Pb age distribution…………... 48 Figure 13. Comparison of pooled U-Pb age vs. Hf isotope model age distribution for discrete pooled U-Pb age classes. A. Class I corresponds to detrital zircons with ages equivalent to Peak I. B. Class II corresponds to detrital zircon grains with ages equivalent to Peak II. Note the offset from the pooled U-Pb age (light gray bar) and the majority of the Hf model isotope ages. This offset is recorded in C. Class III, D. Class IV, E. Class V. In addition to the offset, the variance of the Hf isotope model distribution decreases from class I to class V, suggesting a boundary condition due to the age of the Earth. Only three grains from Peak I had Hf isotope model ages and so they were not plotted due to the small sample size……... 49 Figure 14. A. The ≤5% discordant-filtered pooled U-Pb age distribution from study. B.A second detrital zircon compilation. C. Global Modern River Detrital Zircons distribution. D. Igneous zircons U-Pb age distribution. All three detrital zircon compilations exhibit peaks II, III, IV, and V………………………………………………………………………………… 50 Figure 15: Location of the sampled interval of the Dry Fork Formation conglomerate in the central portion of the Dan River-Danville Basin……………………………………………. 73 Figure 16: Stratigraphy of the Dan River-Danville Basin…………………………………... 74 Figure 17. A. Typical lithology of the sampled interval of the Dry Fork Formation. The sandstones are arkosic and conglomeratic. B. One of the sampled detrital zircons under cathodoluminescence. Note the small size of the sampled pit for geochronological analysis……………………………………………………………………………………..... 75 Figure 18. Comparison of the Dry Fork Formation sandstone detrital zircon age spectrum with compiled age spectra of North America. A. Age Frequency distribution of dated

Page 8: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

viii

detrital zircons from the Dry Fork Formation. The inset shows the probability density function for the detrital zircon spectrum. B. Compiled age frequency data for detrital zircons from the East Coast of North America. C. Compiled age frequency data for North America as a whole…………………………………………………………………………...76 Figure 19. Compilation of published detrital zircons from the east coast of North America. Sorting the samples by host sediment age allows for characterization of the sources of detrital zircons. A. Modern River data. B. Late Triassic age spectrum from this study. C. detrital zircon age spectrum from Carboniferous age sediments. D. Age frequency distribution of Devonian age sediments. E. Detrital zircon age spectrum from Ordovician-Silurian age sediments. F. Late Neoproterozoic-Cambrian detrital zircon age frequency distribution. G. Neoproterozoic age spectrum of published detrital zircon U-Pb dates……………………… 77 Figure 20A: Average offset between youngest detrital zircon age (Ma) and the maximum estimate of the host sediment age (Ma) versus binned values of sample size, n for the full database with no discordance filter. 1B: Frequency distribution of sample size for the full database……………………………………………………………………………………… 95 Figure 21A: Average offset between youngest detrital zircon age (Ma) and the maximum estimate of the host sediment age (Ma) versus binned values of sample size, n for the full database with a ≤5% discordant filter. 2B: Frequency distribution of sample size for the discordance filtered database………………………………………………………………... 96 Figure 22A: Average offset between youngest detrital zircon age (Ma) and the maximum estimate of the host sediment age (Ma) versus binned values of sample size, n for samples with a maximum host sediment age of 550 Ma (i.e. Phanerozoic samples only). 3B: Frequency distribution of sample size for the Phanerozoic samples………………………... 97 Figure 23A: Average offset between youngest detrital zircon age (Ma) and the maximum estimate of the host sediment age (Ma) versus binned values of sample size, n for samples from Modern Sediments. 1B: Frequency distribution of sample size for samples collected from Modern Sediments……………………………………………………………………...98

Page 9: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

ix

TABLE OF TABLES

Table 1. Comparison of regression parameter estimates for pairwise comparison of U-Pb ages for both the unfiltered dataset and the ≤5% discordant filtered dataset for an equation of the line Y = β0 +β1X…………………………………………………………………………. 51 Table 2. Locations of Peaks defined by bootstrapping of the dataset. For each peak, the 99% confidence intervals are given for width (in Ma) and height (frequency of grains)………… 51 Table 3: U-Pb age data for the detrital zircons sampled from the Dry Fork Formation……. 79 Table 4: Summary of Moments for each distribution of sample size using the filter

database……………………………………………………………………………… 99 Table 5: Recommended values of n for provenance analysis with detrital zircon geochronology as a function of tectonic setting and database filter………………………… 99

Page 10: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

1

Introduction to the Global Detrital Zircon Database The Global Detrital Zircon Database (GDZDb) is an outgrowth of a project that

originally attempted to elucidate aspects of time averaging in sedimentary systems, instead the

project has grown to incorporate aspects of: 1. Crustal growth and crustal recycling models, 2.

Provenance analysis of Triassic rift sediments from Virginia and 3. Sample size issues in detrital

zircon studies. Detrital zircons have become an important tool in constraining host sediment age

(Dickinson and Gehrels, 2010 in press), ages of sources of sediment to the host rock (Eriksson et

al. 2003, 2004, Dickinson et al. 2008a, 2008b, 2009) and even the timing (through Hf model

isotope ages) of when the material that makes up the zircons was last in the mantle (Kinny et al.

1991, Kemp et al. 2006, Flowerdew et al. 2007). The growing popularity of detrital zircon

geochronology is illustrated in Figure 1, with a steep rise in number of publications (peer-

reviewed and not peer-reviewed as cited by the Georefs search engine) as well as number of

grains sampled in the GDZDb. In addition, the laboratories that analyze U-Pb age dates from

detrital zircons are sampling 90,000 zircon grains a year (Gehrels et al. 2006).

The GDZDb consists of detrital zircons compiled from 1,108 references in the peer-

reviewed literature, from Geological Survey reports and from theses and dissertations. The

majority of studies compiled were written in English, but some of the references were published

in Chinese, German, Portuguese, or Spanish. The GDZDb consists of 4,879 samples (published

age frequency distributions ranging from 1 to 580 detrital zircons dated) and a total of 238,952

individually dated detrital zircons. Each detrital zircon has a row in the excel spreadsheet that

makes up the database. A set of 66 variables is described for each zircon and includes study

number, sample number, U and Th content, U-Pb age data, Hf isotope model age data, Th-Pb age

data, decay constants, measures of concordance, host sediment characteristics (tectonic setting,

Page 11: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

2

lithology, maximum and minimum age constraints independent of U-Pb detrital zircon dates, age

estimation technique used), geographic location of the samples, and publication data (year

published and citation). The total number of cells in the database is 15,771,162. In addition, the

author is slowly entering in additional data including 5 new variables (formation name, machine

type used for Hf isotope analysis, longitude and latitude coordinates, and multi-spot data). This

may well be the largest single database devoted to a geologic material (Kowalewski, personal

communication) in existence.

The GDZDb was initially used to look at the problem of the determining from age

frequency data of detrital zircons whether or not one could track crustal growth and crustal

recycling by assessing the peak structure of the global distribution and continental distributions

as well as constraints from other related isotopic systems (Hf isotope model ages) which could

be used to determine when the material that formed the zircons was last in the mantle. A

compilation of ~200,000 published zircon dates reveals a global age distribution (U-Pb) with six

prominent, statistically significant peaks: 3.2-3.0, 2.7-2.5, 2.0-1.7, 1.2-1.0, 0.7-0.5, and 0.3-0.1

Ga. In most cases, these peaks are recorded on all seven continents and all of them persist when

data are analyzed separately for different tectonic settings. Most of the peaks are detectable also

in modern sediments. The multi-continental peaks, observable regardless of tectonic setting,

suggest that the evolution of continental crust through time was episodic and global in scale.

Associated Hf isotope ages available for ~5100 U-Pb dated concordant zircon grains suggest that

the age-frequency distribution of detrital grains reflects a combination of two episodic processes:

intermittent crustal growth and intermittent crustal recycling. The zircon age distributions and

associated data provide consistent evidence for non-monotonic nature of the Earth‘s plate

tectonics and yield patterns consistent with predictions of the Supercontinent Cycle Hypothesis.

Page 12: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

3

As a test of the capability of the GDZDb to elucidate provenance patterns, a sample of

the Triassic Dry Fork Formation from the Danville-Dan River Basin of southern Virginia was

age dated with detrital zircon geochronology. While the age frequency distribution from the Dry

Fork Formation sandstone could not be used to constrain the age of the host sandstone; the

distribution of detrital zircons did provide useful constraints on the ages of source sediments and

this was contrasted with published detrital zircon age frequency distributions compiled within the

GDZDb. The Triassic Dry Fork Formation was constrained in age to the Upper Triassic by

faunal content. The youngest zircon grains however were as young as 375 Ma (an offset of 150

Ma). The Dry Fork Formation age frequency distribution was dominantly unimodal with a peak

corresponding to 400-450 Ma reflecting a source rock dominated by these ages. To the east of

the sample location are rocks of the right age (and composition) in the Milton Terrane to be the

source of these zircons (Kish, 1983, Hund, 1987, Coler et al. 2000, Wortman et al. 1995).

Comparison with published detrital zircon data from the east coast of North America showed that

the Dry Fork Formation was unusual in the region for not exhibiting a second peak centered on

1,100 Ma. This suggests that Grenvillian-aged material to the west of the Danville-Dan River

Basin (the Smith River Allochthon) was not a source of sediment to the northern portion of the

rift basin (Hibbard et al. 2003, Carter et al. 2006).

The third component of this project was to look at sample size issues in detrital zircon

geochronology. Previous work with detrital mineral geochronology showed the best sample

sizes to use when estimating the probability of finding a specific fraction of detrital zircon grains

from a population (Dodson et al. 1988) and estimating the probability of not missing any fraction

of a certain threshold size (Vermeesch, 2004). The current study has attempted to find the best

sample size to constrain the age of the host sediment. Detrital zircons are an excellent example

Page 13: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

4

of the principle of inclusions – they are as old as the host sediment or older. The GDZDb

provided 4,879 samples that could be used to empirically derive estimates of the sample size

necessary to best constrain the host sediment age. The samples were sorted by tectonic setting

(passive margins, active margins and rift basins) and the offset between the youngest grain age

(in Ma) and the maximum age of the host sediment (in Ma) was calculated as a function for all

samples. The offset was then averaged for bins of sample size. The properties of the curves

generated were then used to estimate the best sample sizes to use. In general, tectonic settings

(active margins and rift basins) characterized by active magmatism required fewer dated grains

to estimate the host sediment age, then those tectonic settings where little or no magmatism

occurs (i.e. passive margins). The recommended sample size derived from this empirical test

was 50 detrital zircons. Active margins and rift basins could be well constrained with lower

sample sizes. Passive margins on the other hand are not as readily constrained by a smaller

sample size due to the observation that these systems generally lack magmatism that would

otherwise generate zircons. A caveat though is that the characteristics of the individual samples

may have a significant impact on how well the age of the host sediment can be constrained:

source rocks in the catchment area of the drainage system may be much older than the host

sediment.

1.1 References Cited Carter, B.T.; Hibbard, J.P.; Tubrett, M.; and Sylvester, P. 2006. Detrital zircon geochronology of

the Smith River Allochthon and Lynchburg Group, southern Appalachians: Implications for Neoproterozoic-Early Cambrian paleogeography. Precambrian Res. 147:279-304.

Coler, D.G. Wortman, G.L.; Samson, S.D.; Hibbard, J.P.; and Stern, R. 2000. U-Pb geochronologic, Nd Isotopic, and geochemical evidence for the correlation of the Chopawamsic and Milton Terranes, Piedmont Zone, Southern Appalachian Orogen. J. Geol. 108:363-380.

Page 14: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

5

Dickinson, W.R., and Gehrels, G.E. 2008a. Sediment delivery to the Cordilleran foreland basin: Insights from U-Pb ages of detrital zircons in Upper Jurassic and Cretaceous strata of the Colorado Plateau. Am. J. Sci. 308:1041-1082.

Dickinson, W.R., and Gehrels, G.E. 2008b. U-Pb ages of detrital zircons in relation to paleogeography: Triassic paleodrainage networks and sediment dispersal across southwest Laurentia. J. Sediment. Res. 78:746-754.

Dickinson, W.R., and Gehrels,G.E. 2010(in press). Insights into North American paleogeography and paleotectonics from U-Pb ages of detrital zircons in Mesozoic strata of the Colorado Plateau, USA. Int. J. Earth Sci. doi: 10.1007/s00531-009-0462-0.

Dickinson, W.R.; Lawton, T.F.; and Gehrels, G.E. 2009. Recycling detrital zircons: A case study from the Bisbee Group of southern Arizon. Geology 37:503-506.

Dodson, M.H.; Compston, W.; Williams, I.S.; and Wilson, J.F. 1988. A search for ancient detrital zircons in Zimbabwean sediments. J. Geol. Soc. London 145:977-983.

Eriksson, K.A., Campbell, I.H.; Palin, J.M.; and Allen, C.M. 2003. Predominance of Grenvillian magmatism recorded in detrital zircons from modern Appalachian Rivers. J. Geol. 111:707-717.

Eriksson, K.A., Campbell, I.H.; Palin, J.M.; Allen, C.M.; and Bock, B. 2004. Evidence for

multiple recycling in Neoproterozoic through Pennsylvanian sedimentary rocks of the central Appalachian basin. J. Geol. 112:261-276.

Flowerdew, M.J.; Millar, I.L.; Curtis, M.L.; Vaughan, A.P.M.; Horstwood, M.S.A.; Whitehouse, M.J.; and Fanning, C.M. 2007. Combined U–Pb geochronology and Hf isotope geochemistry of detrital zircons from early Paleozoic sedimentary rocks, Ellsworth–Whitmore Mountains block, Antarctica, Geol. Soc. Am. Bull. 119:275–288.

Gehrels, G.E.; Valencia, V.; and Pullen, A. 2006. Detrital zircon geochronology by laser-ablation multicollector ICPMS at the Arizona Laserchron Center. In Olszewski, T. (Ed.). Geochronology: Emerging Opportunities, Paleontological Society Papers 12:67-76.

Hibbard, J.P.; Tracy, R.J.; and Henika, W.S. 2003. Smith River Allochthon: A southern Appalachian peri-Gondwanan terrane emplaced directly on Laurentia? Geology 31:215-218.

Hund, E. 1987. U-Pb dating of granites from the Charlotte belt of the southern Appalachians. M.S. thesis. Virginia Polytechnic Institute and State University, Blacksburg, 73 p.

Kemp, A.I.S., Hawkesworth, C.J., Paterson, B.A., and Kinny, P.D. 2006, Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircons: Nature, 439:580– 583.

Page 15: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

6

Kinny, P.D.; Compston, W.; Williams, I.S.; 1991. A reconnaissance ion-probe study of hafnium isotopes in zircons. Geochim Cosmochim Acta 55:849–859.

Kish, S.A., 1983. A geochronological study of deformation and metamorphism in the Blue Ridge and Piedmont of the Carolinas. Unpub. Ph.D. dissertation, University of California, Davis. 220 p.

Vermeesch, P. 2004. How many grains are needed for a provenance study? Earth Planet. Sci. Lett. 224:441-451.

Wortman, G.L.; Samson, S.D.; and Hibbard, J.P. 1995. U-Pb zircon geochronology of the Milton and Carolina Slate belts, southern Appalachians. Geol. Soc. Am. Abstr. Program 27:98.

Page 16: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

7

Figure 1: Comparison of frequency of publication of articles with the keyword ―detrital zircon‖ cited in the Georefs library database (for all citations [green] and for peer-reviewed citations [blue]) and the number of dated detrital zircons compiled in the GDZDb against calendar year. Note the steep increase in frequency of both publication rate and number of grains after 2000. The steep drop off for 2009-2010 represents the lagtime between publication of detrital zircon references and their addition to the Georefs library database.

Page 17: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

8

Quantifying the Timing and Rate of Crustal Evolution: Global

Compilation of Radiometrically Dated Detrital Zircon Grains Multiple models (steady-state, episodic, and early growth followed by crustal reworking)

have been postulated to explain the evolution of Earth's continental crust. An independent

assessment of these models is now possible due to the massive numbers of detrital zircon grains

that have been dated individually over recent years. A compilation of ~200,000 published zircon

dates reveals a global age distribution (U-Pb) with six prominent, statistically significant peaks:

3.2-3.0, 2.7-2.5, 2.0-1.7, 1.2-1.0, 0.7-0.5, and 0.3-0.1 Ga. In most cases, these peaks are recorded

on all seven continents and all of them persist when data are analyzed separately for different

tectonic settings. Most of the peaks are detectable also in modern sediments. The multi-

continental peaks, observable regardless of tectonic setting, suggest that the evolution of

continental crust through time was episodic and global in scale. Associated Hf isotope ages

available for ~5100 U-Pb dated concordant zircon grains suggest that the age-frequency

distribution of detrital grains reflects a combination of two episodic processes: intermittent

crustal growth and intermittent crustal recycling. The zircon age distributions and associated

data provide consistent evidence for non-monotonic nature of the Earth‘s plate tectonics and

yield patterns consistent with predictions of the Supercontinent Cycle Hypothesis.

2.1 Introduction The history of the Earth‘s continental crust (the timing and rate of crustal growth and

recycling) is one of the most fundamental first-order geological patterns critical for refining the

central paradigms of geosciences such as plate tectonics (Cawood and Buchan, 2007) or the

supercontinent cycles (Condie, 2003; Cawood and Buchan, 2007). The rate of crustal growth

and/or plate tectonic processes may have also played a major role in influencing long-term

biological and geological trends, including long-term trends in biodiversity and ecospace

Page 18: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

9

utilization (e.g., Bambach, 1993; Vermeij, 1995), sea-level (e.g., Miller et al. 2005), or seawater

chemistry (e.g., Stanley and Hardie, 1998). For all those reasons the development of quantitative

approaches for assessing theoretical models of the Earth‘s crustal growth has been an

increasingly active research direction. Here, we build on multiple seminal papers published in

recent years and use a large, up-to-date database of detrital zircon radiometric ages to refine and

augment previous estimates and interpretations of the timing and rate of crustal growth and

crustal recycling.

Crustal growth occurs through two major processes: (1) Magmatism at arc-settings and

(2) Intraplate basaltic volcanism (hotspot or plume volcanism). The first process appears to be

dominant in terms of the volume of material produced. Arc-related magmatism during the

Cenozoic outweighed intraplate volcanism by a factor of 3 (Reymer and Schubert, 1984). These

processes transfer material from the mantle to the crust and form juvenile crust. Observations

that the average continental crust is andesitic in composition, combined with the prevalence of

andesitic volcanism at convergent margins underpinned the andesite model of crustal growth

(Taylor, 1966, 1977). However this model does not account for some crustal geochemical trends

(Cr, Ni contents and Th/U ratio) [Taylor and McLennan, 1995], nor does it account for the low

occurrence of andesites in the Archean geologic record (Rudnick, 1995). Crustal Recycling

consists of any process that reworks crustal material (McLennan, 1988) and includes subduction

zone magmatism, intracrustal melting and assimilation. This second class of processes

potentially generates granitic magmatism where zircons are a common trace mineral that

crystallizes out of the melt. Mantle-derived magmas that pass through continental crust can melt

and mix with this material to form melts with high amounts of crustal contamination. Crustal

Page 19: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

10

contamination may be as high as 35% (Carlson et al. 1981; Mason et al. 1996; Russell et al.

2001).

Numerous models of the timing and rate of continental growth have been proposed,

ranging from steady-state to episodic (Armstrong, 1981, 1991, Condie, 1998, 2000, Taylor and

McLennan, 1985, 1995). In the steady-state end-member model, the bulk of crustal growth took

place early in the Earth‘s history (between 4.0-4.5 Ga), followed by balanced crustal growth and

crustal recycling ever since (Armstrong, 1981). Armstrong (1981) suggested that the volume of

continental crust has not changed over the past 4 billion years. In the episodic end-member

model, the crustal growth occurred in multiple bursts separated by long time-intervals of slow

crustal accretion (Armstrong, 1991). The multiple lines of evidence used to quantify this

fundamental pattern include geochemical data, U-Pb dating of magmatic zircons, and areal

mapping of cratons (Condie, 1998, 2000, Hurley and Rand, 1969).

The steady-state model was supported by the mapped distribution of continental crustal

ages, which suggested linear growth. However, the supporting geochronological data were based

on either whole-rock ages (Rb-Sr and U-Pb) or K-Ar ages derived before the role of closure

temperatures and diffusion had been considered in interpreting radiometric ages (Gastil, 1960,

Hurley and Rand, 1969). In contrast, the age distribution of magmatic zircons (Condie, 1998) has

been used to argue in favor of the episodic model; indeed the magmatic zircon age distribution

included three prominent peaks (1.1 Ga, 1.8 Ga and 2.7 Ga) suggestive of the three major

episodes of crustal growth and/or recycling. Intermediate models ranging from quasi-monotonic

(Hurley and Rand, 1969, Hurley, 1968, Veizer and Jansen, 1979) to quasi-episodic (McCulloch

and Bennett, 1994, Taylor and McLennan, 1995, Condie et al. 2009) have also been proposed.

Most recently a compilation of detrital zircons revealed a similar pattern with prominent peaks

Page 20: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

11

recorded from three or more continents, including multiple peaks between 2.5 and 2.9 Ga as well

as peaks at 1.9, 1.6 and 1.2 Ga. These peaks were interpreted as widespread pulses of granitic

activity (Condie et al. 2009). Other isotopic methods have suggested episodic continental crustal

growth with similar timing of pulses: including Hafnium (Kemp et al. 2006), and Neodynium

(DePaolo et al. 1991, McCulloch and Bennett, 1994) isotopes.

The question of the rate of crustal growth is complicated by another important problem:

has crustal growth (whatever its rate) been accomplished mostly by adding new, juvenile crust

(either by partial melting of the upper mantle) or has substantial crustal recycling also been

involved? For example, the episodic age distribution of magmatic zircons was related previously

to the supercontinent cycle (Condie, 1998). In that model, to generate new continental crust, the

layered-convection regime switches to the whole-mantle convection regime. When the slabs

being subducted underneath a supercontinent reach the D‖ layer, plume production is triggered.

The resulting large-scale mantle upwelling (geoid highs) leads eventually to the fragmentation of

the supercontinent. The fragmented blocks drift towards geoid lows where they collide with

other blocks to form a new supercontinent (Anderson, 1982; Perrot et al. 1997). Juvenile crust is

then produced by partial melting of the upper mantle. This process can account for distinct pulses

in the temporal record (age distribution) of magmatic zircons.

An important corollary of this prediction is that detrital zircons should also show such

pulses: those that represent first-generation detrital grains should retain their magmatic signature,

whereas the crustally recycled zircons should acquire new ages (as overgrowths) corresponding

to one of the subsequent cycles. Thus, under this model, if crustal recycling is substantial, the

magmatic and detrital zircons should show the same peaks, but relative to the magnitude of the

magmatic zircon peaks, the magnitude of the detrital peaks should be increased toward Recent

Page 21: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

12

due to preferential removal of metamict zircons through weathering and erosion (Carroll, 1953,

Balan et al. 2001, Delattre et al 2007). In addition, Hf model ages of detrital zircons from a given

radiometrically determined age distribution peak should include a substantial component of older

ages, while retaining a multimodal age distribution (i.e., sharp, radiometrically derived peaks

should be smeared back in time when Hf model ages are examined for the grains from a given U-

Pb determined peak) [Kemp et al. 2006]. Thus, these predictions are empirically testable using a

large compilation of detrital grains dated using U-Pb radiometric ages and Hf model ages.

Several studies published recently used detrital zircon grains to address questions related

to timing, rate, and nature of crustal growth and the supercontinent cycle. These include a study

by Campbell and Allen (2008) who examined age distributions of radiometrically dated zircon

grains from modern river sediments and Condie et al. (2009) who used a literature compilation to

assemble a global database of radiometrically dated detrital grains. This study builds directly on

those previous projects. However, the database analyzed here differs in several ways from those

used by previous workers. These differences should allow us to augment previous efforts in

several critical ways:

1. The database used here is a much larger compilation than any previous study. Analyses

presented below are based on 4,263 samples totaling 199,358 individually dated grains

described by 62 variables (12,360,196 data cells total). In contrast, previous studies were

based on datasets orders of magnitude smaller, in terms of number of samples, number of

grains, or number of variables (Cambell and Allen, 2008 [5,246 grains, 40 samples];

Condie et al. 2009 [~18,000 grains]. The sheer size of the dataset used here offers us

analytical opportunities that are not available at smaller sample sizes. In particular, it

allows us to retain large sample size after grouping data by multiple grouping variables

Page 22: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

13

such as geography, tectonic setting, or a specific radiometric method used. The much

larger dataset also offers us an opportunity for a statistical ground-truthing of previous

analyses. Given the importance of the topic, the opportunity for an independent data-

intensive cross-check of key empirical patterns should not be neglected.

2. By incorporating all relevant studies from non-North American and non-Australian

regions, this database attempts to overcome geographic biases that tend to affect detrital

zircon datasets. The global compilation reported here should allow us to evaluate this

bias in a quantitative manner.

3. This study incorporates a number of sample-level and grain-level grouping variables that

have not been reported in other compilations including: host sediment lithology,

metamorphic grade, host sediment age independent of detrital zircon age constraints,

machine type used (SHRIMP, LA-ICPMS, etc.), U and Th content, tectonic setting, etc.

These additional variables provide information that should not only be useful to the

authors, but is also potentially of relevance to future workers interested in comparing

their datasets to the global reference database compiled here.

4. To our knowledge, this study is the only compilation that also incorporates Th232-Pb208

ages collected for the grains that were dated using U-Pb ages (with 16,182 Th-Pb ages).

Also Hafnium isotope model ages were compiled for grains that had both U-Pb and Hf

data (n = 10,503 Hf isotope model ages). This allows for a direct comparison of different

age-dating and model age estimates derived from the same sets of grains.

5. The database includes all radiometrically dated grains, including those with high

discordance. Because discordance estimates have also been compiled, the database allows

Page 23: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

14

for flexible filtering of discordant grains. Also, the database makes it possible to compare

datasets with different discordance criteria.

In summary, the database analyzed here differs notably from previous compilations and should

provide us with an independently compiled dataset that can be used to assess the reproducibility

of previously reported patterns. As important, the database should allow us to augment previous

efforts by conducting multiple analyses that parse out various dating systems, tectonic settings,

and other relevant parameters, while still retaining substantial sample sizes.

2.2 Methods A meta-analytical compilation of single-dated detrital zircon grains was constructed via

an extensive literature survey of detrital zircon analyses published primarily in English (but also

including German and Chinese documents). A total of 953 studies (see Appendix A for

references for the compiled database) were collected representing 4,263 age distributions (i.e.,

4,263 samples of dated grains) and 199,358 individual grains. All grains were dated individually

using U-Pb techniques. These samples represent all continents and all geological time intervals,

from Archean metasedimentary rocks (paragneisses and metapelites), through Proterozoic and

Phanerozoic sedimentary rocks (including siliciclastic, carbonate, and chemical rocks) up to

modern sediments.

Zircon (ZrSiO4) is one of the most durable minerals, being highly resistant to both

physical and chemical weathering (Heaman and Parrish, 1991, Kowalewski and Rimstidt, 2003).

Because U is present in zircons in the 10-1000 ppm range (Faure and Mensing, 2005, Heaman

and Parrish, 1991), the mineral is also particularly suitable target for reliable radiometric dating.

Page 24: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

15

Moreover, the closure temperature for the U-Pb system exceeds 900°C (Cherniak and Watson,

2000), which makes this radiometric system less vulnerable to resetting via metamorphic,

magmatic, and other thermal processes.

238U and 235U radioactively decay through a series of daughter products to the stable lead

isotopes 206Pb and 207Pb respectively. The 238U-206Pb decay chain, with a half-life of 4.468 ∙ 109

years, is the most widely used to date zircons. The 235U-207Pb system, with a half-life of 0.7038 ∙

109 years (Faure and Mensing, 2005, Jaffey et al. 1971, Steiger and Jäger, 1977), is calculated by

using the known ratio of 235U/238U as well as the ages derived from 238U-206Pb and is not as

commonly reported as the other two age dates. A third dating strategy is the 207Pb/206Pb age,

which is derived from algebraic substitution and manipulation of the two U-Pb decay equations

with the assumption that the ratio of 235U/238U is a constant equal to 1/137.88 (Faure and

Mensing, 2005). The 207Pb/206Pb was used for grains older than 800 Ma in this compilation.

Grains younger than 800 Ma used their 206Pb/238U age. This methodology was used as over the

Phanerozoic relatively little 207Pb was produced as 235U has undergone 6.5 half-lives through the

Earth‘s lifetime and Phanerozoic zircons tend to have low 207Pb contents making it difficult to

analyze (and causing these grains to appear discordant). As discussed in detail below, these

three methods yield highly congruent results.

For each grain, data were keyed into the database according to tectonic setting, best

estimate of host rock age, host rock lithology and metamorphic index, region, paleoclimate

characteristics, and analytical factors. For grains where multiple U-Pb age spots were generated,

the following conventions were used: (1) If the age was labeled as from the ―core‖, this age was

entered into the database and ages labeled ―rim‖ were ignored, and (2) If the ages were not

labeled, the spot with the oldest 206Pb/238U age from the grain was used as opposed to the other

Page 25: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

16

U-Pb and Pb-Pb ages, as this was assumed to be the most likely to approximate the

―crystallization age‖ of the zircon (younger spots were then ignored) and biases the dataset

towards older ages. Multi-spot data is being entered into the database, but are not ready for

analysis yet.

The original sources, from which the database was compiled, reported concordance for

approximately 60% of the grains. Concordance was reported as either: percent concordant or

percent discordant. Other studies reported dates that met some cutoff value (usually either ≤5%

or ≤10%), but without providing information about specific concordance values for each

individual grain. Grains with a 206Pb/238U age less than 400 Ma in age were retained in the final

pooled age regardless of their degree of discordance due to the difficulty in measuring the low

contents of 207Pb in these younger zircons.

2.2.1 Comparison and Merging of Different Geochronological Systems

All age estimates reported by the original authors (the 206Pb/238U, 207Pb/235U and

206Pb/207Pb ages in Ma) were included in the database. In many cases, only one or two of the

possible ages were recorded in the original source. In order to increase the number of grains

used in this study, a ―pooled age‖ was created. The pooled age column in the database was

generated using the 206Pb/238U age for grains younger than 800 Ma; grains older than 800 Ma

were assigned their 207Pb/206Pb age as the best age. There was only one case where the

207Pb/235U age was the only age available in the original dataset. The validity of this approach

can be tested by comparing different isotopic ages (i.e. 207Pb/235U age vs. 206Pb/238U age)

reported for the same grains (Fig. 2). If the three methods were 100% concordant and errorless,

all pair-wise comparisons of the isotopic dating systems should exhibit a relationship of y = 1.0x

Page 26: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

17

+0.0 and the correlation should be perfect (i.e., r and r2 should both equal 1). Isotopic data were

plotted and evaluated for correlation using the software package JMP 8. The two U-Pb pairs

show an exceedingly high positive correlation (R2 = 0.9945, R = 0.997, n = 47,828). A least-

square line with a slope of 0.9996 and an intercept of 9.9935 [Fig. 2] has been fitted (this is not

different significantly from y=1.0x+0.0 line; p=0.00001). The 207Pb/235U age versus the

207Pb/206Pb age data also show a high positive correlation (R2 = 0.920, R = 0.959, n = 70,268)

with a slope of 0.9826 and an intercept of -59.003 [Fig. 2] (this is not different significantly from

y=1.0x+0.0 line; p=0.00001). Comparing 206Pb/238U age versus 207Pb/206Pb age yielded

somewhat lower, but still very high positive correlation (R2 = 0.9204, R=0.959, n = 43,460) with

a line of y = 0.932x + 153.518 fitting the data (this is not different significantly from y=1.0x+0.0

line; p=0.00001). The lower fit is a result of leveraging by discordant younger grains, which

force the fitted equation to have a higher intercept. Thus, all three comparisons have values for

the slope of the relation which are indistinguishable statistically from 1.00 [Fig. 2]. The reported

linear regression coefficients used simple linear regression. More rigorous regression techniques

(major axis regression and orthogonal regression) that accounted for error in both variables were

performed using both R and JMP generated outputs that were very similar to those of the simple

linear regression (slopes that were ± 0.01 and R2- values that were identical to the third decimal

place). Due to the high degrees of correlation, the authors feel justified in pooling the age data

together to increase the number of data points available for analysis. An additional line of

evidence for the degree of similarity between the three U-Pb ages is plotting each system as a

histogram [Fig. 3]. The three isotope-pair should exhibit the same set of peaks if they behave in

a similar manner. All three ages exhibit similar distributions with peaks II through V being

present in all three systems. The magnitudes of the peak heights change (an artifact of sample

Page 27: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

18

size) from one age distribution to another. Also, the U-Pb ages have broader peaks in terms of

age range. Note that the correlations reflect the degree of concordance between the different age

systems. One method of calculating concordance is:

%conc. = 100*(206Pb/238U age / 207Pb/206Pb age)

Perfectly concordant ages should have R2-values of 1.00 and a concordance of 100. Discordant

grains should plot below a y = x line and reverse discordant grain should plot above the y = x

line.

In addition to the parameter estimates for the ≤5% discordant data, linear regression

parameters were also estimated for the pairwise comparisons of different U-Pb ages for the

unfiltered dataset. A comparison of the parameter estimates shows that the correspondence

between the two radiometric dates (235U-207Pb and 238U-206Pb ages) is high regardless of whether

the data are filtered or not (Table 1). Filtering the data for degree of discordance does make a

difference for the 207Pb-206Pb ages, as the R2 values increase and the intercepts decrease with

filtering. Note that this is a mute point as the grains that leverage the fitted line are the young

grains with anomalous discordance values that we use the 206Pb/238U age instead for the rest of

the analyses.

2.2.2 Analytical Methods

A detrital zircon age-frequency distribution is an empirical distribution of ages derived

from a sample of zircons taken from a sediment sample. The resulting data are then plotted as

either a frequency diagram/histogram or as a concordia plot (Wetherill or Tera-Wasserburg style)

(Sircombe, 2000). The term spectrum is commonly used in the detrital zircon literature as a

synonym for age-frequency distribution. ―Age Spectrum‖ has multiple specific definitions in the

Page 28: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

19

geosciences, we chose to use the term age-frequency distribution instead to avoid confusion (see

Gilgen, 2006 and references therein).

Histograms were chosen as the medium to plot the data as more traditional bivariate

concordia plots become cluttered with increasing numbers of grains presented (Sircombe, 2000).

All histograms of the data (full database, ≤5% discordant filtered data, and ≤10% discordant

filtered data) were arbitrarily plotted at bin intervals of 25 Ma using the histogram tool in Excel,

in order to allow for easy comparison of different aspects of the database: i.e. different

geographic locations or tectonic settings. A bin size of 25 Ma allows for resolution of finer-scale

events superimposed on the larger peaks. Different bin sizes were examined for the pooled

database: bin sizes of 5, 10, 20, 25, 50, and 100 Ma all preserved the same overall shape of the

distribution [Fig. 4]. The count axis for each histogram was based on the histogram representing

the largest sample size of a set of histograms contrasted together. As with the scatterplots

discussed previously, the histograms do not incorporate any information on degree of

concordance or analytical errors (Sircombe, 2000, Vermeesch, 2005).

In addition to histograms, a probability density function was calculated and overlain on

the pooled global histogram. The probability density function was generated using the

―gprobdens‖ fortran code compiled by the UCLA SIMS Group. The ―gprobdens‖ program was

upgraded by Dr. Oscar Lovera to handle large datasets for this project. Probability density

functions take into account the errors of analysis for each grain. The errors reported in the

literature vary in form; most of the errors are 1σ errors (standard deviation). A few of the errors

were reported as standard errors in the original publications. Several studies did not report the

errors on their ages. Ages that did not have associated errors were not used in the calculation of

the probability density functions.

Page 29: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

20

To evaluate statistical uncertainty in the location and height of each individual peak, a

bootstrap procedure was applied to all analyzed age distributions. The bootstrap protocol was

designed to both evaluate each peak in terms of its local statistical significance as well as to

assess confidence intervals around the location of the peak (its age and its height). The

simulation also explicitly incorporated dating errors (as nearly all studies reported standard

deviations of age estimates).

The following protocol was used in the simulation. The analyzed age distribution (e.g.,

all dated zircon grains from South America) was re-sampled with replacement. For each

iteration, the age of each re-sampled grain was then modified by adding a random variate from a

normal distribution with mean value corresponding to the actual age of the grain and standard

deviation corresponding to the standard deviation of age estimate reported for that grain by

original authors. For example, if a selected grain was 544 Ma and the standard deviation of the

age estimate was 23 myr, the grain age was modified by using a random number sampled from a

normal distribution with mean of 544 Ma and standard deviation of 23 myr. Thus, this bootstrap

process simulates both sampling process (by resampling with replacement) and the age dating

error (by using an intrinsically defined random variate age value).

The location (age class) and height (number of grains within that age class) were

recorded for each notable peak observed in any given iteration. The process was repeated 1000

times to generate the sampling distribution of peak positions and peak heights. Confidence

intervals were then estimated using percentile approach or ―naïve bootstrap‖ (Efron, 1981). All

major peaks observed in the datasets display very narrow confidence intervals (both in terms of

age and height) indicating that they represent statistically significant modes that are well

Page 30: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

21

constrained in their location and height. This is not surprising considering the very large sample

size and relatively small errors associated with individual age estimates.

In addition, Monte Carlo simulations were performed with a null model of constant

zircon production through geologic time in order to evaluate the significance of the peaks present

within the full database and within each subset of the database plotted on histograms. A SAS

simulation was developed to look at the maximum size of peaks expected under the null model

of constant zircon production through geologic time (i.e., uniform probability distribution). The

output of the simulation was 95 and 99 percent confidence intervals for the maximum height

possible under the null model. All peaks plotted in the pooled dataset and in the sorted subsets

of the database (by continent, by tectonic setting, and modern sediments) are much greater in

magnitude then those observed for the null model. This model is not discussed in this article in

any detail because it is a rather naïve construct that assumes time-invariant grain production and

no loss of older grains through time. However, it is mentioned briefly here to stress that observed

age distributions of zircon grains are drastically and significantly different from predictions of

the simplest null model that can be postulated for grain production and preservation.

2.3 Results and Discussion

2.3.1. U-Pb Age Patterns.

The ―Global Age Frequency Distribution‖ of detrital zircon grains is highly multimodal

(Fig. 5, 3, and 4), with five major, statistically significant peaks at 3.5-3.4, 2.7-2.5, 2.0-1.7, 1.2-

1.0, and 0.7-0.5 Ga (Table 2). These peaks are remarkably evenly spaced (0.5, 0.75, 0.75, and

0.5Ga, respectively), suggesting a quasi-cyclic process (although, obviously, a time series

defined by six events is not conducive for rigorous statistical testing). In between the peaks,

Page 31: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

22

zircon grains are continuously present back to approximately 3.7 Ga. This pattern of the low

background frequency punctuated by statistically significant peaks (Table 2) persists through

geologic time.

Filtering the global dataset for different thresholds of discordance also impacts the shape

of the global age frequency distribution. Removing grains that are either ≤10% or ≤5%

discordant tends to filter out older grains and enhances Peak I in the global age frequency

distribution (Figures 5B and 5C). The overall shape of the distribution is retained (Fig. 5).

As a side note, the overall distribution when plotted for log(10) of the U-Pb ages visually

resembles a bell-shaped curve although with a truncation of its right tail. It is possible that this

truncation reflects a boundary condition imposed by the limits of the age of the solar system

(with the caveat that the oldest zircons are oversampled in the literature and if removed would

make the truncation even more pronounced) and that zircon ages follow a log-normal

distribution. Such log-normal distributions of geological records may be a common phenomena

(Kesler and Wilkinson, 2009; Wilkinson and Kesler, 2009). In this specific case, the shape of

the distribution may reflect the gradual unroofing of batholiths through weathering and erosion

which would decrease frequency of younger zircons (due to time necessary for unroofing and

releasing these grains to the sediment) combined with decreased frequency of much older zircons

through lower preservation of ancient crust available as a source of zircons.

The global pattern also persists regionally: age distributions derived separately for each

continent display most or all of the peaks found in the global distribution (Fig. 6). Specifically,

the three prominent peaks at 2.7-2.5 Ga, 2.0-1.7 Ga, and 1.2-1.0 Ga are present on all continents,

although the timing of some of the peaks is shifted slightly on some continents. The 3.5-3.4 Ga

Page 32: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

23

peak is present from Australia, Africa and North America (and may reflect a sampling bias),

though this peak is suppressed relative to the other peaks (Fig. 6A, E, and F), and, in the case of

North America, the peak is shifted slightly (to 3.6-3.7 Ga). In addition, Africa and Australia

both exhibit peaks at 3.0 Ga that are not observed on any of the other continents. Only the

second youngest peak (in the filtered dataset) was not observed for all seven continents (0.7-0.5

Ga). This is likely a sampling bias as younger strata in Europe (other methods, especially fission

track, have been used for provenance work), Africa (most detrital zircon studies focus on the

host rocks of ore bodies in southern Africa) and Antarctica (poor access to rock material save for

limited ice-free regions) are poorly represented in the literature that reports detrital zircon U-Pb

ages. Thus, while each continent appears to have a subtly distinct signature, the first-order

pattern of five major peaks observed in the global age distributions is remarkably well conserved

across continents. Some of the minor differences (e.g., the slightly shifted 3.6-3.7 Ga. peak in the

North American dataset) are unlikely to represent sampling biases and suggest that age

distributions of zircons may carry distinct (albeit subtle) continental-scale signatures. These

meta-data may thus serve as a reference standard to which new samples can be compared,

especially in the context of provenance studies, regional and global correlations, and suspect

terrane analysis (Dickinson and Gehrels, 2009, 2010).

As an illustration of the utility of the technique for provenance analysis, let us consider

the geological context of the North American detrital zircon age frequency distribution. The

North American age frequency distribution has seven clearly resolved peaks at 0.1-0.3 Ga, 0.35-

0.4 Ga, 0.6-0.7 Ga, 1.1-1.25 Ga, 1.4-1.45 Ga, 1.65-1.8 Ga, and 2.7-2.8 Ga (Fig. 7). These peaks

correspond directly to well-known geologic events. Starting from the most recent event, the

youngest peak (0.1-0.3 Ga) reflects a composite of the Cordilleran orogenies (Laramide, Sevier,

Page 33: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

24

and Antler), when major batholiths formed and subsequently provided a source for abundant

Cordilleran zircons (Burchfiel and Davis, 1975; Camilleri and Chamberlain, 1997; Dickinson,

2004; Gehrels and Dickinson, 2000; Gehrels et al. 2002; Speed and Sleep, 1982), which

constitute the youngest North American peak. Note that this youngest peak masks much smaller

and thus more subtle peaks of slightly older zircons that represent the youngest of the

Appalachian orogenies: Alleghanian granitic batholiths magmatism (Faill, 1998). The second,

relatively smaller peak at 0.35-0.4 Ga represents material derived from the Taconic island arc

(Faill, 1997). The third peak (0.6-0.7 Ga) is derived from the breakup of Rodinia during Iapetan

rifting (Cawood et al. 2007) or alternatively are derived from Pan-African material (Bousquet et

al. 2008; Grant, 1969; Takigami, 2001). The Grenville orogeny is represented by the fourth peak

(at 1.1-1.25 Ga) with grains derived from granitic magmatism related to arc accretion (Gower et

al. 2008). 1.4 Ga magmatism is recorded in the southwestern United States (Nyman et al. 1994)

and may be a source of zircons for the fifth peak at 1.4-1.45 Ga. The sixth peak may represent

the combined orogenic events that occurred during the period 1.65-1.8 Ga: the Mazatzal,

Yavapai, Penokean, Trans-Hudson, and Wopmay orogenies (Whitmeyer and Karlstrom, 2007).

The younger Mazatzal and Yavapai orogenies make up the Central Plain orogen of Sims and

Peterman (1986), and reflect accretion of arcs onto the southeastern margin of Laurentia during

this period as well as abundant rhyolitic magmatism (Amato et al. 2008, Jones et al. 2009). The

accretion of an island arc to the southeastern margin of Laurentia (southern Wisconsin-

Minnesota) during the Penokean orogeny formed a significant event at 1.7-1.9 Ga (Bahovich et

al. 1989; Sims et al. 1983, 1989, and 1993). The oldest (seventh) peak recorded in the North

American detrital zircon age frequency distribution is the 2.7-2.8 Ga peak which is derived from

Page 34: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

25

magmatism generated during the formation of the supercontinent Kenorland (Aspler and

Chiarenzelli, 1998; Corfu et al. 1998, 2000).

The age frequency distributions for Gondwana vs. Laurasia exhibit similar peaks to those

displayed by the global compilation (Fig. 8). Both age frequency distributions contain peaks II,

III, IV, and V. The two distributions have comparable sample sizes of ~20,000 grains. There are

significant geographic sampling biases inherent in these two age frequency distributions. For

Laurasia (Fig. 8A), the distribution is overwhelmingly dominated by grains from North America.

The Gondwanan age frequency distribution (Fig. 8B) is dominated by grains from Australia.

The peaks for Gondwana tend to have a narrower age range, whereas the Laurasian peaks are

much broader. It is also significant to note the steepness of the trough at ~1.5 Ga for Gondwana

(Fig. 8B), which corresponds to a small peak in the Laurasian distribution. This 1.5 Ga peak

may reflect the break-up of Columbia (Rogers and Santosh, 2002). Peak V (the 2.7-2.5 Ga peak)

is shifted towards 2.7 Ga in Laurassia. The Gondwanan peak V is strongly bimodal with distinct

peaks at 2.5 and 2.7 Ga.

The same set of prominent peaks persists when data are grouped into four geotectonic

settings (passive margins, foreland basins, arc settings, and rift basins), including prominent

peaks at 2.7-2.5 Ga, 2.0-1.7 Ga, 1.2-1.0 Ga, and 0.7-0.5 Ga, as well as a somewhat less

pronounced peak at 3.1-3.0 Ga (Fig. 9). Each geotectonic setting is represented by at least

15,000 zircon ages (5% or less discordant) providing statistically robust estimates of age

distributions (Table 2). The presence of the same set of peaks in different tectonic settings

suggests that geochronology of detrital zircon grains is not affected notably by geotectonic

setting as the tectonic setting of the host sediment reflects the depositional setting and not the

sites of original crystallization of the zircons. Whether a given sedimentary basin represents an

Page 35: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

26

active, or passive or rift setting does not noticeably impact the resulting age structure of detrital

grains incorporated into the new sedimentary record. This pattern may be due to the durability of

zircon grains and their high blocking temperatures that may allow for the recycling of grains

through the rock cycle and their subsequent deposition with sediments in these different tectonic

settings.

The oldest peak observed in the global data was missing from modern river sediments

(Fig. 10). No grains older than 3.5 Ga were observed in this subset of the database. The lack of

pre-3.5 Ga grains could be due to two factors: sampling bias (as sites of 3.5 Ga or older crust at

the surface are of limited extent) or efficiency of crustal reworking, involving a cumulative loss

or age resetting of very old grains towards the present. The presence of the same four peaks

globally, on each individual continent, in all major tectonic settings, and in modern sediments

implies the episodic nature of plate tectonic processes. This pattern may reflect either episodic

production of continental crust (formation of new zircon crystals, with the caveat that juvenile

crustal rocks are mafic in composition and generally zircon-poor) or episodic recycling of

preexisting crust (reheating of zircon grains above closure temperature and formation of new

zircons).

2.3.2. Th-Pb Patterns

A second independent geochronological system was analyzed for ~16,200 grains. The 232Th-

208Pb system has a decay constant of 4.9475*10-11 yr-1 (Steiger and Jäger,1977 and references

therein). Of the 16,200 grains, 8,249 of the grains passed the ≤5% discordance filter and were

analyzed in this compilation. There is a high degree of correlation (R2 = 0.956) between the

232Th-208Pb age and the pooled U-Pb age (Fig. 11A). The age frequency distribution (Fig. 11B)

Page 36: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

27

of the 232Th-208Pb ages is very similar to that observed in the U-Pb pooled age distribution (Fig.

5) with peaks at 0.1-0.2 Ga, 0.5-0.7 Ga, 1.0-1.2 Ga, 1.7-1.9 Ga, and 2.4-2.7 Ga. This distribution

does exhibit a peak at 3.0-3.2 Ga. The strong similarity of the two independent geochronological

systems supports the validity of the retrieved age distribution pattern.

2.3.3. Hf isotope model ages and crustal recycling

The relative importance of crustal growth versus crustal recycling in the evolution of

continental crust can be evaluated through the interpretation of Hf isotope model ages in

conjunction with the U-Pb data. Of the ~200,000 zircon grains included in the database, ~10,500

were also dated using Hf isotopes model ages. Applying the 5% discordance filter drops the

number of grains with associated Hf isotope model ages to 5,124. These concurrent ages may

provide an independent way to distinguish crustal growth from crustal recycling. The U-Pb

zircon dating system has a closure temperature of ~900°C (Cherniak and Watson, 2000), though

Pb loss may occur at lower temperatures in the presence of fluid alteration (Hay and Dempster,

2009, Geisler et al. 2003). However, high-grade metamorphism can potentially bring zircons

above this temperature and reset their age via lead loss; this is a problem for zircons that may

have undergone multiple cycles of reheating and magmatic recycling before reaching their final

resting point in the current sedimentary host rock. Hafnium is more strongly retained by zircons,

as it behaves chemically like zirconium and is often thought of as a robust indicator of the age of

magma separation from the mantle related to crustal growth (Kinny et al. 1991, Kemp et al.

2006, Flowerdew et al. 2007). Hafnium isotope model ages are based on the Lu-Hf decay

system and algebraic manipulation of the formula. The ages are not true radiometric ages, but

instead model ages reflecting the last time that material was part of the mantle (Kemp et al.

Page 37: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

28

2006). Note that there are multiple different models used in calculating these Hf isotope model

ages and no consistent standard is currently available (the authors chose not to recalculate the Hf

isotope model ages to standardize them as not all studies provide enough information to do so).

There is also variability in the Hf isotope model ages from the Lu-Hf decay constants used (with

5 different decay constants in use currently). However, the large size of the dataset may justify

time-estimating of the crustal growth events, we recognize that Hf isotope model ages (being

potentially mixed age models with questionable geochronological relevance) may represent

biased age estimates that should not be interpreted literally.

The distribution of Hf isotope model ages is multi-modal, but the position (and

magnitude) of peaks differs substantially from that observed in both the U-Pb and Th-Pb

distributions (Fig. 12A). A bivariate comparison of U-Pb and Hf isotope model ages (Fig. 12B)

shows that detrital zircon grains, dated by both methods, populate an upper left part of the plot

above the diagonal boundary defined by the Age(Hf)=Age(U-Pb) line. Thus, the Hf age of a

grain is at most as young and, except for very few outliers, never younger than the U-Pb age of

that grain. However, the Hf isotope model age of a grain is commonly much older than the U-Pb

age of that grain. This is not entirely surprising given that Hf ages are model ages and cannot be

younger than the U-Pb ages (Kemp et al. 2006).The Hf isotope model ages reflect when the

material forming the zircons was first crystallized to form continental crust. The offset in age

between the Hf isotope model age and the U-Pb age of the zircon then reflects crustal recycling

of this much older crust (Kemp et al. 2006). Nevertheless, the Hf isotope model age distribution

is also multimodal, suggestive of episodic growth of crust, although the Hf peaks (Fig. 12) do not

match the U-Pb peaks (Fig. 5).

Page 38: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

29

When Hf dates are grouped based on the U-Pb ages of the host zircon grains into five

classes representing the five peaks observed in the global U-Pb age distribution, the resulting Hf

isotope model age distributions (Fig. 13) all exhibit a wide range of ages despite representing

grains from single U-Pb age classes. Assuming that peaks in the Hf distribution represent crustal

growth events, the U-Pb age peak number 5 (2.5 Ga) exhibits a peak in the Hf isotope model age

distribution at 2.8-2.9 Ga suggesting that the zircons age dated at 2.5 Ga with U-Pb underwent

remelting of 2.8-2.9 Ga old continental crust that was recrystallized at 2.5 Ga before eventual

deposition in their host sedimentary rocks. The U-Pb peak number 4 (1.8 Ga) exhibits two Hf

peaks, one at 1.8 Ga and the other at 2.3-2.4 Ga. This suggests that detrital zircons with U-Pb

ages of 1.8 Ga were sourced from zircons that formed in two previous crustal growth events and

were subsequently crustally recycled. Figure 13 illustrates that there is an average offset of ~0.5

Ga from the U-Pb age and the Hf isotope model age. The greatest offset recorded was 0.8 Ga for

class II zircons. The smallest offset was recorded for class V -- ~0.3 Ga. Similar values of offset

have been observed by Kemp et al. (2006).

2.4 Comparisons with other compilations Multiple detrital zircon compilations have been published recently. A comparison of

detrital zircon compilations (this study; Campbell and Allen, 2008; Condie et al. 2009) and

igneous zircons (Condie et al. 2009) are presented in Figure 14. All four compilations are

plotted at the same bin size (20 Ma) and axes settings. In addition, the peaks identified in this

study have been labeled on the corresponding peaks of the other compilations (i.e. peak I: 0.1-0.2

Ga, peak II: 0.5-0.7 Ga, peak III: 1.0-1.2 Ga, peak IV: 1.7-2.0 Ga, and peak V: 2.5-2.7 Ga).

Page 39: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

30

Campbell and Allen (2008) analyzed modern river sediments from rivers worldwide.

Their dataset was filtered with a ≤5% discordance filter and is independent of both the current

study and the Condie et al. (2009) compilation, making it an invaluable study for independent

comparison. The Condie et al. (2009) database is a global survey of detrital zircon data compiled

from the literature. They used two filters: a ≤10% discordance filter and a 1σ error < 20 Ma

filter. The majority of studies represented in the Condie et al. (2009) database are also

represented in the current study‘s database. In addition to detrital zircons, Condie et al. (2009)

also compiled a global igneous zircon dataset. This dataset is plotted separately in order to allow

us to compare the detrital signature against the igneous signature. The current study used a ≤5%

filter and has a much greater sample size than either of the other detrital zircon compilations.

Both of the above detrital zircon compilations and the igneous zircon compilation, in

common with this study, exhibit peaks II, III, IV, and V. Not only peak positions, but also to

some extent the shapes of specific peaks (for example, peaks III and V) are similar for the

different compilations. Another significant similarity between the compilations is that peak V is

bimodal with a strong peak at 2.7 Ga and a minor peak at 2.5 Ga. Thus, the compilation of dated

grains analyzed here is remarkably consistent with previous analyses, providing strong empirical

support for reproducibility of the geochronological pattern recorded by individually dated detrital

zircon grains.

2.5 Alternative Hypotheses Two other hypotheses may also be at play here: 1. the issue of signal preservation and 2. the

potential of zircon rafting by suspect terranes, micro-continents and arcs. The peaks recorded in

geochronological datasets may not reflect episodic crustal growth, but instead are related to the

Page 40: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

31

preservation of crustal materials. Hawkesworth et al. (2009, 2010) argue that peaks in

crystallization age are tied to the supercontinent cycle because these are periods when magmatic

rock preservation is enhanced. In addition, the similarity of continental detrital zircon age

frequency distributions may be a result of the amalgamation of the continents through accretion

of arcs, micro-continents and suspect terranes. These continental blocks may actually transfer

zircons that formed in one region to a completely different region, in a process somewhat

analogous to sediment transport by ice-rafting in glacial settings. The geographic coding in the

database currently is not capable of determining how significant this second process may be.

2.6 Conclusions Joint consideration of U-Pb and Hf age distributions of detrital zircon grains reaffirms the

model postulating episodic crustal evolution through one or a combination of crustal growth

and/or crustal recycling. The relatively even spacing of U-Pb age peaks and Th-Pb age peaks

(~0.6 Ga) is consistent with a quasi-cyclic process such as the supercontinent cycle. The variable

and generally older Hf isotope model ages of zircon grains from single U-Pb age classes suggest

that the crustal evolution involved substantial crustal recycling, a phenomenon which may also

help to explain the uniformity of U-Pb age distributions across different continents and between

different tectonic settings. The uniform offset between the Hafnium isotope model ages and the

U-Pb ages is also quite intriguing and suggests that crustal recycling may also have occurred at

roughly 0.5-0.6 Ga. This remarkable spatial and geotectonic homogeneity suggests that the

evolution of the continental crust on Earth has been primarily controlled by global scale

processes rather than historically unique regional events.

Page 41: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

32

2.7 References Cited Amato, J.M.; Boullion, A.O.; Serna, A.M.; Sanders, A.E.; Farmer, G.L.; and Gehrels, G.E. 2008.

Evolution of the Mazatzal province and the timing of the Mazatzal orogeny: Insights from U-Pb geochronology and geochemistry of igneous and metasedimentary rocks in southern New Mexico. Geol. Soc. Am. Bull. 120:328-346.

Anderson, D.L. 1982, Hotspots, polar wander, Mesozoic convection and the geoid. Nature. 297:391-393.

Armstrong, 1981. R.L. Armstrong, Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth Earth. Phil. Trans. Roy. Soc. London A301:443–472.

Armstrong, 1991. R.L. Armstrong, The persistent myth of crustal growth. Australian J. Earth Sci. 38:613–630.

Aspler, L.B.; and Chiarenzelli, J.R. 1998. Two Neoarchean supercontinents? Evidence from the Paleoproterozoic. Sediment. Geol. 120: 75-104.

Barovich, K.M.; Patchett, P.J.; Peterman, Z.E.; and Sims, P.K. 1989. Nd isotopes and the origin of 1.9-1.7 Ga Penokean continental crust of the Lake Superior Region. Geol. Soc. Am. Bull. 101:333-338.

Balan, E.; Neuville, D.R.; Trocellier, P.; Fritsch, E.; Muller, J.-P.; and Calas, G. 2001. Metamictization and chemical durability of detrital zircon, Am. Min. 86:1025-1033.

Bambach, R. K. 1993. Seafood through time: changes in biomass, energetics and productivity in the marine ecosystem. Paleobiology 19:372–397.

Bousquet, R.; El Mamoun, R.; Saddiqi, O.; Goffé, B.; Möller, A.; and Madi, A. 2008. Mélanges and ophiolites during the Pan-African orogeny: the case of the Bou-Asser ophiolite suite (Morocco). In Ennih, N. and Liegeois, J.P. (eds.). The boundaries of the West African Craton. Geological Society Special Publication 297:233-247.

Burchfiel, B.C., and Davis, G.A. 1975. Nature and controls of Cordilleran orogenesis, western United States: Extensions of an earlier synthesis. Am. J. Sci. 275A:363-396.

Camilleri, P.A., and Chamberlain, K.R. 1997. Mesozoic tectonics and metamorphism in the Pequop Mountains and Wood Hills region, northeast Nevada: Implications for the architecture and evolution of the Sevier orogen. Geol. Soc. Am. Bull. 109:74-94.

Campbell, I.H., and Allen, C.M. 2008. Formation of supercontinents linked to increases in atmospheric oxygen. Nature Geos. 1:554-558.

Carlson, R.W.; Lugmair, G.W.; and MacDougall, J.D. 1981. Columbia River volcanism: The question of mantle heterogeneity or crustal contamination. Geochim. Cosmochim. Acta. 45:2483-2499.

Page 42: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

33

Carroll, D. 1953. Weatherability of zircon. J. Sed. Petrol. 23:106-116.

Cawood, P.A., and Buchan, C. 2007, Linking accretionary orogenesis with supercontinent assembly. Earth Sci. Rev. 82:217-256.

Cawood, P.A.; Nemchin, A.A.; and Strachan, R. 2007. Provenance record of Laurentian passive-margin strata in the northern Caledonides: Implications for paleodrainage and paleogeography. Geol. Soc. Am. Bull. 119:993-1003.

Cherniak, D.J. and Watson, W.B., 2000. Pb diffusion in zircon, Chemical Geology 172:5-24.

Condie, K.C., 1998. Episodic continental growth and supercontinents: a mantle avalanche connection. Earth Planet. Sci. Lett. 163, pp. 97–108.

Condie, K.C., 2000. Episodic continental growth models: afterthoughts and extensions. Tectonophysics 322, pp. 153–162.

Condie,K.C. Supercontinents, superplumes and continental growth: The Neoproterozoic record. in Proterozoic East Gondwana: Supercontinent assembly and breakup, M. Yoshida, B.F. Windley, and Dasgupta, S. Eds. (Geological Society, Longon, 2003), pp. 1-21.

Condie, K., Belousova, E., Griffin, W.L., Sircombe, K.N., 2009. Granitoid events in space and time: constraints from igneous and detrital zircon age spectra. Gondwana Res. 15:228–242

Corfu, F.; Davis, D.W.; Stone, D.; and Moore, M.L. 1998. Chronostratigraphic constraints on the genesis of Archean greenstone belts, northwestern Superior Province, Ontario, Canada. Precambrian Res. 92:277-295.

Corfu, F., and Lin, S. 2000. Geology and U-Pb geochronology of the Island Lake greenstone belt, northwestern Superior Province, Manitoba. Can. J. Earth Sci. 37:1275-1286.

Delattre, S.; Utsunomiya, S.; Ewing, R.C.; Boeglin, J.-L.; Braun, J.-J.; Balan, E.; and Calas, G. 2007. Dissolution of radiation-damaged zircon in lateritic soils, Am. Min. 92:1978-1989.

DePaolo, D.J.; Linn, A.M.; and Schubert, G. 1991. The Continental crustal age distribution: Methods of determining mantle separation ages from Sm-Nd isotopic data and application to the southwestern United States. J. Geophys. Res. 96:2071-2088.

Dickinson, W.R. 2004. Evolution of the North American Cordillera. Annu. Rev. Earth Planet. Sci. 32:13-45.

Dickinson, W.R., and Gehrels, G.E. 2009. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth Planet. Sci. Lett. 288:115-125.

Page 43: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

34

Dickinson, W.R., and Gehrels, G.E. 2010(in press). Insights into North American Paleogeography and Paleotectonics from U-Pb ages of detrital zircons in Mesozoic strata of the Colorado Plateau, USA. Int. J. Earth Sci. doi: 10.1007/s00531-009-0462-0.

Efron, B. 1981. Nonparametric estimates of standard error: The jackknife, the bootstrap and other methods. Biometrika, 68, 589-599.

Faill, R.T. 1997, A geologic history of the north-central Appalachians, Part 2: The Appalachian basin from the Silurian through the Carboniferous. Am.J. Sci. 297:729-761.

Faill, R.T. 1998, A geologic history of the north-central Appalachians, Part 3. The Alleghany Orogeny. Am. J. Sci. 298:131-179.

Faure, G., and Mensing, T.M. 2005. Isotopes: Principles and Applications, 3rd ed. John Wiley and Sons, Inc. Hoboken,897 pp.

Flowerdew, M.J.; Millar, I.L.; Curtis, M.L.; Vaughan, A.P.M.; Horstwood, M.S.A.; Whitehouse, M.J.; and Fanning, C.M. 2007. Combined U–Pb geochronology and Hf isotope geochemistry of detrital zircons from early Paleozoic sedimentary rocks, Ellsworth–Whitmore Mountains block, Antarctica, Geol. Soc. Am. Bull. 119:275–288.

Gastil, G. 1960. The distribution of mineral dates in time and space. Am. J. Sci. 258:1-35.

Gehrels, G.E., and Dickinson, W.R. 2000. Detrital zircon geochronology of the Antler overlap and foreland basin assemblages, Nevada. In Soreghan, M.J. and Gehrels, G.E. (eds.). Paleozoic and Triassic Paleogeography and tectonics of Western Nevada and Northern California. Special Papers of the Geological Society of America 347:57-63.

Gehrels, G.E.; Stewart, J.H.; and Ketner, K.B. 2002. Cordilleran-margin quartzites in Baja California – implications for tectonic transport. Earth Planet. Sci. Lett. 199:201-210.

Geisler, T.; Pidgeo, R.T.; Kurtz, R.; van Bronswijk, W.; and Schleicher, H. 2003. Experimental hydrothermal alteration of partially metamict zircon. Am. Mineral. 88:1496-1513.

Gilgen, H. 2006. Univariate Time Series in Geosciences: Theory and Examples. Springer, Berlin, 718 pp.

Gower, C.F.; Kamo, S.; Kwok, K.; and Krogh, T.E. 2008. Proterozoic southward accretion and Grenvillian orogenesis in the interior Grenville province in eastern Labrador: Evidence from U-Pbgeochronological investigations. Precambrian Res. 165:61-95.

Grant, N.K. 1969. The Late Precambrian to Early Paleozoic Pan-African orogeny in Ghana, Togo, Dahomey, and Nigeria. Geol. Soc. Am. Bull. 80:45-56.

Page 44: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

35

Hawkesworth, C.; Cawood, P.; Kemp, A.; Storey, C.; and Dhuime, B. 2009, A Matter of Preservation. Science 323: 49-50.

Hawkesworth, C.J.; Dhuime, B.; Pietranik, A.B.; Cawood, P.A.; Kemp, A.I.S.; and Storey, C.D. 2010. The generation and evolution of the continental crust. J. Geol. Soc. London 167:229-248.

Hay, D.C., and Dempster, T.J. 2009. Zircon alteration, formation and preservation in sandstones. Sedimentology 56:2175-2191.

Heaman, L., and Parrish, R. 1991. U-Pb geochronology of accessory minerals. In Shortcourse Handbook on Applications of Radiogenic Isotope Systems to Problems in Geology. Eds. Heaman, L., and Ludden, J.N. Mineralogical Association of Canada. 19:59-102.

Hurley P. M. 1968 Absolute abundance and distribution of Rb K and Sr in the Earth. Geochim. Cosmochim. Acta 32 273.

Hurley, P.M. and Rand, J.R., 1969. Pre-drift continental nuclei. Science 164, pp. 1229–1242.

Jaffey, A.H.; Flynn, K.F.; Glendenin, L.E.; Bentley, W.C.; and Essling, A.M. 1971. Precision measurements of half-lives and specific activities of 235U and 238U. Phys. Rev. Series C 4:1889–1906.

Jones, J.V.; Connelly, J.N.; Karlstrom, K.E.; Williams, M.L.; and Doe, M.F. 2009. Age, provenance and tectonic setting of Paleoproterozoic quartzite successions in the southwestern United States. Geol. Soc. Am. Bull. 121:247-264.

Kemp, A.I.S., Hawkesworth, C.J., Paterson, B.A., and Kinny, P.D. 2006, Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircons: Nature, 439:580– 583.

Kesler, S.E., and Wilkinson, B.H. 2009. Resources of Gold in Phanerozoic Epithermal Deposits. Econ. Geol. 104:623-633.

Kinny, P.D.; Compston, W.; Williams, I.S.; 1991. A reconnaissance ion-probe study of hafnium isotopes in zircons. Geochim Cosmochim Acta 55:849–859.

Kowalewski, M., and Rimstidt, J.D., 2003.Lifetime and age spectra of detrital grains: toward a unifying theory of sedimentary particles. J. Geol. 111: 427-440.

Mason, P.R.D.; Downes, H.; Thirwall, M.F.; Seghedi, I.; Szakács, A.; Lowry, D.; and Mattey, D. 1996. Crustal assimilation as a major petrogenetic process in the East Carpathian Neogene and Quaternary continental margin arc, Romania. J. Petrol. 37:927-959.

Page 45: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

36

McCulloch and Bennett, 1994 Progressive growth of the Earth's continental crust and depleted mantle: Geochemical constraints. Geochim. Coshmochim. acta 58: 4717–4738.

McLennan, S.M. 1988. Recycling of the Continental Crust. Pure Appl. Geophys. 128:683-724.

Miller, K.G.; Kominz, M.A.; Browning, J.V.; Wright, J.D.; Mountain, G.S.; Katz, M.E.; Sugarman, P.J.; Cramer, B.S.; Christie-Blick, N.; and Pekar, S.F. 2005. The Phanerozoic Record of Glob al Sea-Level Change. Science 310:1293-1298.

Nyman, M.W.; Karlstrom, K.E.; Kirby, E.; and Graubard, C.M. 1994. Mesoproterozoic contractional orogeny in western North America: Evidence from ca. 1.4 Ga plutons. Geology 22:901-904.

Perrot, K., Tarits, P. and Goslin, J., 1997. Regionalized comparison of global Earth models of seismic velocity, geoid and topography : implications on the geodynamics of ridges and subductions. Phys. Earth Planet. Int. , 99, 91-102.

Reymer, A., and Schubert, G. 1984. Phanerozoic addition rates to the continental crust and crustal growth. Tectonics, 3: 63-77.

Rogers, J.J.W., and Santosh, M. 2002. Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Res. 5:5-22.

Rudnick, R.L. 1995. Making Continental Crust. Nature, 378:571-578.

Russel, J.K., and Hauksdóttir, S. 2001. Estimates of crustal assimilation in Quarternary lavas from the Northern Cordillera, British Columbia. Can. Mineral. 39:275-297.

Sims, P.K.; Anderson, J.L.;Bauer, R.L.; Chandler, V.W.; Hanson, G.N.; Kalliokoski, J.; Morey, G.B.; Mudrey, M.G.; Ojakangas, R.W.; Peterman, Z.E.; Schulz, K.J.; Shirey, S.B.; Smith, E.I.; Southwick, D.L.; van Schmus, W.R.; and Weiblen, P.W. 1993. The Lake Superior Region and Trans-Hudson orogen. In Sims, P.K. (ed.). The Geology of North America. C2:11-115.

Sims, P.K., and Peterman, Z.E. 1983. Evolution of Penokean foldbelt, Lake Superior Region, and its tectonic environment. In Medaris Jr., L.G. (ed.). Early Paleoproterozoic Geology of the Great Lakes Region. Geological Society of America Memoir 160:3-14.

Sims, P.K., and Peterman, Z.E. 1986. Early Proterozoic Central Plains Orogen: A major buried structure in the north-central United States. Geology 14:488-491.

Sims, P.K.; van Schmus, W.R.; Schulz, K.J.; and Peterman, Z.E. 1989. Tectono-stratigraphic evolution of the early Proterozoic Wisconsin magmatic terranes of the Penokean orogen. Can. J. Earth Sci. 26:2145-2158.

Page 46: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

37

Sircombe K.N., 2000. Quantitative comparison of large sets of geochronological data using multivariate analysis: a provenance study example from Australia. Geochim. Cosmochim. Acta, 64, 1593-1616.

Speed, R.C., and Sleep, N.H. 1982. Antler orogeny and foreland basin: A model. Geol. Soc. Am. Bull. 93:815-828.

Stanley, S.M., Hardie, L.A. 1998. "Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry". Palaeogeography, Palaeoclimatology, Palaeoecology 144: 3–19.

Steiger, R.H., and Jäger, E. 1977. Subcommission on geochronology: convention of the use of decay constants in geo and cosmochronology. Earth Planet. Sci. Lett. 36:359–362.

Takigami, Y. 2001. Consideration of the Pan-African Orogeny from 40Ar-39Ar age results. Gondwana Res. 4:796.

Taylor, S.R. 1967. The origin and growth of continents. Tectonophysics, 4:17-34.

Taylor, S.R., McLennan, S.M., 1985: The Continental Crust: its Composition and Evolution. Blackwell Scientific Publications. Oxford, 311 pp.

Taylor, S. R. and McLennan, S. M. 1995.The geochemical evolution of the continental crust. Rev. Geophys. , 33, 241-265.

Veizer. J., and Jansen, S.L. 1979. Basement and sedimentary recycling and continental evolution. J. Geol. 87:341–370.

Vermeij, G. J. 1995. Economics, volcanoes, and Phanerozoic revolutions. Paleobiology, 21:125-152.

Vermeesch, P., 2005, Statistical uncertainty associated with histograms in the Earth Sciences, Journal of Geophysical Research, 110, B02211. doi:10.1029/2004JB003479.

Von Huene, R., and Scholl, D.W. 1991. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev. Geophys. 29:279-316.

Whitmeyer, S.J., and Karlstrom, K.E. 2007. Tectonic model for the Proterozoic growth of North America. Geosphere 3:220-259.

Wilkinson, B.H., and Kesler, S.E. 2009. Quantitative Identification of Metallogenic Epochs and Provinces: Application to Phanerozoic Porphyry Copper Deposits. Econ. Geol. 104:607-622.

Page 47: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

38

Figure 2. Comparison of ≤5% discordant-filtered U-Pb ages. A. Scatterplot of 206Pb-238U vs. corresponding 207Pb-206Pb age. B. Scatterplot of 207Pb-235U vs. corresponding 207Pb-206Pb age. C. Scatterplot of 207Pb-235U vs. corresponding 206Pb-238U age. Note all three pairs can be modeled with a simple linear regression model of the form: Y = 1.0X + 0. The R2-values show high correlation with values of 0.99.

Page 48: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

39

Figure 3. Comparison of the age distributions for each of the U-Pb ages. A. 207Pb-206Pb. B. 206Pb-238U. and C. 207Pb-235U. All three distributions are from the ≤5% discordant-filtered subset of the database. Peaks II through V are present in all three distributions.

Page 49: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

40

Figure 4. Comparison of the ≤5% discordant-filtered subset of the database at different bin size intervals in order to illustrate that the peaks are independent of bin size. Peaks II, III, IV, and V are observed at A. 5 Ma bins. B. 10 Ma bins. C. 20 Ma bins. D. 50 Ma bins. E. 100 Ma bins. At greater bin size intervals, the peaks merge together, but one has to bin the data at 200 Ma or greater bins to do so.

Page 50: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

41

Figure 5. Global Detrital Zircon Pooled Age Distribution: a.) unfiltered, b.) ≤10% discordant-filtered, c.) ≤5% discordant-filtered. Note the persistence of all peaks regardless of degree of filtering.

Page 51: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

42

Figure 6. Continental Detrital Zircon Age Distributions from the ≤5% discordant-filtered subset of the full database. A, North America. B, South America. C, Europe. D, Asia (without India). E, Africa. F, Australia. G, Antarctica. Note the persistence of peaks III, IV, and IV on all continents. Peak II is observed for North America, South America, Europe, Asia, and Antarctica. Africa and Australia exhibit a much reduced peak II.

Page 52: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

43

Figure 7. Age frequency distribution of detrital zircon U-Pb ages from North America with corresponding significant geologic events.

Page 53: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

44

Figure 8. Comparison of ≤5% discordant detrital zircon grains from A. Laurasia and B. Gondwana. Peaks II, III, IV, and V are present in both of these plate tectonic configurations. Laurasia exhibits a trough between peaks III and IV that is not as deep as observed from Gondwana.

Page 54: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

45

Figure 9. Comparison of detrital zircon (≤5% discordant-filtered) age distributions from different tectonic settings. A. Arc settings. B. Foreland Basins. C. Passive Margins and Intracratonic Basins. D. Rift Basins. Note that the tectonic setting is of the host sediment. The tectonic setting of the host sediment is not related to the crystallization of the zircons.

Page 55: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

46

Figure 10. Detrital Zircon distribution from Modern Sediments compiled in this study.

Page 56: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

47

Figure 11. A. Comparison of 208Pb-232Th age versus pooled U-Pb age for corresponding detrital zircon grains. There is a high correlation between the two age systems (R2 = 0.956) and a regression line that is close to Y = 1X + 0. B. 208Pb-232Th distribution. Note the strong similarity between the 208Pb-232Th age distribution and the pooled U-Pb age distribution (from Figure 1c). All grains had a pooled U-Pb age that was ≤5% discordant.

Page 57: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

48

Figure 12. A. Comparison of Hf isotope model ages versus pooled U-Pb age from corresponding, ≤5% discordant detrital zircon grains. The majority of the grains fall above a Y = X line showing that the calculated Hf isotope model age is greater than or equal to the pooled U-Pb age. B. Hf isotope model age distribution. The distribution is multimodal. However, the peaks are offset from those observed in the U-Pb age distribution.

Page 58: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

49

Figure 13. Comparison of pooled U-Pb age vs. Hf isotope model age distribution for discrete pooled U-Pb age classes. A. Class I corresponds to detrital zircons with ages equivalent to Peak I. B. Class II corresponds to detrital zircon grains with ages equivalent to Peak II. Note the offset from the pooled U-Pb age (light gray bar) and the majority of the Hf model isotope ages. This offset is recorded in C. Class III, D. Class IV, E. Class V. In addition to the offset, the variance of the Hf isotope model distribution decreases from class I to class V, suggesting a boundary condition due to the age of the Earth. Only three grains from Peak I had Hf isotope model ages and so they were not plotted due to the small sample size.

Page 59: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

50

Figure 14. A. The ≤5% discordant-filtered pooled U-Pb age distribution from study. B.A second detrital zircon compilation. C. Global Modern River Detrital Zircons distribution. D. Igneous zircons U-Pb age distribution. All three detrital zircon compilations exhibit peaks II, III, IV, and V.

Page 60: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

51

Table 1. Comparison of regression parameter estimates for pairwise comparison of U-Pb ages for both the unfiltered dataset and the ≤5% discordant filtered dataset for an equation of the line Y = β0 +β1X.

Unfiltered ≤5% discordant filtered Parameter Β0 Β1 R2 n Β0 Β1 R2 n 206Pb-238U vs. 207Pb-206Pb

155.9 0.965 0.888 148,349 153.5 0.932 0.920 43,460

207Pb-235U vs. 207Pb-206Pb

-28.4 0.959 0.935 98,578 -59.0 0.983 0.920 70,268

207Pb-235U vs. 206Pb-238U

14.7 1.014 0.985 104,090 9.99 0.9996 0.994 47,828

Table 2. Locations of Peaks defined by bootstrapping of the dataset. For each peak, the 99% confidence intervals are given for width (in Ma) and height (frequency of grains).

Peak 1

(0.1-0.2

Ga)

Peak 2

(0.5-0.7

Ga)

Peak 3

(1.0-1.2

Ga)

Peak 4

(1.7-2.0

Ga)

Peak 5

(2.5-2.7

Ga)

Pooled

data

100-100

2055-2241

500-550

1254-1410

1025-1050

1211-1350

1775-1850

1254-1439

2650-2675

667-772

Tectonic Settings

Foreland

Basins

75-100

322-401

450-475

352-464

1000-1075

247-303

1125-1850

213-294

2025-2675

99-148

Page 61: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

52

Passive

Margins

100-125

118-157

525-575

463-582

1000-1075

411-495

1750-1850

499-630

2650-2675

222-291

Arc

Settings

125-125

1041-1176

350-350

648-767

625-1050

229-281

1850-1875

312-377

2500-2700

174-231

Rift Basins 75-100

794-892

425-575

192-268

1000-1075

294-345

1125-1800

266-315

2450-2475

1151-213

Continents

North

America

100-100

1447-1598

375-475

307-376

1025-1050

554-649

1125-1825

426-494

2625-2700

210-273

South

America

100-100

67-104

525-550

200-258

625-1075

137-187

--

2775-2900

40-63

Europe 50-100

3-10

550-575

138-177

625-1050

101-153

2025-2675

44-63

2725-2775

53-87

Africa 0-150

2-6

500-575

77-107

800-875

197-250

1825-1975

70-99

2450-2475

115-164

Asia 100-125

445-525

350-350

512-611

800-950

181-242

1825-1875

216-287

2025-2500

105-138

Page 62: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

53

Australia 125-125

84-126

500-550

325-396

1000-1075

169-217

1775-1875

452-545

2650-2675

319-395

Antarctica

--

500-575

89-147

1000-1075

74-102

1100-1875

37-53

2075-2625

33-49

Page 63: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

54

Detrital Zircon Geochronology and Provenance of Upper Triassic

Sediments of the Danville-Dan River Basin, Southern Virginia

The ages of Upper Triassic sedimentary rocks of the Danville-Dan River Basin are well

constrained by a combination of biostratigraphy (pollen) and magnetostratigraphy.

Detrital zircon U-Pb dates do not provide constraints on the timing of sedimentation in this

specific case (though provide an estimate of the maximum age of sedimentation), but are

useful in delineating rift geometries, sediment source pathways and provenance ages of

sediment fill in these rift basins. A sample of arkosic sandstone was collected from an

exposure on U.S. 58 near Danville, Virginia from the Dry Fork Formation. The sample

was processed and Laser Ablation Inductively Coupled Plasma Mass Spectrometry was

performed on extracted detrital zircons (n = 115) at the Australian National University.

The distribution of ages is unimodal with a strong peak at 400-450 Ma. Two smaller peaks

are recorded at 375 Ma and 560 Ma. Four grains exhibited ages older than 900 Ma. The

presence of detrital zircons of mostly Paleozoic age suggests that the sediment was derived

from Ordovician through Silurian granite sources within the magmatic tract of the western

Piedmont to the southeast of the preserved basin. Thayer and Henika have previously

shown this part of the basin was sourced by arc volcanic and subvolcanic granitic rocks

adjacent to the Vandola Fault along the southeastern side of the basin. The scarcity of

Grenvillian zircons suggests that the basin was isolated from the metaclastic tract of the

western Piedmont northwest of the Chatham Fault along the northwestern side of the

basin.

Page 64: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

55

3.1 Introduction Triassic deposits of the east coast of North America reflect the breakup of Pangaea and

the development of the modern Atlantic Ocean through rifting and development of the modern

passive margin. A series of linear belts of Triassic age sediment is present along the eastern

margin of North America stretching from South Carolina to Newfoundland (Olsen, 1997,

Schlische, 2003, Weems and Olson, 1997). Basaltic/diabasic magmatism accompanied rifting

(May, 1971, McHone et al. 1987, McHone, 2000, Wilson, 1997); however, basaltic magmas

generally produce rare zircons that are small in size and as such are not as easily age dated as

zircons derived from granitic bodies. During the Triassic, Europe and northern Africa rifted

apart from North America (Manspeizer et al. 1978, Pegrum and Mounteney, 1978, van Houten,

1977)

The Danville-Dan River Basin is one of these rift basins located on the border of North

Carolina and Virginia (Fig. 15). The Danville-Dan River Basin stretches 165 km and has a

maximum width of 10 km. It is bounded to the west by the Dan River Fault zone (in North

Carolina) and the Chatham Fault zone in Virginia (Meyertons, 1963). The Chatham Fault zone

separates the Danville-Dan River Basin from the Smith River Allochthon (Carter et al. 2006,

Gates, 1986), which consists of meta-sedimentary and meta-igneous rocks. The basin structure is

that of a half-graben for most of its length save for in the central basin where it is bounded by the

Vandola fault to the east (Henika and Thayer, 1977, Price et al. 1980, Schlische et al. 1996). The

Vandola fault separates the basin from the Milton terrane to the east (Bradley et al. 2006, Coler

et al. 2000). The basin is filled with siliciclastic sediment (the Dan River Group) and diabasic

intrusions (Thayer, 1970).

Page 65: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

56

The stratigraphy of the Danville-Dan River Basin was originally given separate

stratigraphic nomenclature depending on which side of the North Carolina-Virginia border was

of interest. Meyertons (1963) proposed three formations in Virgina: the Leaksville (mostly

claystone and siltstone), the Dry Fork (mostly arkosic sandstones) and the Cedar Forest (shales

and conglomerates). Thayer (1970) proposed a similar three-part division for North Carolina:

the Pine Hall Formation (mostly sandstone and conglomerate), the Cow Branch Formation

(mostly shale and siltstone) and the Stoneville Formation (conglomerates and sandstones).

Henika and Thayer (1977) and Thayer (1980) recognized that the terminology was redundant

and extended the North Carolina terminology north into Virginia (Fig. 16). In the central portion

of the basin, the Dry Fork Formation consists of conglomeratic sandstones, siltstones and

mudstones. Thayer and Henika (1980) report an average composition for the Dry Fork

Formation of 43.1% sandstone matrix, 38.9% felsic tuff clasts, 6.9% quartz-feldspar gneiss

clasts, 1.4% lapilli tuff clasts, 2.1% greenstone clasts, 1.4% biotite gneiss clasts, 4.8% quartz

clasts, and 1.4% feldspar clasts.

The Danville-Dan River Basin is known for exceptional preservation of fossil vertebrates

(Casey et al. 2007) and insects (Fraser et al. 1996) from the Cow Branch Formation shales. This

fossil assemblage has been used to estimate the age of the Cow Branch Formation and the

correlated Dry Fork Formation as late Carnian (Olsen et al. 1978, 1982). Pollen from the upper

portion of the Cow Branch Formation agrees with this constraint (Cornet and Olsen, 1985,

Robbins and Traverse, 1980, Traverse, 1987). In addition, fossil footprints of putative dinosaurs

have been reported from the Danville-Dan River Basin (Fraser and Olsen, 1996).

Magnetostratigraphy also supports a Carnian to Norian age for the Danville-Dan River sediments

(Kent and Olsen, 1997).

Page 66: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

57

The Dan River Group has been interpreted as being deposited in alluvial, fluvial, playa,

swamp and lacustrine settings (Bradley et al. 2006, Olsen, 1990). These rift valleys were formed

under relatively arid conditions as evidenced by the presence of evaporite deposits in some of the

basins (Evans, 1978, El-Tabakh et al. 1997).

Detrital zircon geochronology provides an excellent tool for delineating the provenance

of siliciclastic sediments (Dickinson and Gehrels, 2009, 2010). A sample of the Triassic Dry

Fork Formation sandstone was collected for detrital zircon analysis in order to elucidate

sediment source pathways into the Danville-Dan River Basin.

3.2 Materials and Methods

A sample of the Dry Fork Formation was collected from a site west of Danville, VA from

a poorly exposed road cut at the intersection of the Danville Expressway (U.S. Highway 58)

Interchange and Oak Ridge Farms Road. The sample consists of gray, poorly sorted, well-

indurated, arkosic, sandstone with granitic pebbles and cobbles (Fig. 17a). The sample was

collected from float, as the outcrop had been graded over by the Virginia Department of

Transportation. Bradley et al. (2006) report that the outcrop consisted of the Dry Fork Formation

in fault contact with Milton terrane metavolcanics. The Dry Fork Formation consists of a basal

conglomerate and angular lithic breccias and fines upward into siltstone interbedded with thin

lenticular layers of coal. Plant fossils are preserved in the coals.

Detrital zircons were extracted from the sample using standard heavy mineral separation

techniques. The separated grains were mounted with epoxy and polished. Cathodoluminescence

photomicrographs were taken of selected grains (Fig. 17b). The grains were sampled via laser

Page 67: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

58

ablation inductively coupled plasma mass spectrometry (LA-ICPMS) at the Research School of

Earth Sciences at the Australian National University following procedures outlined in Eriksson et

al. (2003). Ages older than 800 Ma were calculated using the 207Pb/206Pb ratios and younger

grain ages were calculated using the 206Pb/238U ratio. Common Pb corrections were made using

the 208Pb method after Compston et al. (1984). Internal error are reported for single grains as 1σ

and were calculated by dividing the standard deviation of the corrected isotope ratio by the

square root of the number of mass scans within the data interval selected for age calculation.

These internal errors do not include uncertainties in the age or measurement from the zircon

standard. Concordance between the 206Pb/238U age and the 207Pb/206Pb age was calculated for all

grains and is reported in Table 3. Grains with a 206Pb/238U age less than 400 Ma in age were

retained in the final pooled age regardless of their degree of discordance due to the difficulty in

measuring the low contents of 207Pb in these younger zircons. A sample of 160 detrital zircon

grains was age dated from the Dry Fork Formation sandstone.

A detrital zircon age-frequency distribution is an empirical distribution of ages derived

from a sample of zircons taken from a sediment sample. The resulting data are then plotted as

either a frequency diagram/histogram or as a concordia plot (Wetherill or Tera-Wasserburg style)

(Sircombe, 2000). The term spectrum is commonly used in the detrital zircon literature as a

synonym for age-frequency distribution. ―Age Spectrum‖ has multiple specific definitions in the

geosciences, we chose to use the term age-frequency distribution instead to avoid confusion (see

Gilgen, 2006 and references therein). Histograms were chosen as the medium to plot the data as

more traditional bivariate concordia plots become cluttered with increasing numbers of grains

presented (Sircombe, 2000). A bin size of 25 Ma allows for resolution of finer-scale events

superimposed on the larger peaks.

Page 68: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

59

In addition to histograms, a probability density function was calculated and plotted for

the Triassic sample. The probability density function was generated using the ―gprobdens‖

fortran code compiled by the UCLA SIMS Group. The ―gprobdens‖ program was upgraded by

Dr. Oscar Lovera to handle large datasets for the global detrital zircon project. Probability

density functions take into account the errors of analysis for each grain.

In order to facilitate identification of source components for the Triassic sample, the

authors used a recent global compilation of detrital zircons. The compilation includes detrital

zircon ages, host sediment age data, geographic context, etc. (Voice et al. in review) and was

used to compare the Triassic sample to the compiled North American and Eastern North

American Age Frequency distribution.

3.3 Results and Discussion

The age frequency distribution of the detrital zircons sampled from the Dry Fork

Formation sandstone sample is strongly unimodal with a significant peak at 460-480 Ma (Fig.

18A). Three grains are Grenville in age. The majority of zircons in this study have Th/U ratios

greater than 0.4 suggesting that the grains are igneous in origin (Rubatto et al. 1999, 2001). In

addition, the grains are euhedral and lack evidence of transport (no rounding).

Cathodoluminescence shows that the grains exhibit continuous zoning. The peak at 460-480 Ma

is a strong peak also observed in the East coast compilation (Fig. 18B) and as a minor subpeak of

a significant peak in the full North American subset (Fig. 18C) of the Global Detrital Zircon

Database. The presence of granitic clasts and the relatively high Th/U ratios of the grains

suggest an igneous origin for the detrital zircons. The underlying Milton terrane metavolcanics

Page 69: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

60

may have sourced the zircons that make up the peak in the Dry Fork Formation sample. Age

dates for the Milton terrane include a Rb-Sr whole-rock date of 424 Ma for the Shelton Granite

(Kish, 1983), a U-Pb zircon date of 463 Ma for the Shelton Granite (Hund, 1987, Wortman et al.

1995) report an age of 458 Ma from felsic volcanic rocks, meta-rhyolite from the northern

portion of the Milton terrane has been dated to 458 Ma and a granite-gneiss from the same area

yields an age of 450 Ma (Coler et al. 2000). The lack of rounding for the grains in addition to

the ages support a local origin of these grains from the underlying Milton terrane volcanics.

The sample had three grains that were Grenvillian in age. These three grains potentially

are xenocrystic relicts eroded out of the Milton terrane volcanics or were sourced from materials

of Grenvillian age. The paucity of Grenvillian zircons in the sample suggests that the drainage

system that was present in the Danville-Dan River Basin was not flowing over rocks of

Grenvillian age. This may suggest that Grenvillian age crust was blocked off from the rift valley

by the rift walls, preventing eroded Grenvillian-sourced sediment from entering into the

Danville-Dan River Rift Valley. Rocks of Grenvillian age can be found to the east of the Milton

terrane in the Goochland terrane. The Goochland terrane has been shown to have granites of that

range in age from 1023-1046 Ma (Owens and Tucker, 2003). In addition, Grenvillian age crust

is present to the west of the Chatham fault in the Piedmont. This material is constrained by

detrital zircons to being younger than 750 Ma. The detrital zircon age frequency distribution

from the Smith River Allochthon also contains grains that range from 750 to 1400 Ma (Carter et

al. 2006). Metamorphic monazites provide a younger limit for the formation of the Smith River

Allochthon materials of 530 Ma (Hibbard et al. 2003). The lack of Grenville-age grains suggest

that neither terrane is providing sediment to this portion of the Danville-Dan River Basin.

Page 70: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

61

In contrast to the unimodal nature of the detrital zircon sample from the Dry Fork

Formation, the North American age frequency distribution has seven clearly resolved peaks at

0.1-0.3 Ga, 0.35-0.4 Ga, 0.6-0.7 Ga, 1.1-1.25 Ga, 1.4-1.45 Ga, 1.65-1.8 Ga, and 2.7-2.8 Ga (Fig.

18C). These peaks correspond directly to well-known geologic events. Starting from the most

recent event, the youngest peak (0.1-0.25 Ga) reflects a composite of the Cordilleran orogenies

(Laramide, Sevier, and Antler), when major batholiths formed and subsequently provided a

source for abundant Cordilleran zircons (Burchfiel and Davis, 1975; Camilleri and Chamberlain,

1997; Dickinson, 2004; Gehrels and Dickinson, 2000; Gehrels et al. 2002; Speed and Sleep,

1982), which constitute the youngest North American peak. Note that this youngest peak masks

much smaller and thus more subtle peaks of slightly older zircons that represent the youngest of

the Appalachian orogenies: Alleghanian granitic batholiths magmatism (Faill, 1998). The

second, relatively smaller peak at 0.35-0.4 Ga represents material derived from the Taconic

island arc (Faill, 1997). The third peak (0.6-0.7 Ga) is derived from the breakup of Rodinia

during Iapetan rifting (Cawood et al. 2007) or alternatively are derived from Pan-African

material (Bousquet et al. 2008; Grant, 1969; Takigami, 2001). The Grenville orogeny is

represented by the fourth peak (at 1.1-1.25 Ga) with grains derived from granitic magmatism

related to arc accretion (Gower et al. 2008). Magmatism at 1.4 Ga is recorded in the

southwestern United States (Nyman et al. 1994) and may be a source of zircons for the fifth peak

at 1.4-1.45 Ga. The sixth peak may represent the combined orogenic events that occurred during

the period 1.65-1.8 Ga: the Mazatzal, Yavapai, Penokean, Trans-Hudson, and Wopmay

orogenies (Whitmeyer and Karlstrom, 2007). The younger Mazatzal and Yavapai orogenies

make up the Central Plain orogen of Sims and Peterman (1986), and reflect accretion of arcs

onto the southeastern margin of Laurentia during this period as well as abundant rhyolitic

Page 71: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

62

magmatism (Amato et al. 2008, Jones et al. 2009). The accretion of an island arc to the

southeastern margin of Laurentia (southern Wisconsin-Minnesota) during the Penokean orogeny

formed a significant event at 1.7-1.9 Ga (Barovich et al. 1989, Sims et al. 1983, 1989, and 1993).

The oldest (seventh) peak recorded in the North American detrital zircon age frequency

distribution is the 2.7-2.8 Ga peak which is derived from magmatism generated during the

formation of the supercontinent Kenorland (Aspler and Chiarenzelli, 1998; Corfu et al. 1998,

2000).

The Eastern North American detrital zircon record (Fig. 4B) is different from that of the

full North American age frequency distribution (Fig. 4C) in that only two of the major North

American detrital zircon peaks are significant. The Eastern North America age frequency

distribution has prominent peaks at 450-600 Ma and at 950-1300 Ma. The younger peak is a

composite of the Appalachian orogenies (Faill, 1997, 1998) and the Pan-African event (Bousquet

et al. 2008; Grant, 1969; Takigami, 2001). When the Eastern North American age frequency

distribution is sorted for host sediment age patterns in the sources of sediment can be further

elucidated. Modern river sediments from the eastern United States (from the Savannah River to

the Susquehanna River) exhibit a bimodal age frequency distribution (Fig. 19A) with the

dominant peak being Grenvillian in age (Eriksson et al. 2003). An additional study of both

detrital monazites and zircons from southwestern North Carolina emphasizes the peaks observed

in the samples from the Global Detrital zircon database (Hietpas et al. 2010). The Triassic age

frequency distribution (Fig. 19B) is from this study; other Triassic samples from the eastern

North American rift valleys are being analyzed, but have not been published yet (Aleinikoff,

personal communication), so there is a sampling bias present. Other Triassic rift basins may

exhibit different age frequency distributions as a result of different source terrains for sediment

Page 72: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

63

entering these basins. Multiple Carboniferous age sediments have been analyzed for detrital

zircon U-Pb dates (Becker et al. 2005, 2006, Eriksson et al. 2004, Gray and Zeitler, 1997). The

Carboniferous sediments yield a bimodal distribution with peaks at 480-500 Ma and at 900-1300

Ma(Fig. 19C). Silurian to Devonian age sediments were sampled from southern New York

(McLennan et al. 2001), western Virginia (Eriksson et al. 2004), and central Nova Scotia

(Murphy and Hamilton, 2000). These sediments exhibit a multi-modal age frequency

distribution (Fig. 19D) with peaks at 475-490 Ma, 510-550 Ma, 1000-1250 Ma, and 2000-2100

Ma. Ordovician sediments are well represented with a sample size of 857 grains in the global

detrital zircon database (Fig. 19E). Sampled Ordovician sediments came from southern and

northern New York (Gaudette et al. 1981, McLennan et al. 2001), western Virgina (Eriksson et

al. 2004), Cape Breton Island, Canada (Chen et al. 1995), eastern Connecticut (Wintsch et al.

2007), Newfoundland (Cawood and Nemchin, 2001, Pollock et al. 2002, 2007), eastern

Pennsylvania (Gray and Zeitler, 1997). This distribution shows a strong peak at 500-520 Ma and

a smaller peak at 1000-1200 Ma. The 500-520 Ma peak suggests that relatively young zircons

were being sourced to these sediments as they were deposited. Cambrian to Neoproterozoic

sediments exhibit a strong Grenville peak (Fig. 19F); the sampled sediments came from Eriksson

et al. (2004) and McLennan et al. 2001. Late Neoproterozoic sediments exhibit two peaks: 540-

600 Ma and 900-1300 Ma (Fig 19G). The younger peak is likely an artifact of imprecise age

control on the age of host sediment. The older, more prominent peak represents grains derived

from Grenvillian crust. Minor peaks are present at 1800-2000 Ma and 2550-2650 Ma. The

compiled detrital zircon U-Pb dates are from Newfoundland (Cawood and Nemchin, 2001),

northern North Carolina and southern Virginia (Carter et al. 2006, Eriksson et al. 2004),

northeastern Nova Scotia (Barr et al. 2003, Keppie et al. 1998), southeastern Ohio (Santos et al.

Page 73: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

64

2002), Georgia, South Carolina, North Carolina and Tennessee (Bream et al. 2004), northeastern

Massachusetts (Thompson and Bowring, 2000), and Central Georgia and Alabama (Steltenpohl

et al. 2008). Paleozoic and Cenozoic sediments throughout the region exhibit the bimodal

detrital zircon age frequency distribution. The Neoproterozoic sediments exhibit a dominant

Grenvillian peak. The lone Mesozoic sample exhibits only the younger Appalachian peak at

460-480 Ma.

3.4 Conclusions The Carnian Dry Fork Formation Sandstone in the Danville-Dan River Basin sampled for

detrital zircon analysis yielded an unimodal age frequency distribution with a peak at 460-480

Ma. In addition, a minor component of grains were Grenvillian in age (n = 3). High Th/U ratios

and the presence of granitic clasts in the arkosic sandstone matrix suggest an igneous origin for

the detrital zircons. The conglomeratic facies of the Dry Fork Formation was in fault contact

with felsic volcanics of the Milton terrane which has yielded ages of 450-460 (Coler et al. 2000)

and this terrane is the likely source of sediment for the portion of the Danville-Dan River Basin

studied. The lack of a strong Grenville peak is unusual compared to most detrital age frequency

distributions from eastern North America (Fig. 18B) and from the North American record in

general (Fig. 18C). The rift valley configuration probably was such that the rift shoulder blocked

transmission of Grenville-sourced sediment into the valley.

Page 74: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

65

3.5 References Cited Amato, J.M.; Boullion, A.O.; Serna, A.M.; Sanders, A.E.; Farmer, G.L.; and Gehrels, G.E. 2008.

Evolution of the Mazatzal province and the timing of the Mazatzal orogeny: Insights from U-Pb geochronology and geochemistry of igneous and metasedimentary rocks in southern New Mexico. Geol. Soc. Am. Bull. 120:328-346.

Aspler, L.B.; and Chiarenzelli, J.R. 1998. Two Neoarchean supercontinents? Evidence from the Paleoproterozoic. Sediment. Geol. 120: 75-104.

Barovich, K.M.; Patchett, P.J.; Peterman, Z.E.; and Sims, P.K. 1989. Nd isotopes and the origin of 1.9-1.7 Ga Penokean continental crust of the Lake Superior Region. Geol. Soc. Am. Bull. 101:333-338.

Barr, S.M.; Davis, D.W.; Kamo, S.; and White, C.E. 2003. Significance of U-Pb detrital zircon ages in quartzite from peri-Gondwanan terranes, new Brunswick and Nova Scotia, Canada. Precambrian Res. 126:123-145.

Becker, T.P.; Thomas, W.A.; and Gehrels, G.E. 2006. Linking Late Paleozoic sedimentary provenance in the Appalachian basin to the history of Alleghanian deformation. Am. J. Sci. 306:777-798.

Becker, T.P.; Thomas, W.A.; Samson, S.D.; and Gehrels, G.E. 2005. Detrital zircon evidence of Laurentian crustal dominance in the lower Pennsylvanian deposits of the Alleghanian clastic wedge in eastern North America. Sediment. Geol. 182:59-86.

Bousquet, R.; El Mamoun, R.; Saddiqi, O.; Goffé, B.; Möller, A.; and Madi, A. 2008. Mélanges and ophiolites during the Pan-African orogeny: the case of the Bou-Asser ophiolite suite (Morocco). In Ennih, N. and Liegeois, J.P. (eds.). The boundaries of the West African Craton. Geological Society Special Publication 297:233-247.

Bradley, P.; Cattanach, B.; Henika, W.S.; Hibbard, J.; Ozdogan, M.; Robbins, E.; and Thayer, P. 2006. Geology in the Southside Virginia Piedmont. In Henika, W.S.; Hibbard, J.; and Beard, J. (eds.). Guidebook Number 6. Virginia Museum of Natural History Publications. 28 pp.

Bream, B.R.; Hatcher, R.D. Jr.; Miller, C.F.; Fullagar, P.D.; Tollo, R.P.; Corriveau, L.;

McLelland, J.; and Bartholomew, M.J. 2004. Detrital zircon ages and Nd isotopic data from the Southern Appalachian crystalline core, Georgia, South Carolina, North Carolina, and Tennessee: New provenance constraints for part of the Laurentian margin. Mem. Geol. Soc. Am. 197:459-475.

Burchfiel, B.C., and Davis, G.A. 1975. Nature and controls of Cordilleran orogenesis, western United States: Extensions of an earlier synthesis. Am. J. Sci. 275A:363-396.

Page 75: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

66

Camilleri, P.A., and Chamberlain, K.R. 1997. Mesozoic tectonics and metamorphism in the Pequop Mountains and Wood Hills region, northeast Nevada: Implications for the architecture and evolution of the Sevier orogen. Geol. Soc. Am. Bull. 109:74-94.

Carter, B.T.; Hibbard, J.P.; Tubrett, M.; and Sylvester, P. 2006. Detrital zircon geochronology of the Smith River Allochthon and Lynchburg Group, southern Appalachians: Implications for Neoproterozoic-Early Cambrian paleogeography. Precambrian Res. 147:279-304.

Casey, M.M.; Fraser, N.C.; and Kowalewski, M. 2007. Quantitative taphonomy of a Triassic reptile Tanytrachelos ahynis from the Cow Branch Formation, Dan River Basin, Solite Quarry, Virginia. Palaios 22:598-611.

Cawood, P.A., and Nemchin, A.A. 2001. Paleogeographic development of the east Laurentian margin: Constraints from U-Pb dating of detrital zircons in the Newfoundland Appalachians. Geol. Soc. Am. Bull. 113:1234-1246.

Cawood, P.A.; Nemchin, A.A.; and Strachan, R. 2007. Provenance record of Laurentian passive-margin strata in the northern Caledonides: Implications for paleodrainage and paleogeography. Geol. Soc. Am. Bull. 119:993-1003.

Chen, Y.D.; Lin, S.F.; and Van Staal, C.R. 1995. Detrital zircon geochronology of a conglomerate in the Northeastern Cape-Breton Highlands – Implications for the relationships between terranes in Cape-Breton Island, the Canadian Appalachians. Can. J. Earth Sci. 32:216-223.

Coler, D.G. Wortman, G.L.; Samson, S.D.; Hibbard, J.P.; and Stern, R. 2000. U-Pb

geochronologic, Nd Isotopic, and geochemical evidence for the correlation of the Chopawamsic and Milton Terranes, Piedmont Zone, Southern Appalachian Orogen. J. Geol. 108:363-380.

Compston, W.; Williams, I.S.; and Meyer, C. 1984. U-Pb geochronology of zircons from lunar

breccias 73217 using a sensitive high mass-resolution ion microprobe. J. Geophys. Res. 89(suppl.): B525-B534.

Corfu, F.; Davis, D.W.; Stone, D.; and Moore, M.L. 1998. Chronostratigraphic constraints on the

genesis of Archean greenstone belts, northwestern Superior Province, Ontario, Canada. Precambrian Res. 92:277-295.

Corfu, F., and Lin, S. 2000. Geology and U-Pb geochronology of the Island Lake greenstone belt, northwestern Superior Province, Manitoba. Can. J. Earth Sci. 37:1275-1286.

Cornet, B., and Olsen, P.E. A summary of the biostratigraphy of the Newark Supergroup of Eastern North America with comments on early Mesozoic provinciality. III Congreso Latinoamericano de paleontologia. Mexico. Simposia Sobre Floras del Triasico Tardio, Su Fitogeografia y paleoecologia. Memoria. 67-81.

Page 76: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

67

Dickinson, W.R. 2004. Evolution of the North American Cordillera. Annu. Rev. Earth Planet. Sci. 32:13-45.

Dickinson, W.R., and Gehrels, G.E. 2009. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth Planet. Sci. Lett. 288:115-125.

Dickinson, W.R., and Gehrels, G.E. 2010(in press). Insights into North American Paleogeography and Paleotectonics from U-Pb ages of detrital zircons in Mesozoic strata of the Colorado Plateau, USA. Int. J. Earth Sci. doi: 10.1007/s00531-009-0462-0.

El-Tabakh, M.; Riccioni, R.; and Schreiber, B.C. 1997. Evolution of late Triassic rift basin

evaporites (Passaic Formation): Newark Basin, Eastern North America. Sedimentol. 44:767-790.

Eriksson, K.A., Campbell, I.H.; Palin, J.M.; and Allen, C.M. 2003. Predominance of Grenvillian

magmatism recorded in detrital zircons from modern Appalachian Rivers. J. Geol. 111:707-717.

Eriksson, K.A., Campbell, I.H.; Palin, J.M.; Allen, C.M.; and Bock, B. 2004. Evidence for

multiple recycling in Neoproterozoic through Pennsylvanian sedimentary rocks of the central Appalachian basin. J. Geol. 112:261-276.

Evans, R. 1978. Origin and significance of evaporites in Basins around Atlantic margin. Am. Assoc. Petrol. Geol. Bull. 62:223-234.

Faill, R.T. 1997, A geologic history of the north-central Appalachians, Part 2: The Appalachian basin from the Silurian through the Carboniferous. Am.J. Sci. 297:729-761.

Faill, R.T. 1998, A geologic history of the north-central Appalachians, Part 3. The Alleghany Orogeny. Am. J. Sci. 298:131-179.

Fraser, N.A.; Grimaldi, D.A.; Olsen, P.E.; and Axsmith, B. 1996. A Triassic Lagerstätten from eastern North America. Nature 380:615-619.

Fraser, N.A., and Olsen, P.E. 1996. A new dinosauromorph ichonogenus from the Triassic of Virginia. Jeffersoniana 7:1-17.

Gates, A.E. 1986. The tectonic evolution of the Altavista area, southwestern Virginia Piedmont. Unpublished Ph.D. dissertation, Virginia Polytechnic Institute and State University, Blacksburg, 256 p.

Page 77: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

68

Gaudette, H.E.; Vitrac-Michard, A.; and Allegre, C.J. 1981. North American Precambrian history recorded in a single sample high-resolution U-Pb systematic of the Potsdam sandstone detrital zircons, New York State. Earth Planet. Sci. Lett. 54:248-260.

Gehrels, G.E., and Dickinson, W.R. 2000. Detrital zircon geochronology of the Antler overlap and foreland basin assemblages, Nevada. In Soreghan, M.J. and Gehrels, G.E. (eds.). Paleozoic and Triassic Paleogeography and tectonics of Western Nevada and Northern California. Special Papers of the Geological Society of America 347:57-63.

Gehrels, G.E.; Stewart, J.H.; and Ketner, K.B. 2002. Cordilleran-margin quartzites in Baja California – implications for tectonic transport. Earth Planet. Sci. Lett. 199:201-210.

Gilgen, H. 2006. Univariate Time Series in Geosciences: Theory and Examples. Springer, Berlin, 718 pp.

Gower, C.F.; Kamo, S.; Kwok, K.; and Krogh, T.E. 2008. Proterozoic southward accretion and Grenvillian orogenesis in the interior Grenville province in eastern Labrador: Evidence from U-Pbgeochronological investigations. Precambrian Res. 165:61-95.

Grant, N.K. 1969. The Late Precambrian to Early Paleozoic Pan-African orogeny in Ghana, Togo, Dahomey, and Nigeria. Geol. Soc. Am. Bull. 80:45-56.

Gray, M.B., and Zeitler, P.K. 1997. Comparison of clastic wedge provenance in the Appalachian foreland using U/P ages of detrital zircons. Tectonics 16:151-160.

Henika, W.S., and Thayer, P.A. 1977. Geology of the Blairs, Mount Hermon, Danville and Ringgold Quadrangles, Virginia: with sections on the Triassic System by P.A. Thayer. Virginia Division of Mineral Resources Publication 2: 4p.

Hibbard, J.P.; Tracy, R.J.; and Henika, W.S. 2003. Smith River Allochthon: A southern Appalachian peri-Gondwanan terrane emplaced directly on Laurentia? Geology 31:215-218.

Hietpas, J.; Samson, S.D.; Moecher, D.P.; and Schmitt, A.K. 2010. Recovering tectonic events from the sedimentary record: Detrital monazite plays in high fidelity. Geology 38:167-170.

Hund, E. 1987. U-Pb dating of granites from the Charlotte belt of the southern Appalachians. M.S. thesis. Virginia Polytechnic Institute and State University, Blacksburg, 73 p.

Jones, J.V.; Connelly, J.N.; Karlstrom, K.E.; Williams, M.L.; and Doe, M.F. 2009. Age, provenance and tectonic setting of Paleoproterozoic quartzite successions in the southwestern United States. Geol. Soc. Am. Bull. 121:247-264.

Page 78: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

69

Kent, D.V., and Olsen, P.E. 1997. Paleomagnetism of Upper Triassic continental sedimentary rocks from the Dan River-Danville rift basin (eastern North America. Geol. Soc. Am. Bull. 109:366-377.

Keppie, J.D.; Davis, D.W.; and Krogh, T.E. 1998. U-Pb geochronological constraints on Precambrian stratified units in the Avalon Composite Terrane of Nova Scotia, Canada: Tectonic implications. Can. J. Earth Sci. 35:222-236.

Kish, S.A., 1983. A geochronological study of deformation and metamorphism in the Blue Ridge and Piedmont of the Carolinas. Unpub. Ph.D. dissertation, University of California, Davis. 220 p.

Manspeizer, W.; Puffer, J.H.; and Cousminer, H.L. 1978. Separation of Morocco and eastern North America: A Triassic-Liassic stratigraphic record. Geol. Soc. Am. Bull. 89:901-920.

May, P.R. 1971. Pattern of Triassic-Jurassic diabase dikes around the North Atlantic in the context of predrift position of continents. Geol. Soc. Am. Bull. 82:1285-1292.

McHone, J.G. 2000. Non-plume magmatism and rifting during the opening of the central Atlantic Ocean. Tectonophys. 316:287-296.

McHone, J.G.; Ross, M.E.; and Greenough, J.D. 1987. Mesozoic dyke swarms of eastern North America. In Halls, H.C., and Fahrig, W.F. (eds.). Geological Association of Canada Special Paper 34:279-288.

McLennan, S.M.; Bock, B.; Compston, W.; Hemming, S.R.; and McDaniel, D.K. 2001. Detrital zircon geochronology of Taconian and Acadian foreland sedimentary rocks in New England. J. Sediment. Res. 71:305-317.

Meyertons, C.T. 1963. Triassic Formations of the Danville Basin. Virginia Division of Mineral Resources Report of Investigations 6: 65 p.

Murphy, J.B., and Hamilton, M.A. 2000. Orogenesis and basin development: U-Pb detrital zircon age constraints on evolution of the Late Paleozoic St. Marys Basin, central mainland Nova Scotia. J. Geol. 108:53-71.

Nyman, M.W.; Karlstrom, K.E.; Kirby, E.; and Graubard, C.M. 1994. Mesoproterozoic contractional orogeny in western North America: Evidence from ca. 1.4 Ga plutons. Geology 22:901-904.

Olsen, P.E. 1990. Tectonic, Climatic, and Biotic modulation of lacustrine ecosystems—examples from Newark Supergroup of Eastern North America. In Katz, B. (ed.) Lacustrine Basin Exploration: Case Studies and Modern Analogs. American Association of Petroleum Geologists Memoir 50:209-224.

Page 79: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

70

Olsen, P.E. 1997. Stratigraphic record of the early Mesozoic breakup of Pangea in the Laurasia-Gondwana rift system. Annu. Rev. Earth Planet. Sci. 25:337-401.

Olsen, P.E.; McCune, A.R.; and Thomson, K.S. 1982. Correlation of the Newark Supergroup by vertebrates principally fishes. Am. J. Sci. 282:1-44.

Olsen, P.E.; Remington, C.L.; Cornet, B.; and Thomson, K.S. 1978. Cyclic changes in Late Triassic lacustrine communities. Science 201:729-773.

Owens, B.E., and Tucker, R.D. 2003. Geochronology of the Mesoproterozoic State Farm gneiss and associated Neoproterozoic granitoids, Goochland terrane, Virginia. Geol. Soc. Am. Bull. 115:972-982.

Pegrum, R.M.; and Mounteney, N. 1978. Rift basins flanking North Atlantic Ocean and their relation to North Sea Area. Am. Assoc. Petrol. Geol. Bull. 62:419-441.

Pollock, J.C.; Wilton, D.H.C.; van Staal, C.R.; and Morrissey, K.D. 2007. U-Pb detrital zircon geochronological constraints on the Early Silurian collision of Ganderia and Laurentia along the Dog Bay Line: The terminal Iapetan suture in the Newfoundland Appalachians. Am. J. Sci. 307:399-433.

Pollock, J.C.; Wilton, D.H.C.; van Staal, C.R.; and Tubrett, M.N. 2002. Laser ablation ICP-MS geochronology and provenance of detrital zircons from the Rogerson Lake Conglomerate, Botwood belt, Newfoundland. Current Res. 02-1:169-183.

Price, V.; Conley, J.F.; Piepul, R.G.; Robinson, G.R.; Thayer, P.A.; and Henika, W.S. 1980. Geology of the Whitmell and Brosville Quadrangles, Virginia. Virginia Division of Mineral Resources Publication 21, p.

Robbins, E.I., and Traverse, A. 1980. Degraded Palynomorphs from the Dan River (North Carolina)-Danville (Virginia) basin. Carolina Geological Society Guidebook for the 1980 Annual Meeting: 63-69.

Rubatto, D.; Gebauer, D.; and Compagnoni, R. 1999. Dating of ecologite-facies zircons: the age of Alpine metamorphism in the Sesia-Lanzo Zone (Western Alps). Earth Planet. Sci. Lett. 167:141-158.

Rubatto, D.; Williams, I.S.; and Buick, I.S. 2001. Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contrib. Mineral. Petrol. 140:458-468.

Santos, J.O.S.; Hartmann, L.A.; McNaughton, N.J.; Easton, R.M.; Rea, R.G.; and Potter, P.E. 2002. Sensitive high resolution ion microprobe (SHRIMP) detrital zircon geochronology provides new evidence for a hidden Neoproterozoic foreland basin to the Grenville Orogen in the eastern Midwest, USA. Can. J. Earth Sci. 39:1505-1515.

Page 80: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

71

Schlische, R.W. 2003. Progress in Understanding the Structural Geology, Basin Evolution, and Tectonic history of the Eastern North American Rift System. In Letourneau, P.M., and Olsen, P.E. (eds.) The Great Rift Valleys of Pangea in Eastern North America: Tectonics, Structure and Volcanism 1:21-64.

Schlische, R.W.; Young, S.S.; Ackermann, R.V.; and Gupta, A. 1996. Geometry and Scaling relations of a population of very small rift-related normal faults. Geology 24:683-686.

Sims, P.K.; Anderson, J.L.;Bauer, R.L.; Chandler, V.W.; Hanson, G.N.; Kalliokoski, J.; Morey, G.B.; Mudrey, M.G.; Ojakangas, R.W.; Peterman, Z.E.; Schulz, K.J.; Shirey, S.B.; Smith, E.I.; Southwick, D.L.; van Schmus, W.R.; and Weiblen, P.W. 1993. The Lake Superior Region and Trans-Hudson orogen. In Sims, P.K. (ed.). The Geology of North America. C2:11-115.

Sims, P.K., and Peterman, Z.E. 1983. Evolution of Penokean foldbelt, Lake Superior Region, and its tectonic environment. In Medaris Jr., L.G. (ed.). Early Paleoproterozoic Geology of the Great Lakes Region. Geological Society of America Memoir 160:3-14.

Sims, P.K., and Peterman, Z.E. 1986. Early Proterozoic Central Plains Orogen: A major buried structure in the north-central United States. Geology 14:488-491.

Sims, P.K.; van Schmus, W.R.; Schulz, K.J.; and Peterman, Z.E. 1989. Tectono-stratigraphic evolution of the early Proterozoic Wisconsin magmatic terranes of the Penokean orogen. Can. J. Earth Sci. 26:2145-2158.

Sircombe K.N., 2000. Quantitative comparison of large sets of geochronological data using multivariate analysis: a provenance study example from Australia. Geochim. Cosmochim. Acta, 64, 1593-1616.

Speed, R.C., and Sleep, N.H. 1982. Antler orogeny and foreland basin: A model. Geol. Soc. Am. Bull. 93:815-828.

Steltenpohl, M.G.; Mueller, P.M.; Heatherington, A.L.; Hanley, T.B.; and Wooden, J. 2008. Gondwanan/peri-Gondwanan origin for the Uchee terrane, Alabama and Georgia: Carolina zone or Suwannee Terrane (?) and its suture with Grenvillian basement of the Pine Mountain window. Geosphere 4:131-144.

Takigami, Y. 2001. Consideration of the Pan-African Orogeny from 40Ar-39Ar age results. Gondwana Res. 4:796.

Thayer, P.A. 1970. Stratigraphy and Geology of Dan River Triassic Basin, North Carolina. Southeastern Geol. 12:1-31.

Thayer, P.A. 1980. Geology of the Whitmell and Brosville Quadrangles, Virginia. Virginia Division of Mineral Resources 21: 1 map.

Page 81: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

72

Thompson, M.D., and Bowring, S.A. 2000. Age of the Squantum ―tillite‖, Boston Basin, Massachussets: U-Pb zircon constraints on terminal Neoproterozoic glaciations. Am. J. Sci. 300:630-655.

Traverse, A. 1987. Pollen and Spores date origin of rift basins from Texas to Nova Scotia as early late Triassic. Science 236:1469-1472.

Van Houten, F.B. 1977. Triassic-Liassic deposits of Morocco and Eastern North America: Comparison. Am. Assoc. Petrol. Geol. Bull. 61:79-99.

Voice, P.J.; Kowalewski, K.J.; and Eriksson, K.A. 2010(in review). Quantifying the Timing and Rate of Crustal Evolution: Global Compilation of Radiometrically Dated Detrital Zircon Grains. J. Geol.

Weems, R.E., and Olsen, P.E. 1997, Synthesis and revision of groups within the Newark Supergroup, eastern North America. Geol. Soc. Am. Bull. 109:195-209.

Whitmeyer, S.J., and Karlstrom, K.E. 2007. Tectonic model for the Proterozoic growth of North America. Geosphere 3:220-259.

Wilson, M. 1997. Thermal evolution of the Central Atlantic passive margins: Continental break-up above a Mesozoic super-plume. J. Geol. Soc. London. 154:491-495.

Wintsch, R.P.; Aleinikoff, J.N.; Walsh, G.J.; Bothner, W.A.; Hussey, A.M. II; and Fanning, C.M. 2007. SHRIMP U-Pb evidence for a Late Silurian age of metasedimentary rocks in the Merrimack and Putnam-Nashoba Terranes, eastern New England, Am. J. Sci. 307:119-167.

Wortman, G.L.; Samson, S.D.; and Hibbard, J.P. 1995. U-Pb zircon geochronology of the Milton and Carolina Slate belts, southern Appalachians. Geol. Soc. Am. Abstr. Program 27:98.

Page 82: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

73

Figure 15: Location of the sampled interval of the Dry Fork Formation conglomerate in the central portion of the Dan River-Danville Basin.

Page 83: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

74

Figure 16: Stratigraphy of the Dan River-Danville Basin.

Page 84: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

75

Figure 17. A. Typical lithology of the sampled interval of the Dry Fork Formation. The sandstones are arkosic and conglomeratic. B. One of the sampled detrital zircons under cathodoluminescence. Note the small size of the sampled pit for geochronological analysis.

Page 85: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

76

Figure 18. Comparison of the Dry Fork Formation sandstone detrital zircon age spectrum with compiled age spectra of North America. A. Age Frequency distribution of dated detrital zircons from the Dry Fork Formation. The inset shows the probability density function for the detrital zircon spectrum. B. Compiled age frequency data for detrital zircons from the East Coast of North America. C. Compiled age frequency data for North America as a whole.

Page 86: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

77

Figure 19. Compilation of published detrital zircons from the east coast of North America. Sorting the samples by host sediment age allows for characterization of the sources of detrital zircons. A. Modern River data. B. Late Triassic age spectrum from this study. C. detrital zircon age spectrum from Carboniferous age sediments. D. Age frequency distribution of Devonian age sediments. E. Detrital zircon age spectrum from Ordovician-Silurian age sediments. F. Late Neoproterozoic-Cambrian detrital zircon age frequency distribution. G. Neoproterozoic age spectrum of published detrital zircon U-Pb dates.

Page 87: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

78

Figure 19. cont.

Page 88: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

79

Table 3: U-Pb age data for the detrital zircons sampled from the Dry Fork Formation.

analysis ID Pb*(ppm) U(ppm)

atomic Th/U

208Pb corr'd 207Pb*/206Pb*

age (Ma) ±

208Pb corr'd 206Pb*/238U

age (Ma) ± Concordance

Tr1-001.D 32.64 370 1.03 481.8 10.1 460.4 2.4 95.6 Tr1-002.D 10.48 134 0.62 437.7 13.3 447.3 7.1 102.2 Tr1-003.D 21.29 222 0.68 655.5 15.5 540.6 8.7 82.5 Tr1-004.D 12.54 122 1.81 0.5 0.1 448.2 9.5 94319.9 Tr1-005.D 33.18 399 0.91 563.2 17.9 447.5 7.1 79.5 Tr1-006.D 2.63 30 1.30 365.6 29.8 432.3 8.0 118.2 Tr1-007.D 8.39 95 0.43 555.2 15.2 529.0 8.6 95.3 Tr1-008.D 1.37 16 1.15 1239.0 69.8 444.8 10.9 35.9 Tr1-009.D 9.26 107 0.86 494.4 29.8 466.1 7.8 94.3 Tr1-010.D 41.12 477 0.82 738.9 32.0 463.6 7.7 62.7 Tr1-011.D 30.58 500 0.48 225.9 4.9 362.2 5.7 160.3 Tr1-012.D 34.59 718 0.12 353.4 6.4 321.6 5.0 91.0 Tr1-013.D 4.34 46 0.71 345.1 17.1 521.5 9.0 151.1 Tr1-014.D 19.01 232 0.86 562.6 16.0 446.1 7.1 79.3 Tr1-015.D 5.34 112 0.00 162.2 9.1 324.5 6.8 200.1 Tr1-016.D 4.84 64 0.63 390.6 15.3 435.1 7.5 111.4 Tr1-017.D 78.74 439 0.10 1048.0 16.4 1107.8 17.1 105.7 Tr1-018.D 3.89 60 0.65 392.7 22.1 369.0 7.7 94.0 Tr1-019.D 28.66 361 0.59 497.3 10.3 458.8 7.1 92.3 Tr1-020.D 29.09 366 0.67 479.1 11.3 451.4 7.1 94.2 Tr1-021.D 73.33 782 0.96 719.2 29.6 447.4 7.3 62.2 Tr1-022.D 1.73 24 0.68 1.5 0.2 410.8 8.3 26586.4 Tr1-023.D 10.50 90 0.77 619.5 17.9 635.5 10.6 102.6 Tr1-024.D 9.77 120 0.48 337.7 14.4 469.8 8.1 139.1 Tr1-025.D 7.84 83 0.67 603.3 17.6 533.2 8.7 88.4 Tr1-026.D 4.08 47 0.34 469.8 17.0 528.2 9.1 112.4 Tr1-027.D 0.91 11 1.01 152.8 19.8 434.5 10.5 284.4 Tr1-028.D 14.65 160 0.50 550.8 12.5 536.8 8.4 97.5 Tr1-029.D 43.01 504 0.54 506.9 47.6 473.5 9.6 93.4 Tr1-030.D 3.28 38 0.89 470.1 66.6 440.8 9.4 93.8 Tr1-031.D 58.86 584 1.81 1133.9 51.1 459.6 7.6 40.5 Tr1-032.D 15.37 154 0.85 514.5 12.9 538.6 8.5 104.7

Page 89: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

80

Tr1-033.D 26.42 339 0.60 499.6 10.7 452.1 7.2 90.5 Tr1-034.D 10.40 125 0.93 410.3 14.3 442.1 7.2 107.7 Tr1-035.D 3.72 44 0.87 650.0 65.9 439.5 9.8 67.6 Tr1-036.D 60.95 626 1.97 1269.7 126.4 433.4 10.1 34.1 Tr1-037.D 22.92 290 0.73 508.7 50.1 433.0 7.9 85.1 Tr1-038.D 26.76 347 0.37 532.3 24.5 472.1 8.0 88.7 Tr1-039.D 76.11 938 1.48 1836.8 32.0 418.3 7.2 22.8 Tr1-040.D 10.58 213 0.15 381.2 9.1 328.1 5.2 86.1 Tr1-041.D 64.89 857 0.39 507.8 8.7 462.9 7.2 91.2 Tr1-042.D 48.39 663 0.41 648.8 22.4 446.4 7.0 68.8 Tr1-043.D 24.33 376 0.71 254.2 9.6 363.6 5.7 143.0 Tr1-044.D 29.98 335 1.25 456.2 12.8 445.2 6.9 97.6 Tr1-045.D 6.16 69 0.85 1.1 0.1 469.1 8.0 43471.2 Tr1-046.D 18.73 218 0.57 328.5 28.6 393.8 6.5 119.9 Tr1-047.D 8.99 118 0.44 362.1 10.2 456.2 7.5 126.0 Tr1-048.D 29.37 368 0.69 538.3 12.8 451.9 7.0 84.0 Tr1-049.D 13.74 77 0.66 984.0 21.2 970.3 15.4 98.6 Tr1-050.D 17.86 202 0.94 816.7 22.8 469.7 7.4 57.5 Tr1-051.D 4.23 51 0.87 408.6 22.5 445.4 7.9 109.0 Tr1-052.D 12.47 166 0.94 537.1 17.9 403.6 6.4 75.1 Tr1-053.D 13.44 141 0.69 173.4 12.8 521.2 8.8 300.5 Tr1-054.D 6.07 79 0.58 429.8 14.2 446.5 7.8 103.9 Tr1-055.D 12.92 143 0.97 62.7 8.4 459.5 8.5 733.3 Tr1-056.D 12.84 132 1.53 491.3 40.2 457.6 8.1 93.1 Tr1-057.D 10.72 178 0.16 311.4 7.3 391.5 6.5 125.7 Tr1-058.D 52.85 610 1.06 452.8 33.6 430.9 7.3 95.2 Tr1-059.D 6.00 71 1.04 615.6 25.3 440.6 7.4 71.6 Tr1-060.D 87.67 1286 0.43 647.9 13.7 416.2 6.6 64.2 Tr1-061.D 8.04 124 0.65 0.6 0.1 339.8 7.4 55809.2 Tr1-062.D 16.73 213 0.67 482.5 11.5 447.6 7.2 92.8 Tr1-063.D 9.37 106 0.80 509.6 20.0 488.4 8.2 95.8 Tr1-064.D 11.30 153 0.73 573.3 24.6 401.7 7.0 70.1 Tr1-065.D 15.11 240 0.21 0.2 0.0 391.3 7.0 157600.6 Tr1-066.D 16.85 214 0.63 273.8 13.3 444.0 7.3 162.1 Tr1-067.D 44.75 520 1.03 856.1 29.1 458.7 7.4 53.6 Tr1-068.D 4.52 76 0.10 281.9 10.2 391.0 6.4 138.7 Tr1-069.D 3.98 45 1.08 410.1 28.1 457.6 8.2 111.6 Tr1-070.D 25.28 519 0.03 255.6 5.2 332.5 5.2 130.1 Tr1-071.D 8.26 97 0.95 569.9 17.2 453.4 7.4 79.6 Tr1-072.D 10.10 80 1.16 589.7 20.0 633.2 10.2 107.4 Tr1-073.D 56.73 1039 0.11 376.4 6.3 363.9 5.6 96.7 Tr1-074.D 6.10 81 0.46 351.8 15.4 442.7 7.3 125.8 Tr1-075.D 73.25 1352 0.06 300.2 5.0 365.5 5.6 121.7

Page 90: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

81

Tr1-076.D 80.10 1502 0.08 409.0 7.9 354.3 5.4 86.6 Tr1-077.D 52.48 650 0.69 530.3 26.1 457.4 7.3 86.3 Tr1-078.D 5.96 78 0.56 459.9 16.5 446.1 7.3 97.0 Tr1-079.D 14.88 187 0.72 254.8 9.9 443.2 7.3 173.9 Tr1-080.D 24.73 257 1.64 556.2 27.4 445.0 7.1 80.0 Tr1-081.D 1.85 23 0.80 107.2 15.5 432.3 12.6 403.4 Tr1-082.D 4.68 63 0.44 311.6 11.9 443.3 7.3 142.3 Tr1-083.D 7.76 100 0.77 519.3 18.5 433.4 7.4 83.5 Tr1-084.D 111.28 2013 0.74 1182.6 21.2 323.6 6.7 27.4 Tr1-085.D 18.11 185 1.57 541.1 17.7 459.1 7.3 84.8 Tr1-086.D 10.88 141 0.62 428.0 13.1 443.5 7.1 103.6 Tr1-087.D 4.91 59 0.76 338.1 27.9 453.5 8.2 134.1 Tr1-088.D 54.79 810 0.65 815.5 79.0 354.1 7.4 43.4 Tr1-089.D 34.08 466 0.38 479.6 9.0 448.2 6.9 93.4 Tr1-090.D 21.75 265 0.94 294.2 79.3 432.0 10.4 146.8 Tr1-091.D 5.03 68 0.57 212.9 13.7 406.7 7.2 191.0 Tr1-092.D 14.23 150 1.60 956.6 30.7 449.3 8.0 47.0 Tr1-093.D 15.31 209 0.43 578.9 30.2 436.2 7.1 75.4 Tr1-094.D 27.42 378 0.32 428.4 8.5 451.0 7.0 105.3 Tr1-095.D 12.11 141 0.89 249.3 10.1 461.0 7.5 184.9 Tr1-096.D 19.30 245 0.56 443.0 25.0 455.8 7.9 102.9 Tr1-097.D 13.17 158 0.89 428.6 13.1 449.5 7.1 104.9 Tr1-098.D 42.98 894 0.05 318.1 5.5 326.1 5.0 102.5 Tr1-099.D 19.78 213 0.27 388.0 20.4 574.1 10.1 147.9 Tr1-100.D 20.49 271 0.55 513.8 11.3 444.9 7.0 86.6 Tr1-101.D 2.48 28 1.00 678.1 49.2 475.7 9.9 70.2 Tr1-102.D 35.18 343 1.12 1127.6 28.8 528.0 8.5 46.8 Tr1-103.D 3.05 38 0.78 341.3 20.7 446.1 8.0 130.7 Tr1-104.D 64.65 1244 0.11 361.8 6.6 345.5 5.4 95.5 Tr1-105.D 4.15 47 0.60 622.1 21.5 508.1 8.4 81.7 Tr1-106.D 14.56 177 1.02 543.5 21.4 434.3 7.0 79.9 Tr1-107.D 4.88 59 0.83 404.7 22.4 453.5 9.4 112.1 Tr1-108.D 10.07 168 0.33 0.0 0.0 266.8 6.8 16246421.2 Tr1-109.D 17.82 255 0.79 0.5 0.1 345.1 5.8 67819.0 Tr1-110.D 20.80 261 0.72 403.4 10.6 446.3 7.2 110.6 Tr1-111.D 8.52 90 1.34 322.8 20.2 460.6 7.6 142.7 Tr1-112.D 21.00 275 0.51 463.4 15.7 451.7 7.2 97.5 Tr1-113.D 52.24 548 0.74 652.9 16.9 534.0 8.4 81.8 Tr1-114.D 4.01 43 0.64 530.9 26.2 527.5 9.3 99.4 Tr1-115.D 1.84 21 1.24 347.1 31.2 421.2 8.7 121.3 Tr1-116.D 12.40 138 0.47 195.2 8.5 495.7 8.5 254.0 Tr1-117.D 14.67 203 0.31 527.4 11.0 453.2 7.2 85.9 Tr1-118.D 13.68 183 0.68 505.4 12.8 425.5 6.7 84.2

Page 91: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

82

Tr1-119.D 9.44 134 0.24 412.1 11.0 446.8 7.3 108.4 Tr1-120.D 2.68 29 0.98 0.2 0.0 447.1 8.9 198837.1 Tr1-121.D 5.14 25 1.10 1020.5 38.9 1004.5 18.3 98.4 Tr1-122.D 5.24 58 0.50 652.6 19.3 529.9 8.8 81.2 Tr1-123.D 18.10 238 0.68 450.5 10.5 430.3 6.8 95.5 Tr1-124.D 32.18 420 0.55 442.4 8.9 450.6 7.0 101.8 Tr1-125.D 10.49 83 1.33 691.1 24.4 614.4 10.0 88.9 Tr1-126.D 9.04 83 0.66 665.8 17.6 612.9 9.8 92.0 Tr1-127.D 63.04 606 1.95 405.2 26.7 455.0 7.3 112.3 Tr1-128.D 24.69 149 0.28 961.3 17.0 990.2 15.9 103.0 Tr1-129.D 23.49 295 0.56 443.4 31.3 449.7 8.4 101.4 Tr1-131.D 8.91 114 0.29 448.5 16.7 488.6 9.7 108.9 Tr1-132.D 18.90 243 0.63 455.2 19.3 448.0 7.2 98.4 Tr1-130.D 6.32 71 1.28 464.2 22.3 447.9 7.6 96.5 Tr1-133.D 41.90 539 0.66 425.4 10.8 441.5 7.0 103.8 Tr1-134.D 28.31 512 0.13 329.6 6.2 361.0 5.8 109.5 Tr1-135.D 9.70 138 0.47 469.1 12.9 419.3 6.8 89.4 Tr1-136.D 13.56 148 1.49 316.6 14.5 436.2 7.5 137.8 Tr1-137.D 5.74 66 1.04 595.5 24.6 456.5 7.6 76.7 Tr1-138.D 18.52 196 0.65 511.4 11.7 536.2 8.5 104.8 Tr1-139.D 4.28 58 0.72 360.4 27.4 411.8 8.3 114.3 Tr1-140.D 14.86 274 0.12 384.8 8.0 359.6 5.6 93.5 Tr1-141.D 8.00 106 0.66 412.6 15.7 427.5 7.1 103.6 Tr1-142.D 4.20 52 0.84 399.9 18.5 442.7 7.6 110.7 Tr1-143.D 11.44 113 0.90 0.6 0.0 528.3 8.9 83998.3 Tr1-144.D 40.68 830 0.21 335.8 7.1 318.5 5.1 94.8 Tr1-145.D 31.60 457 0.47 398.9 12.3 415.5 6.5 104.2 Tr1-146.D 13.61 179 0.54 417.5 12.7 444.4 7.1 106.5 Tr1-147.D 4.02 56 1.00 1.6 0.1 368.7 6.4 22905.4 Tr1-148.D 2.45 29 0.93 50.5 4.5 441.0 8.4 873.4 Tr1-149.D 89.86 226 0.51 2936.6 45.8 1984.0 31.9 67.6 Tr1-150.D 40.34 518 0.55 378.8 8.2 454.8 7.0 120.1 Tr1-151.D 14.46 166 0.98 647.7 39.6 447.7 7.5 69.1 Tr1-152.D 87.31 871 1.51 369.1 14.0 474.2 7.4 128.5 Tr1-153.D 11.99 105 0.82 689.3 20.3 619.5 10.0 89.9 Tr1-154.D 17.35 204 0.92 380.2 12.4 455.0 7.4 119.7 Tr1-155.D 85.47 2187 0.10 706.6 11.9 265.2 5.3 37.5 Tr1-156.D 12.61 143 0.49 447.1 12.4 522.7 8.4 116.9 Tr1-157.D 34.13 679 0.13 607.5 11.4 331.5 5.4 54.6 Tr1-158.D 1.91 22 1.04 261.5 25.1 442.5 9.2 169.2 Tr1-159.D 27.38 368 0.45 340.5 7.5 444.6 7.1 130.6 Tr1-160.D 7.86 84 0.81 385.8 16.4 513.9 3.7 133.2

Page 92: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

83

Constraints on the Age of the Host Sediment: Using an Empirical Study

from the Global Detrital Zircon Database An empirical study of the Global Detrital Zircon Database provides constraints on

how large a sample of detrital zircons needs to be sampled in order to best constrain the

age of the host sediment. As the zircons should be as old or older than the host sediment,

these ages constrain the maximum age of host sediment deposition. The sample size that

best constrained the average offset between the youngest detrital zircon age (Ma) and the

maximum age of deposition of the host sediment independent of the detrital zircon age

regardless of tectonic setting was a sample size of 50 detrital zircons. However, the

characteristics of individual host sediments play a significant role in whether or not detrital

zircon geochronology can potentially constrain the age of sedimentation (i.e. drainage basin

characteristics such as source terranes in the catchment area, most recent pulse of

magmatism in the region of the host sediment, etc.).

4.1 Introduction The issue of sample size has been an important problem in detrital mineral provenance

studies. Several questions can be asked with sample size: How many grains are necessary to

sample all subpopulations within the population? How many grains are necessary to sample a

specific subpopulation within the population? How many grains are necessary to best constrain

the age of the host sediment? The first two questions have been answered using theoretical

sampling statistics. The third question is the focus of this study.

Dodson et al. (1988) provided the first discussion of sample size in the detrital zircon

literature. They used a probability function to estimate the probability of missing a specific

fraction of grains when selecting a sample size of size n:

Page 93: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

84

P = (1-f)n

where f is the frequency of a missed hypothetical population. Dodson et al. (1988) illustrate the

utility of the equation by setting n to 86 and finding the probability of missing a fraction of the

population with a frequency of 0.034; this yields a probability of missing the fraction by 5.1%.

If n is set to 60 and f to 0.05, then the probability is 4.6%.

Vermeesch (2004) argued that the Dodson et al. (1988) probability function has been

misinterpreted to suggest that measuring 60 grains is enough to have 95% confidence that any

fraction greater than or equal to 0.05 of the population was not missed. He derived an equation

for a given total number of fractions m in order to solve for the sample size k:

𝑝 = −1 𝑛−1𝑚𝑛=1 (

𝑚𝑛

)(1 −𝑛

𝑚)𝑘

Where n is the number of fractions desired to be sampled. Using this equation, Vermeesch

(2004) shows that at least 117 grains need to be sampled in order to be 95% confident that any

fraction of the population greater than 0.05% is not missed. This has also been misinterpreted to

suggest that age dating with a sample size of 100+ grains is sufficient (Carrapa, 2010). The

increased efficiency in the techniques used for detrital zircon geochronology has made sampling

such large samples of detrital zircons routine (Gehrels et al. 2006, 2008; Ireland and Williams,

2003, Johnston et al. 2009).

A recent global detrital zircon compilation (Voice et al. in review) allows for empirically

testing the third question: How many grains are necessary to best constrain the age of the host

sediment? Detrital zircons are an important example of Charles Lyell‘s principle of inclusions,

i.e. that included fragments are older than the host sediment (Lyell, 1833). As such detrital

Page 94: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

85

zircon grains should be as old, if not older than the host sediment that they are encased in. The

global detrital zircon database has 4,879 samples (age frequency distributions) which range in

sample size from 1 to 580 grains. The mean sample size has n equal to 49 grains and 90% of the

samples have a sample size that is less than or equal to 98 grains. This large dataset allows the

authors to elucidate how accurately the youngest grains in the sampled distributions reflect the

age of deposition of the host sediment.

4.2 Methods A meta-analytical compilation of single-dated detrital zircon grains was constructed via

an extensive literature survey of detrital zircon analyses published primarily in English (but also

including German, Portuguese, Spanish, and Chinese documents). A total of 1,108 studies (see

appendix A for references for the compiled database) were collected representing 4,879 age

distributions (i.e., 4,879 samples of dated grains) and 238,952 individual grains. All grains were

dated individually using U-Pb techniques. These samples represent all continents and all

geological time intervals, from Archean metasedimentary rocks (paragneisses and metapelites),

through Proterozoic and Phanerozoic sedimentary rocks (including siliciclastic, carbonate, and

chemical rocks) up to modern sediments.

Zircon (ZrSiO4) is one of the most durable minerals, being highly resistant to both

physical and chemical weathering (Heaman and Parrish, 1991, Kowalewski and Rimstidt, 2003).

Because U is present in zircons in the 10-1000 ppm range (Faure and Mensing, 2005, Heaman

and Parrish, 1991), the mineral is also particularly suitable target for reliable radiometric dating.

Moreover, the closure temperature for the U-Pb system exceeds 900°C (Cherniak and Watson,

2000), which makes this radiometric system less vulnerable to resetting via metamorphic,

magmatic, and other thermal processes.

Page 95: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

86

238U and 235U radioactively decay through a series of daughter products to the stable lead

isotopes 206Pb and 207Pb respectively. The 238U-206Pb decay chain, with a half-life of 4.468 ∙ 109

years, is the most widely used to date zircons. The 235U-207Pb system, with a half-life of 0.7038 ∙

109 years (Faure and Mensing, 2005, Jaffey et al. 1971, Steiger and Jäger, 1977), is calculated by

using the known ratio of 235U/238U as well as the ages derived from 238U-206Pb and is not as

commonly reported as the other two age dates. A third dating strategy is the 207Pb/206Pb age,

which is derived from algebraic substitution and manipulation of the two U-Pb decay equations

with the assumption that the ratio of 235U/238U is a constant equal to 1/137.88 (Faure and

Mensing, 2005). The 207Pb/206Pb was used for grains older than 800 Ma in this compilation.

Grains younger than 800 Ma used their 206Pb/238U age. This methodology was used because over

the Phanerozoic relatively little 207Pb was produced. The young ages of Phanerozoic zircons

cause them to have low 207Pb contents making analysis difficult (and causing the grains to appear

discordant).

For each grain, data were keyed into the database according to host the tectonic setting of

the host sediment, best estimate of host rock age, host rock lithology and metamorphic index,

region, paleoclimate characteristics, and analytical factors (Appendix B provides the codes used

for the different characteristics). The tectonic settings used as filters in this study are: passive

margins (passive margins and intracratonic basins), active margins (arc settings and foreland

basins), and rift basins. Maximum and minimum constraints of the host sediment age were

entered in for all samples. These ages were derived from age dating systems independent of the

U-Pb detrital zircon age dates from the studies and include estimates from biostratigraphy,

stratigraphic correlation to well dated units, magnetostratigraphy, geochronological methods (U-

Pb, K-Ar, Rb-Sr, etc), and any combination of the above. In addition, 435 samples were taken

Page 96: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

87

from modern sediments and hence have a minimum age of 0 Ma. For grains where multiple U-

Pb age spots were generated, the following conventions were used: (1) If the age was labeled as

from the ―core‖, this age was entered into the database and ages labeled ―rim‖ were ignored, and

(2) If the ages were not labeled, the spot with the oldest 206Pb/238U age from the grain was used

as opposed to the other U-Pb and Pb-Pb ages, as this was assumed to be the most likely to

approximate the ―crystallization age‖ of the zircon (younger spots were then ignored) and biases

the dataset towards older ages. Multi-spot data is being entered into the database, but are not

ready for analysis yet.

The original sources, from which the database was compiled, reported concordance for

approximately 60% of the grains. Concordance was reported as either: percent concordant or

percent discordant. Other studies reported dates that met some cutoff value (usually either ≤5%

or ≤10%), but without providing information about specific concordance values for each

individual grain. Grains with a 206Pb/238U age less than 400 Ma in age were retained in the final

pooled age regardless of their degree of discordance due to the difficulty in measuring the low

contents of 207Pb in these younger zircons. Of the four filters, only the full database sample (Fig.

20) uses all grains regardless of degree of discordance. The ≤5% data, Phanerozoic data, and

Modern Sediment data all use grains that passed through the concordance filters above.

The detrital zircon age data was analyzed using a SAS 9.3 code designed to determine the

average offset between the youngest grain and the best estimate of the maximum age of the host

sediment as a function of sample size (see Appendix D for the code utilized in this study). The

code sorts the samples by tectonic setting and then averages the offset between youngest grain

age and the best estimate of the maximum age of the host sediment as a function of sample size.

The output includes binned offset as a function of sample size. Bins were constructed using

Page 97: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

88

increments of sample size equal to 10 units. Two sets of bins were created using the bin size of

10 units: bins with no upper limit and bins with an upper limit of sample size equal to 120. In

the second case, bins for samples greater than or equal to 120 were averaged together to create

one bin. This second case was used for the results as the first case showed high volatility at

sample sizes greater than 120 due to the small number of samples that exceeded that threshold

sample size. Smaller sample size of the samples led to an effect where large offsets had a major

effect on the average offset. In all cases, the output for sample size is rounded up to the nearest

whole number sample size (i.e. for the reported values of mean n, standard deviation of n, the

median n, and the recommended n).

4.3 Results In all four filtered cases and for all tectonic settings, with increasing sample size the

average offset decreases towards 0 Ma (Figures 20A, 21A, 22A, and 23A). Passive margin

samples exhibit very high offsets with small sample sizes (n ≤ 20) in all four filters. They also

exhibit a peak in the lines at a sample size of 100 except for the ≤5% discordant data. Active

margins also exhibit high offsets at low sample sizes and an inflection point in offset at binned n

of ~40. Rift basins exhibit similar patterns to the Active margins, but in the case of Phanerozoic

data and Modern sediment data show a much smaller offset at low values of n (≤ 30).

Using the full database without a filter for degree of concordance, there are 4,269

samples with known tectonic setting. Sorting the pooled database by tectonic setting (passive

margins, active margins and rift basins), yields three curves that exhibit a negative slope and can

be fitted with exponential decay regression lines. With increasing sample size, the average offset

between the youngest grain age (Ma) and the host sediment maximum age constraint decreases

towards 0 Ma (Fig. 20A). The distribution of sample size is positively skewed (Fig. 20B) and

Page 98: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

89

has a mean sample size of 119 ±90 grains (Table 4). The samples range in size from 1 grain to

509 grains.

Filtering the database for samples that consist solely of grains that are less than or equal

to ±5% discordant yields a sample distribution of 3,890 samples. Sorting the pooled database by

tectonic setting, yields three curves that exhibit a negative slope and can be fitted with

exponential decay regression lines. With increasing sample size, the average offset between the

youngest grain age (Ma) and the host sediment maximum age constraint decreases towards 0 Ma

(Fig. 21A). The distribution of sample size is positively skewed (Fig.21B) and has a mean

sample size of 109 ±98 grains (Table 4). The samples range from 1 grain to 509 detrital zircon

grains.

Limiting the database to samples whose maximum age is less than or equal to 550 Ma

decreases the sample size to 2,226 samples. Sorting the pooled database by tectonic setting,

yields three curves that exhibit a negative slope and can be fitted with exponential decay

regression lines. With increasing sample size, the average offset between the youngest grain age

(Ma) and the host sediment maximum age constraint decreases towards 0 Ma (Fig. 22A). The

distribution of sample size is positively skewed (Fig. 22B) and has a mean sample size of 65 ±41

grains (Table 4). The sample distribution has a much smaller range of sample sizes than the

preceding filters: 159 grains with a maximum of 165 grains.

Modern Sediments have the best age constraints. Filtering the database for modern

sediments yields a sample distribution of 435 samples. Sorting the pooled database by tectonic

setting yields three curves that exhibit a negative slope and can be fitted with exponential decay

regression lines. With increasing sample size, the average offset between the youngest grain age

Page 99: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

90

(Ma) and the host sediment maximum age constraint decreases towards 0 Ma (Fig. 23A). The

distribution of sample size is positively skewed (Fig. 23B) and has a mean sample size of 13

grains (Table 4). The sample distribution has a range of 44 samples and a maximum sample size

of 45 detrital zircon grains.

4.4 Discussion The sample distributions regardless of tectonic setting or database filter exhibit inflection

points where the average offset either flattens out or the slope decreases from steep slopes to

more gentle slopes. These inflection points suggest sample sizes that may be of use in

delineating the host sediment age in different tectonic settings (Table 5). The ≤5% discordant

filter is commonly used in the literature as a cutoff value for the validity of detrital zircon ages.

As this cutoff is popular, the empirical results from this study may suggest sample sizes to use

for reaching an arbitrary average offset value (Fig. 21). In rift basins, an average offset of ~20

Ma can be obtained for samples sizes ≥50 detrital zircons. Passive margins and Active margins

yield a higher average offset (Passive margins = 75 Ma, Active margins = 110 Ma) at the

inflection point at n equal to 70 detrital zircon grains. Increasing the sample size for both

settings decreases the average offset. It is interesting to note that rift basins are generally

dominated by basaltic magmatism, where basalts tend to be relatively zircon poor; the younger

zircons that decrease the average offset may be potentially from the early stages of rifting where

magmas of rhyolitic composition are generated through crustal assimiliation. Active margins

should potentially yield the lowest offsets as arc settings are prolific generators of granitic

magmatism. The high offsets may suggest that the young grains formed during arc magmatism

are not being unroofed and sourced to the basin sediments in many of these samples. Another

possibility is that the mixing of foreland basin and arc settings as active margins may be

Page 100: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

91

increasing the offset. Foreland basins do not always exhibit magmatism. The transfer of

volcanic sediments into foreland basins is often prevented by the presence of the accretionary

prism.

Modern River sediments exhibit the shallowest curves with low inflection points (n =30)

for the active margins and rift basins (Fig. 23A). This is potentially due to generation of magmas

at these settings which generate young zircons that are sourced to the sedimentary system

through either rapid unroofing of batholiths or through reworking of pyroclastic material or lava

flows. Passive margins show an inflection point at higher n (either n = 50 or n = 90 depending

on the inferred position of the inflection point) then in the other tectonic settings. The secondary

peak in offset at n = 100 grains is a result of modern river sediments that are sourced from

Precambrian metasedimentary terranes. This is an important caveat of the study: Individual

samples are going to be constrained by their provenance history and there may be many cases

where there is a significant offset between the host sediment age and the youngest detrital zircon

grain in the sample due to the combination of host sediment tectonic setting, most recent pulse of

magmatism in the region studied, and the drainage system developed during deposition of the

host sediment. This last condition has been used to show that detrital zircons can be transported

over great distances (Rainbird et al. 1997).

In all cases, regardless of filter or tectonic setting, the plotted curves (Figures 20A, 21A,

22A, and 23A) are more volatile at sample sizes greater than n equal to 100 due to the smaller

sample sizes in the global detrital zircon database of these values of n (note the decrease in

frequency of samples with increasing sample size on Figures 20B, 21B, 22B, and 23B). The

increased efficiency of detrital zircon age dating may overcome this drawback in the future

(Gehrels et al. 2006, 2008; Ireland and Williams, 2003, Johnston et al. 2008).

Page 101: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

92

4.5 Conclusion and Recommendations Previously published probability functions have yielded guidelines for the sample sizes

necessary to successfully sample one specific fraction (Dodson et al. 1988) and all specified

fractions of a pre-determined cut-off value (Vermeesch, 2004). This study attempts to use an

empirical approach to suggest sample sizes that yield the lowest average offset between the

youngest detrital zircon grain dated and the host sediment age independent of the detrital zircon

geochronological constraints. The recommended sample sizes (Table 5) are derived from the

inflection points on the lines of Figures 20A, 21A, 22A, and 23A. The average sample size from

Table 5 is 51 detrital zircon grains; this is a conservative estimate of the sample size necessary

regardless of tectonic setting and filter used. This recommendation comes with the caveat that

the individual sample characteristics may be influenced by conditions such as the host sediment

tectonic setting, the drainage system in the place during deposition of the host sediment and the

potential sources of detrital zircons of different age fractions in the region around the site of

deposition (which may be much older than the host sediment).

Page 102: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

93

4.6 References Cited Carrapa, B. 2010. Resolving tectonic problems by dating detrital minerals. Geology 38:191-192.

Cherniak, D.J. and Watson, W.B., 2000. Pb diffusion in zircon, Chemical Geology 172:5-24.

Dodson, M.H.; Compston, W.; Williams, I.S.; and Wilson, J.F. 1988. A search for ancient detrital zircons in Zimbabwean sediments. J. Geol. Soc. London 145:977-983.

Faure, G., and Mensing, T.M. 2005. Isotopes: Principles and Applications, 3rd ed. John Wiley and Sons, Inc. Hoboken,897 pp.

Gehrels, G.E.; Valencia, V.; and Pullen, A. 2006. Detrital zircon geochronology by laser-ablation multicollector ICPMS at the Arizona Laserchron Center. In Olszewski, T. (Ed.). Geochronology: Emerging Opportunities, Paleontological Society Papers 12:67-76.

Gehrels, G.E.; Valencia, V.A.; and Ruiz, J. 2008. Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry. Geochem. Geophys. Geosys. 9, doi:10.1029/2007GC001805.

Heaman, L., and Parrish, R. 1991. U-Pb geochronology of accessory minerals. In Shortcourse Handbook on Applications of Radiogenic Isotope Systems to Problems in Geology. Eds. Heaman, L., and Ludden, J.N. Mineralogical Association of Canada. 19:59-102.

Ireland, T.R., and Williams, I.S. 2003. Considerations in zircon geochronology by SIMS. In Hancher, J.M., and Hoskin, P.W.O. Zircon. Reviews in Mineralogy and Geochemistry 53:215-241.

Jaffey, A.H.; Flynn, K.F.; Glendenin, L.E.; Bentley, W.C.; and Essling, A.M. 1971. Precision measurements of half-lives and specific activities of 235U and 238U. Phys. Rev. Series C 4:1889–1906.

Johnston, S.; Gehrels, G.E.; Valencia, V.A.; Ruiz, J. 2008. Small-volume U-Pb zircon geochronology by laser ablation-multicollector-ICP-MS. Chem. Geol. 259:218-229.

Kowalewski, M., and Rimstidt, J.D., 2003.Lifetime and age spectra of detrital grains: toward a unifying theory of sedimentary particles. J. Geol. 111: 427-440.

Lyell, C. 1833. Principles of Geology. Penguin Classics 1997 edition, 472 pp.

Rainbird, R.H.; McNicoll, V.I.; Theirault, R.J.; Heaman, L.M.; Abbott, J.G.; Long, D.G.F.; and Thorkelson, D.J. 1997. Pan-continental river system draining Grenville orogen recorded by U-Pb and Sm-Nd geochronology of Neoproterozoic quartzarenites and mudrocks, Northwestern Canada. J. Geol. 105:1-17.

Page 103: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

94

Steiger, R.H., and Jäger, E. 1977. Subcommission on geochronology: convention of the use of decay constants in geo and cosmochronology. Earth Planet. Sci. Lett. 36:359–362.

Vermeesch, P. 2004. How many grains are needed for a provenance study? Earth Planet. Sci. Lett. 224:441-451.

Page 104: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

95

Figure 20A: Average offset between youngest detrital zircon age (Ma) and the maximum estimate of the host sediment age (Ma) versus binned values of sample size, n for the full database with no discordance filter. 1B: Frequency distribution of sample size for the full database.

Page 105: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

96

Figure 21A: Average offset between youngest detrital zircon age (Ma) and the maximum estimate of the host sediment age (Ma) versus binned values of sample size, n for the full database with a ≤5% discordant filter. 2B: Frequency distribution of sample size for the discordance filtered database.

Page 106: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

97

Figure 22A: Average offset between youngest detrital zircon age (Ma) and the maximum estimate of the host sediment age (Ma) versus binned values of sample size, n for samples with a maximum host sediment age of 550 Ma (i.e. Phanerozoic samples only). 3B: Frequency distribution of sample size for the Phanerozoic samples.

Page 107: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

98

Figure 23A: Average offset between youngest detrital zircon age (Ma) and the maximum estimate of the host sediment age (Ma) versus binned values of sample size, n for samples from Modern Sediments. 1B: Frequency distribution of sample size for samples collected from Modern Sediments.

Page 108: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

99

Table 4: Summary of Moments for each distribution of sample size using the filter database.

Moments

Filter total distributions n

mean n

std. dev. median skewness kurtosis

Full Database 4269 119 90 100 2.47 9.09 5% discordance filter 3890 109 98 97 2.16 7.28 Phanerozoic 2226 65 41 62 0.38 -0.48 Modern Sediment 435 13 12 8.5 1.09 0.2

Table 5: Recommended values of n for provenance analysis with detrital zircon geochronology as a function of tectonic setting and database filter.

Recommended n

Filter passive margins

active margins

rift basins

Full Database 80 40 30 5% discordance filter 70 70 50 Phanerozoic 80 40 40 Modern Sediment 50 30 30

Page 109: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

100

Conclusions

The Global Detrital Zircon Database is the largest detrital zircon compilation currently in

existence and has the potential to be a significant tool for provenance analysis, geodynamic

problems such as crustal growth/crustal recycling models, and as an empirical testing block for

analysis of sample issues related to detrital zircon geochronology (sample size considerations,

comparison of different machine types [SHRIMP vs. LA-ICPMS], comparison of Hf isotope

model ages derived from different decay constants or initial Lu ratios, etc.).

Joint consideration of U-Pb and Hf age distributions of detrital zircon grains reaffirms the

model postulating episodic crustal evolution through one or a combination of crustal growth

and/or crustal recycling. The relatively even spacing of U-Pb age peaks and Th-Pb age peaks

(~0.6 Ga) is consistent with a quasi-cyclic process such as the supercontinent cycle. The variable

and generally older Hf isotope model ages of zircon grains from single U-Pb age classes suggest

that the crustal evolution involved substantial crustal recycling, a phenomenon which may also

help to explain the uniformity of U-Pb age distributions across different continents and between

different tectonic settings. The uniform offset between the Hafnium isotope model ages and the

U-Pb ages is also quite intriguing and suggests that crustal recycling may also have occurred at

roughly 0.5-0.6 Ga. This remarkable spatial and geotectonic homogeneity suggests that the

evolution of the continental crust on Earth has been primarily controlled by global scale

processes rather than historically unique regional events. The Hf isotopes model ages reflect

when the material was last in the mantle and so give a constraint on crustal growth (where

growth is through production of juvenile material by transferring material from the mantle to the

Page 110: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

101

crust). Most zircons are generated during granitic magmatism and as such their ages should

reflect crustal recycling of pre-existing crustal materials.

As a test of the utility of the GDZDb for provenance analysis, the Carnian Dry Fork

Formation Sandstone was sampled for detrital zircon analysis and yielded an unimodal age

frequency distribution with a peak at 460-480 Ma. In addition, a minor component of grains

were Grenvillian in age (n = 3). High Th/U ratios and the presence of granitic clasts in the

arkosic sandstone matrix suggest an igneous origin for the detrital zircons. The conglomeratic

facies of the Dry Fork Formation is in fault contact with felsic volcanic of the Milton terrane

which has yielded ages of 450-460 (Coler et al. 2000) and this terrane is the likely source of

sediment for the portion of the Danville-Dan River Basin studied. The lack of strong Grenville

peak is unusual compared to most detrital age frequency distributions from eastern North

America (Fig. 18B) and from the North American record in general (Fig. 18C). The rift valley

configuration was such that the rift shoulder blocked transmission of Grenville-sourced sediment

into the Danville-Dan River rift valley and instead the sediment source was dominated by felsic

volcanic of the Milton terrane.

An empirical study of the Global Detrital Zircon Database provides constraints on how

large a sample of detrital zircons needs to be sampled in order to best constrain the age of the

host sediment. As the zircons should be as old or older than the host sediment, these ages

constrain the maximum age of host sediment deposition. The sample size that best constrained

the average offset between the youngest detrital zircon age (Ma) and the maximum age of

deposition of the host sediment independent of the detrital zircon age regardless of tectonic

setting was a sample size of 50 detrital zircons. However, the characteristics of individual host

sediments play a significant role in whether or not detrital zircon geochronology can potentially

Page 111: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

102

constrain the age of sedimentation (i.e. drainage basin characteristics such as source terranes in

the catchment area, most recent pulse of magmatism in the region of the host sediment, etc.).

Page 112: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

103

Appendix A: Global Detrital Zircon Database References Abati, J.; Castiñeiras, P.; Arenas, R.; Fernández-Suárez, J.; Barreiro, J.G.; and Wooden, J.L.

2007. Using SHRIMP zircon dating to unravel tectonothermal events in arc environments. The Early Palaeozoic arc of NW Iberia revisited. Terra Nova. 19:432-439. [736]

Abre, P. 2007. Provenance of Ordovician to Silurian clastic rocks of the Argentinean Precordillera and its geotectonic implications. Unpublished PhD dissertation. University of Johnnesburg, 431 pp. [975]

Adachi, M., and Suzuki, K. 1994. Precambrian detrital monazites and zircons from Jurassic turbidite sandstones in the Nomugi area, Mino terrane. J. Earth Planet. Sci. Nagoya Univ. 41:33-43. [252]

Adams, C.J. 2008. Geochronology of Paleozoic terranes at the Pacific Ocean margin of Zealandia. Gondwana Res. 13:250-258. Doi:10.106/j.gr.2007.07.001. [400]

Adams, C.J.; Barley, M.E.; Maas, R.; and Doyle, M.G. 2002. Provenance of Permian-Triassic volcaniclastic sedimentary terranes in New Zealand: Evidence from their radiogenic isotope characteristics and detrital mineral age patterns. New Zeal. J. Geol. Geop. 45:221-242. [151]

Adams, C.J.; Campbell, H.J.; and Griffen, W.L. 2007. Provenance comparison of Permian to Jurassic tectonostratigraphic terranes in New Zealand: Perspectives from detrital zircon age patterns. Geol. Mag. 144:701-729. [331]

Adams, C.J.; Cluzel, D.; and Griffin, W.L. 2009. Detrital zircon ages and geochemistry of sedimentary rocks in basement Mesozoic terranes and their cover rocks in New Caledonia, and provenances at the Eastern Gondwanaland margin. Aus. J. Earth Sci. 56:1023-1047. [1055]

Page 113: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

104

Adams, C.J.; Campbell, H.J.; and Griffen, W.L. 2008. Age and provenance of basement rocks of the Chatham Islands: an outpost of Zealandia. New Zeal. J. Geol. Geop. 51:245-259. [765]

Adams, C.J.; Miller, H.; Toselli, A.J.; and Griffin, W.L. 2008. The Puncoviscana Formation of northwest Argentina: U-Pb geochronology of detrital zircons and Rb-Sr metamorphic ages and their bearing on its stratigraphic age, sediment provenance and tectonic setting. N. Jb. Geol. Paläont. Abh. 247: 341-352. [642]

Adams, C.J.; Mortimer, N.; Campbell, H.J.; and Griffin, W.L. 2009. Age and isotopic characterization of metasedimentary rocks from the Torlesse Supergroup and Waipapa Group in the central North Island, New Zealand. New Zealand J. Geol. Geophys. 52: 149-170. [920]

Agashev, A.M.; Kuligin, S.S.; Orihashi, Y.; Pokhilenkov, N.P.; Vavilov, M.A.; and Clarke, D. 2008. Ages of Zircons from Jurassic Sediments of Bluefish River Slope, NWT Canada, and the Possible Age of Kimberlite Activity on the Lena West Property. Doklady Earth Sci. 421:751-754. [802]

Åhäll, K.I., and Connelly, J.N. 2008. Long-term convergence along SW Fennoscandia: 330 m.y. of Proterozoic crustal growth. Precambrian Res. 163:402-421. [594]

Åhall, K.I.; Cornell, D.H.; and Armstrong, R.A. 1998. Ion probe zircon dating of metasedimentary units across the Skagerrak: New constraints for early Mesoproterozoic growth of the Baltic Shield. Precambrian Res. 87:117-134. [356]

Aleinikoff, J.N.; Muhs, D.R.; Betis, E.A. III; Johnson, W.C.; Fanning, C.M.; and Benton, R. 2008. Isotopic evidence for the diversity of late Quaternary loess in Nebraska: Glaciogenic and nonglaciogenic sources. Geol. Soc. Am. Bull. 120:1362-1377. Doi:10.1130/B26222.1. [827]

Page 114: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

105

Aleinikoff, J.N.; Reed, J.C. Jr.; and Wooden, J.L. 1993. Lead isotopic evidence for the origin of Paleo- and Mesoproterozoic rocks of the Colorado Province, U.S.A. Precambrian Res. 63:97-122. [93]

Aleinikoff, J.N.; Schenck, W.S.; Plank, M.O.; Srogi, L.A.; Fanning, C.M.; Kamo, S.L.; and Bosbyshell, H. 2006. Deciphering Igneous and Metamorphic events in high-grade rocks of the Wilmington Complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite. Geol. Soc. Am. Bull. 118:39-64. [990]

Allen, J.S. 2009. Paleogeographic reconstruction of the St. Lawrence Promontory, western Newfoundland. Unpublished Ph.D. dissertation. University of Kentucky, 288 pp. [1062]

Allen, M.B.; Morton, A.C.; Fanning, C.M.; Ismail-Zadeh, A.J.; and Kroonenberg, S.B. 2006. Zircon age constraints on sediment provenance in the Caspian region. J. Geol. Soc. London. 163:647-655. [65]

Allen, R.; Najman, Y.; Carter, A.; Barfod, D.; Bickle, M.J.; Chapman, H.J.; Garzanti, E.; Vezzoli, G.; Ando, S.; and Parrish, R.R. 2008. Provenance of the Tertiary sedimentary rocks of the Indo-Burman Ranges, Burma (Myanmar): Burman arc or Himalayan-derived? J. Geol. Soc. London 165: 1045-1057. [787]

Alsleben, H. 2005. Changing characteristics of deformation, sedimentation, and magmatism as a result of island arc-continent collision. Unpub. Ph.D. dissertation, University of Southern California, Los Angeles. [322]

Amato, J.M.; Bogar, M.J.; Gehrels, G.E.; Farmer, G.L.; and McIntosh, W.C. 2007a. The Tlikakila complex in southern Alaska: A suprasubduction-zone ophiolite between the Wrangellia Composite terrane and North America. GSA Special Paper 431: 227-252. [478]

Page 115: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

106

Amato, J.M.; Boullion, A.O.; Serna, A.M.; Sanders, A.E.; Farmer, G.L.; Gehrels, G.E.; and Wooden, J.L. 2008. Evolution of the Mazatzal province and the timing of the Mazatzal orogeny: Insights from U-Pb geochronology and geochemistry of igneous and metasedimentary rocks in southern New Mexico. Geol. Soc. Am. Bull. 120:328-346. Doi: 10.1130/B26200.1. [470]

Amato, J.M.; Lawton, T.F.; Mauel, D.J.; Leggett, W.J.; González-León, C.M.; Farmer, G.L.; and Wooden, J.L. 2009. Testing the Mojave-Sonora megashear hypothesis: Evidence from Paleoproterozoic igneous rocks and deformed Mesozoic strata in Sonora, Mexico. Geology. 37:75-78. [849]

Amato, J.M.; Rioux, M.E.; Kelemen, P.B.; Gehrels, G.E.; Clift, P.D.; Pavlis, T.L.; and Draut, A.E. 2007b. U-Pb geochronology of volcanic rocks from the Jurassic Talkeetna Formation and detrital zircons from prearc and postarc sequences: Implications for the age of magmatism and inheritance in the arc. GSA Special Paper 431: 253-271. [479]

Amato, J.M.; Toro, J.; Miller, E.L.; Gehrels, G.E.; Farmer, G.L.; Gottlieb, E.S.; and Till, A.B. 2009. Late Proterozoic –Paleozoic evolution of the Arctic Alaska Chukotka terrane based on U-Pb igneous and detrital zircon ages: Implications for Neoproterozoic paleogeographic reconstructions. Geol. Soc. Am. Bull. 121:1219-1235. [936]

Amelin, Y. 1998. Geochronology of the Jack Hills detrital zircons by precise U-Pb isotope dilution analysis of crystal fragments. Chem. Geol. 146:25-38. [355]

Amelin, Y.; Lee, D.-C.; Halliday, A.N.; and Pidgeon, R.T. 1999. Nature of the Earth‘s earliest crust from hafnium isotopes in single detrital zircons. Nature. 399: 252-255. [167]

Andersen, T.; Griffin, W.L.; Jackson, S.E.; Knudson, T.-L.; and Pearson, N.J. 2004. Mid-Proterozoic magmatic arc evolution at the southwest margin of the Baltic Shield. Lithos 73:289-318. [991]

Page 116: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

107

Andersen, T., and Laajoki, K. 2003. Provenance characteristics of Mesoproterozoic metasedimentary rocks from the Telemark, South Norway: a Nd-isotope mass-balance model. Precambrian Res. 126:95-122. [992]

Andersen, T.; Laajoki, K.; and Saeed, A. 2004. Age, provenance and tectonostratigraphic status of the Mesoproterozoic Blefjell quartzite, Telemark sector, southern Norway. Precambrian Res. 135:217-244. [306]

Andersson, U.B.; Högdahl, K.; Sjöström. H.; and Bergman, S. 2006. Multistage growth and reworking of the Palaeoproterozoic crust in the Bergslagen area, southern Sweden: Evidence from U-Pb geochronology. Geol. Mag. 143:679-697. [726]

Anma, R.; Armstrong, R.; Orihashi, Y.; Ike, S.-I.; Shin, K.-C.; Kon, Y.; Komiya, T.; Ota, T.; Kagashima, S.-I.; Shibuya, T.; Yamamoto, S.; Veloso, E.E.; Fanning, M.; and Hervé, F. 2009. Are the Taitao granites formed due to subduction of the Chile Ridge? Lithos. 113:246-258. Doi:10.1016/j.lithos.2009.05.018. [971]

Ansdell, K.M.; Connors, K.A.; Stern, R.A.; and Lucas, S.B. 1999. Coeval sedimentation, magmatism, and fold-thrust belt development in the Trans-Hudson Orogen: geochronological evidence from the Wekusko Lake area, Manitoba, Canada. Can. J. Earth Sci. 36:293-312. [106]

Ansdell, K.M.; Kyser, T.K.; Stauffer, M.R.; and Edwards, G. 1991. Detrital zircons from Missi Metasedimentary rocks, Flin Flon Basin: Constraints on Age and Provenance, In Summary of Investigations, 1991, Saskatchewan Geological Survey, Saskatchewan Energy Mines, Miscellaneous Report 91-4: 157-161. [538]

Aoki, K.; Iizuka, T.; Hirata, T.; Maruyama, S.; and Terabayashi, M. 2007. Tectonic boundary between the Sanbagawa Belt and the Shimanto Belt in central Shikoku, Japan. Jour. Geol. Soc. Japan. 113:171-183. [837]

Page 117: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

108

Arenas, R.; Martinez, S.S.; Castiñeiras, P.; Jeffries, T.E.; Fernádez, R.D.; and Andonaegui, P. 2009. The basal tectonic mélange of the Cabo Ortegal Complex (NW Iberian Massif): A key unit in the suture of Pangea. J. Iberian Geol. 35:85-125. [957]

Armstrong, R.A.; Master, S.; and Robb, L.J. 2005. Geochronology of the Nchanga Granite and constraints on the maximum age of the Katanga Supergroup, Zambian Copperbelt. J. African Earth Sci. 42:32-40. [993]

Arndt, N.T.; Todt, W.; Chauvel, C.; Tapfer, M.; and Weber, K. 1991. U-Pb zircon age and Nd isotopic compositions of granitoids, charnockites and supracrustal rocks from Heimefrontfjella, Antarctica. Geol. Rund. 80:759-777. [1026]

Arthaud, M.H. 2007. Evolução neoproterozóica do gropu Ceará (Domínio Ceará Central, NE Brasil): Da Sedimentação à colisão continental Brasiliana. Unpublished PhD dissertation. University of Brasilia. 170 pp. [863]

Augustsson, C.; Münker, C.; Bahlburg, H.; and Fanning, C.M. 2006. Provenance of late Palaeozoic metasediments of the SW South American Gondwana margin: A combined U-Pb and Hf-isotope study of single detrital zircons. J. Geol. Soc. London. 163:983-995. [80]

Avigad, D.; Kolodner, K.; McWilliams, M.; Persing, H.; and Weissbrod, T. 2003. Origin of northern Gondwana Cambrian sandstone revealed by detrital zircon SHRIMP dating. Geology. 31:227-230. [1]

Avigad, D.; Stern, R.J.; Beyth, M.; Miller, N.; and McWilliams, M.O. 2007. Detrital zircon U-Pb geochronology of Cryogenian diamictites and Lower Paleozoic sandstone in Ethiopia (Tigrai): Age constraints on Neoproterozoic glaciation and crustal evolution of the southern Arabian-Nubian Shield. Precambrian Res. 154:88-106. [170]

Azmy, K.; Kendall, B.; Creaser, R.A.; Heaman, L.; and de Oliveira, T.F. 2008. Global correlation of the Vazante Group, São Francisco Basin, Brazil: Re-Os and U-Pb

Page 118: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

109

radiometric age constraints. Precambrian Res. 164:160-172. Doi: 10.1016/j.precamres.2008.05.001. [563]

Baar, E.E. 2009. Determining the regional scale detrital zircon provenance of the Middle-Late Ordovician Kinnikinic (Eureka) Quartzite, East Central Idaho, U.S.A. Unpublished MS thesis. Washington State University. 134 pp. [929]

Bagas, L.; Anderson, J.A.C.; and Bierlein, F.P. 2009. Palaeoproterozoic evolution of the Killi Killi Formation and orogenic gold mineralization in the Granites-Tanami Orogen, Western Australia. Ore Geol. Rev. 35:47-67. [834]

Bagas, L.; Bierlein, F.P.; Bodorkos, S.; and Nelson, D.R. 2008. Tectonic setting, evolution and orogenic gold potential of the late Mesoarchaean Mosquito Creek Basin, North Pilbara Craton, Western Australia. Precambrian Res. 160: 227-224. [666]

Bahlburg, H.; Vervoort, J.D.; and du Frane, S.A. 2010. Plate tectonic significance of middle Cambrian and Ordovician siliciclastic rocks of the Bavarian facies, Armorican Terrane Assemblage, Germany – U-Pb and Hf isotopic evidence of detrital zircons. Gondwana Res. 17:223-235. Doi: 10.1016/j.gr.2009.11.007. [1040]

Bahlburg, H.; Vervoort, J.D.; du Frane, S.A.; Bock, B.; Augustsson, C.; and Reimann, C. 2009. Timing of crust formation and recycling in accretionary orogens: Insights learned from the western margin of South America. Earth Sci. Rev. 97:215-241. doi:10.1016/j.earscirev.2009.10.006. [984]

Bailie, R.; Armstrong, R.; and Reid, D. 2007. The Bushmanland Group supracrustal succession, Aggeneys, Bushmanland, South Africa: Provenance, age of deposition and metamorphism. S. Afr. J. Geol. 110:59-86. [450]

Balintoni, I.; Balica, C.; Ducea, M.N.; Chen, F.; Hann, H.P.; and Sabliovischi, V. 2009. Late Cambrian-Early Ordovician Gondwanan terranes in the Romanian Carpathians: A zircon

Page 119: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

110

U-Pb provenance study. Gondwana Res. 16: 119-133. Doi: 10.1016/j.gr.2009.01.007. [808]

Balintoni, I.; Balica, C.; Ducea, M.N.; Hann, H.P.; and Şabliovschi, V. 2010. The anatomy of a Gondwanan terrane: The Neoproterozoic-Ordovician basement of the pre-Alpine Sebeş-Lotru composite terrane (South Carpathians, Romania). Gondwana Res. 17:561-572. Doi: 10.1016/j.gr.2009.08.003. [954]

Banks, C.J.; Smith, M.; Winchester, J.A.; Horstwood, M.S.A.; Noble, S.R.; and Ottley, C.J. 2007. Provenance of intra-Rodinian basin-fills: The lower Dalradian Supergroup, Scotland. Precambrian Res. 153:46-64. [118]

Barbeau, D.L. Jr.; Davis, J.T.; Murray, K.E.; Valencia, V.; Gehrels, G.E.; Zahid, K.M.; and Gombosi, D.J. 2010. Detrital-zircon geochronology of the metasedimentary rocks of north-western Graham Land. Antarctic Science 22: 65-78. [1064]

Barbeau, D.L. Jr.; Ducea, M.N.; Gehrels, G.E.; Kidder, S.; Wetmore, P.H.; and Saleeby, J.B. 2005.U-Pb detrital-zircon geochronology of northern Salinian basement and cover rocks. Geol. Soc. Am. Bull. 117:466-481. [6]

Barbeau, D.L. Jr.; Gombosi, D.J.; Zahid, K.M.; Bizimis, M.; Swanson-Hysell, N.; Valencia, V.; and Gehrels, G.E. 2009. U-Pb zircon constraints on the age and provenance of the Rocas Verdes basin fill, Tierra del Fuego, Argentina. Geochem. Geophys. Geosys. Doi: 10.1029/2009GC002749. [1086]

Barbeau, D.L. Jr.; Olivero, E.B.; Swanson-Hysell, N.L.; Zahid, K.M.; Murray, K.E.; and Gehrels, G.E. 2009. Detrital zircon geochronology of the eastern Magallanes foreland basin: Implications for Eocene kinematics of the northern Scotia Arc and Drake Passage. Earth Planet. Sci. Lett. 284:489-503. Doi: 10.1016/j.epsl.2009.05.014. [915]

Barnes, C.G.; Frost, C.D.; Yoshinobu, A.S.; McArthur, K.; Barnes, M.A.; Allen, C.M.; Nordgulen, Ø.; and Prestvik, T. 2007, Timing of sedimentation, metamorphism, and

Page 120: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

111

plutonism in the Helgeland Nappe Complex, north-central Norwegian Caledonides. Geosphere. 3:683-703. [471]

Barnett, W.; Armstrong, R.A.; and de Wit, M.J. 1997. Stratigraphy of the upper Neoproterozoic Kango and lower Palaeozoic Table Mountain Groups of the Cape Fold Belt revisited. S. Afr. J. Geol. 100:237-250. [263]

Barr, S.M.; Davis, D.W.; Kamo, S.; and White, C.E. 2003. Significance of U-Pb detrital zircon ages in quartzites from peri-Gondwanan terranes, New Brunswick and Nova Scotia, Canada. Precambrian Res. 126:123-145. [136]

Barth, A.P.; Wooden, J.L.; Grove, M.; Jacobson, C.E.; and Pedrick, J.N. 2003. U-Pb zircon geochronology of rocks in the Salinas Valley region of California: A reevaluation of the crustal structure and origin of the Salinian block. Geology. 31:517-520. [259]

Barth, A.P.; Wooden, J.L.; Jacobson, C.E.; and Probst, K. 2004. U-Pb geochronology and geochemistry of the McCoy Mountains Formation, southeastern California: A Cretaceous retroarc foreland basin. Geol. Soc. Am. Bull. 116:142-153. [295]

Bartlett, J.M.; Dougherty-Page, J.S.; Harris, N.B.W.; Hawkesworth, C.J.; and Santosh, M. 1998. The application of single zircon evaporation and model Nd ages to the interpretation of polymetamorphic terrains: An example from the Proterozoic mobile belt of south India. Contrib. Mineral. Petrol. 131:181-195. [403]

Barton, E.S.; Compston, W.; Williams, I.S.; Bristow, J.W.; Hallbauer, D.K.; and Smith, C.B. 1989. Provenance ages for the Witwatersrand Supergroup and the Ventersdorp Contract Reef: Constraints from ion microprobe U-Pb ages of detrital zircons. Econ. Geol. 84:2012-2019. [404]

Barton, J.M. Jr.; Barnett, W.P.; Barton, E.S.; Barnett, M.; Doorgapershad, A.; Twiggs, C.; Klemd, R.; Martin, J.; Mellonig, L; and Zenglein, R. 2003. The Geology of the area surrounding the Venetia kimberlite pipes, Limpopo Belt, South Africa: A complex

Page 121: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

112

interplay of nappe tectonics and granitoid magmatism. S. Afr. J. Geol. 106: 109-128. [674]

Barton, J.M. Jr., and Sergeev, S. 1997. High precision, U-Pb analyses of single grains of zircon from, quartzite in the Beit Bridge Group yield a discordia. S. Afr. J. Geol. 100:37-41. [272]

Basei, M.A.S.; Frimmel, H.E.; Nutman, A.P.; Preciozzi, F.; and Pankhurst, R.J.; 2008. West Gondwana amalgamation based on detrital zircon ages from Neoproterozoic Ribeira and Dom Feliciano belts of South America and comparison with coeval sequences from SW Africa.Trouw, R.A.J.; Brito Neves, B.B. and De Wit, M.J. (eds.). West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region. Geological Society, London, Special Publications 294:173-196. [529]

Basei, M.A.S.; Frimmel, H.E.; Nutman, A.P.; Preciozzi, F.; and Jacob. J. 2005. A connection between the Neoproterozoic Dom Feliciano (Brazil/Uruguay) and Gariep (Namibia/South Africa) orogenic belts—evidence from a reconnaissance provenance study. Precambrian Res. 139:195-221. [66]

Bastos Leal, L.R.; Cunha, J.C.; Cordani, U.; Teixeira, W.; Nutman, A.P.; Menezes Leal, A.B.; and Macambira, M.J.B. 2003. SHRIMP U-Pb, 207Pb/206Pb zircon dating and Nd isotopic signature of the Umburanas greenstone belt, northern São Francisco craton, Brazil. J. South Amer. Sci. 15: 775-785. [504]

Batumike, J.M.; Griffin, W.L.; O‘Reilly, S.Y.; Belousova, E.A.‘ and Pawlitschek, M. 2009. Crustal evolution in the central Congo-Kasai Craton, Luebo, D.R. Congo: Insights from zircon U-Pb ages, Hf isotope and trace element data. Precambrian Res. 170:107-115. Doi: 10.1016/j.precamres.2008.12.001. [804]

Batumike, J.M.; O‘Reilly, S.Y.; Griffin, W.L.; and Belousova, E.A. 2007. U-Pb and Hf-isotope analyses of zircon from the Kindelungu Kimberlites, D.R. Congo: Implications for crustal evolution. Precambrian Res. 156:195-225. [714]

Page 122: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

113

Bauer, C.; Rubatto, D.; Krenn, K.; Proyer, A.; and Hoinkes, G. 2007. A zircon study from the Rhodope metamorphic complex, N-Greece: Time record of a multistage evolution. Lithos. 99:207-228. Doi: 10.1016/j.lithos.2007.05.003. [491]

Baumann, A.; Grauert, B.; Macklenburg, M.S.; and Vinx, R. 1991. Isotopic age determinations of crystalline rocks of the Upper Harz Mountains, Germany. Geol. Rund. 80:669-690. [1023]

Becker, T.P.; Thomas, W.A.; and Gehrels, G.E. 2006. Linking late Paleozoic sedimentary provenance in the Appalachian basin to the history of Alleghanian deformation. Am. J. Sci. 306:777-798.[194]

Becker, T.P.; Thomas, W.A.; Samson, S.D.; and Gehrels, G.E. 2005. Detrital zircon evidence of Laurentian crustal dominance in the lower Pennsylvanian deposits of the Alleghanian clastic wedge in eastern North America. Sediment. Geol. 182:59-86. [5]

Be‘eri-Shlevin, Y.; Katzir, Y.; Whitehouse, M.J.; and Kleinhanns, I.C. 2009. Contribution of pre Pan-African crust to formation of the Arabian-Nubian Shield: New secondary ionization mass spectrometry U-Pb and O studies of zircon. Geology 37:899-902. [953]

Belka, Z.; Valverde-Vaquero, P.; Dörr, W.; Ahrendt, H.; Wemmer, K.; Franke, W.; Schäfer, J. 2002. Accretion of first Gondwana-derived terranes at the margin of Baltica. In Winchester, J.A.; Pharaoh, T.C.; and Verniers, J. (eds.) Palaeozoic Amalgamation of Central Europe. Geological Society London, Special Publications, 201: 19-36 [636].

Belousova, E.A.; Preiss, W.V.; Schwarz, M.P.; and Griffin, W.L. 2006. Tectonic affinities of the Houghton Inlier, South Australia: U-Pb and Hf-isotope data from zircons in modern stream sediments. Aus. J. Earth Sci. 53:971-989. [184]

Page 123: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

114

Belousova, E.A.; Reid, A.J.; Griffin, W.L.; and O‘Reilly, S.Y. 2009. Rejuvenation vs. recycling of Archean crust in the Gawler Craton, South Australia: Evidence from U-Pb and Hf isotopes in detrital zircon. Lithos. 113:570-582. Doi: 10.1016/j.lithos.2009.06.028. [926]

Bennett, V.; Jackson, V.A.; Rivers, T.; Relf, C.; Horan, P.; and Tubrett, M. 2005. Geology and U-Pb geochronology of the Neoarchean Snake River terrane: tracking evolving tectonic regimes and crustal growth mechanisms. Can. J. Earth Sci. 42:895-934. [727]

Beranek, L.P. 2009. Provenance and paleotectonic setting of North American Triassic strata in Yukon: The sedimentary record of pericratonic terrane accretion in the Northern Canadian Cordillera. Unpublished PhD dissertation. University of British Columbia. Vancouver. 324 pp. [904]

Beranek, L.P.; Link, P.K.; and Fanning, C.M. 2006. Miocene to Holocene landscape evolution of the western Snake River Plain region, Idaho: Using the SHRIMP detrital zircon provenance record to track eastward migration of the Yellowstone hotspot. Geol. Soc. Am. Bul. 118:1027-1050. [72]

Bergh, S.G.; Kullerud, K.; Corfu, F.; Armitage, P.E.B.; Davidsen, B; Johansen, H.W.; Pettersen, T.; and Knudsen, S. 2007. Low-grade sedimentary rocks on Vanna, North Norway: A new occurrence of a Palaeoproterozoic (2.4-2.2 Ga) cover succession in northern Fennoscandia. Norw. J. Geol. 87:301-318. [452]

Bergman, S.; Högdahl, K.; Nironen, M.; Ogenhall, E.; Sjöström, H.; Lundqvist, L.; and Lahtinen, R. 2008. Timing of Paleoproterozoic intra-orogenic sedimentation in the central Fennoscandian Shield: Evidence from detrital zircon in metasandstone. Precambrian Res. 161: 231-249. Doi: 10.1016/j/precamres.2007.08.007. [448]

Bernet, M.; van der Beek, P.; Pik, R.; Huyghe, P.; Mugnier, J.-L.; Labrin, E.; and Szulc, A. 2006. Miocene to Recent exhumation of the central Himalaya determined from combined detrital zircon fission-track and U/Pb analysis of Siwalik sediments, western Nepal. Basin Res. 18:393-412. [104]

Page 124: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

115

Berry, R.F.; Jenner, G.A.; Meffre, S.; and Tubrett, M.N. 2001. A North American provenance for Neoproterozoic to Cambrian sandstones in Tasmania? Earth Planet. Sci. Lett. 192:207-222. [386]

Bertrand, J.M.; Pidgeon, R.T.; Leterrier, J.; Guillot, F.; Gasquet, D.; and Gattiglio, M. 2000. SHRIMP and IDTIMS U-Pb zircon ages of the pre-Alpine basement in the Internal Western Alps (Savoy and Piemont). Schweiz. Mineral. Petrogr. Mitt. 80: 225-248. [671]

Bibikova, E.V.; Claesson, S.; and Bogdanova, S.V. 2001a. New Data on the Basement Age of the Western Part of the East European Platform: U-Pb Isotopic Analysis of Zircon on a NORDSIM Ion Microprobe. Geochem. Int. 39: S2-S11. [667]

Bibikova, E.V.; Glebovitskii, V.A.; Claesson, S.; Miller, Y.V.; Kirnozova, T.I.; Myskova, T.A.; L‘vov, A.B.; and Makarov, V.A. 2001b. New Isotopic Data on the Protolith Age and Evolutionary Stages of the Chupa Formation, Belomorian Belt. Geochem. Int. 39: S12-S17. [669]

Bibikova, E.V.; Skiöld, T.; and Bogdanova, S.V. 1996. Age and geodynamic aspects of the oldest rocks in the Precambrian Belomorian Belt of the Baltic (Fennoscandian) Shield. In. Brewer, T.S. (ed.). Precambrian Crustal Evolution in the North Atlantic Region. Geological Society, London, Special Publication 112: 55-67. [683]

Bickford, M.E.; McLelland, J.M.; Selleck, B.W.; Hill, B.M.; and Heumann, M.J. 2008. Timing of anatexis in the eastern Adirondack Highlands: Implications for tectonic evolution during ca. 1050 Ma Ottawan orogenesis. Geol. Soc. Bull. Am. 120:950-961. Doi: 10.1130/B26309.1. [589]

Bickford, M.E.; Mueller, P.A.; Kamenov, G.D.; and Hill, B.M. 2008. Crustal evolution of southern Laurentia during the Paleoproterozoic: Insights from zircon Hf isotopic studies of ca. 1.75 Ga rocks in central Colorado. Geology. 36:555-558. [657]

Page 125: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

116

Bidyanada, M., and Deomurari, M.P. 2007. Geochronological constraints on the evolution of Meghalaya massif, northeastern India: An ion microprobe study. Cur. Sci. 93:1620-1623. [629]

Biju-Sekhar, S.; Yokoyama, K.; Pandit, M.K.; Okudaira, T.; Yoshida, M.; and Santosh, M. 2003. Late Paleoproterozoic magmatism in Dehli Fold Belt, NW India and its implication: Evidence from EPMA chemical ages of zircons. J. Asian. Earth Sci. 22: 189-207. [651]

Bindeman, I.N.; Vinogradov, V.I.; Valley, J.W.; Wooden, J.L.; and Natal‘in, B.A. 2002. Archean protolith and accretion of crust in Kamchatka: SHRIMP dating of zircons from Sredinny and Ganal Massifs. J. Geol. 110:271-289. [334]

Bingen, B.; Birkeland, A.; Nordgulen, Ø.; Sigmond, E.M.O. 2001. Correlation of supracrustal sequences and origin of terranes in the Sveconorwegian orogen of SW Scandinavia: SIMS data on zircon in clastic metasediments. Precambrian Res. 108:293-318. [1000]

Bingen, B.; Griffin, W.L.; Torsvik, T.H.; and Saeed, A. 2005. Timing of Late Neoproterozoic glaciation on Baltica constrained by detrital zircon geochronology in the Hedmark Group, south-east Norway. Terra Nova. 17:250-258. [37]

Bingen, B.; Jacobs, J.; Viola, G.; Henderson, I.H.C.; Skår, Ø.; Boyd, R.; Thomas, R.J.; Solli, A.; Key, R.M.; and Daudi, E.X.F. 2009. Geochronology of the Precambrian crust in the Mozambique belt in NE Mozambique, and implications for Gondwana assembly. Precambrian Res. 170:231-255. Doi: 10.1016/j.precamres.2009.01.005. [831]

Bingen, B.; Mansfeld, J.; Sigomond, E.M.O.; and Stein, H. 2002. Baltica-Laurentia link during the Mesoproterozoic: 1.27 Ga development of continental basins in the Sveconorwegian Orogen, southern Norway. Can. J. Earth Sci. 39:1425-1440. [738]

Bingen, B.; Nordgulen, Ø.; Sigmond, E.M.O.; Tucker, R.; Mansfeld, J.; and Högdahl, K. 2003. Relations between 1.19-1.13 Ga continental magmatism, sedimentation and

Page 126: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

117

metamorphism, Sveconorwegian province, S. Norway. Precambrian Res. 124:215-241. [994]

Bingen, B.; Skår, Ø.; Marker, M.; Sigmond, E.M.O.; Nordgulen, Ø.; Ragnhildstveit, J.; Mansfeld, J.; Tucker, R.D.; and Liegeois, J.-P. 2005. Timing of continental building in the Sveconorwegian orogen, SW Scandinavia. Norw. J. Geol. 85:87-116. [156]

Black, L.P.; Calver, C.R.; Seymour, D.B.; and Reed, A. 2004. SHRIMP U-Pb detrital zircon ages from Proterozoic and Early Palaeozoic sandstones and their bearing on the early geological evolution of Tasmania. Aus. J. Earth Sci. 51:885-900. [164]

Blanco, G.; Rajesh, H.M.; Gaucher, C.; Germs, G.J.B.; and Chemale, F. Jr. 2009. Provenance of the Arroyo del Soldado Group (Ediacaran to Cambrian, Uruguay): Implications for the Paleogeographic evolution of the southwestern Gondwana. Precambrian Res. 171: 57-73. Doi:10.1016/j.precamres.2009.03.003. [850]

Bleeker, W.; Ketchum, J.W.F.; Jackson, V.A.; and Villeneuve, M.E. 1999. The Central Slave Basement Complex, Part I: Its structural topology and autochthonous cover. Can. J. Earth Sci. 36:1083-1109. [1001]

Bleeker, W., and Parrish, R.R. 1996. Stratigraphy and U-Pb zircon geochronology of Kidd Creek: Implications for the formation of giant volcanogenic massive sulphide deposits and the tectonic history of the Abitibi greenstone belt. Can. J.Earth Sci. 33:1213-1231. [1037]

Blewett, R.S.; Black, L.P.; Sun, S.-S.; Knutson, J.; Hutton, L.J.; and Bain, J.H.C. 1998. U-Pb zircon and Sm-Nd geochronology of the Mesoproterozoic of North Queensland: Implications for a Rodinian connection with the Belt supergroup of North America. Precambrian Res. 89:101-127. [382]

Page 127: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

118

Blichert-Toft, J., and Albaréde, F., 2008. Hafnium isotopes in Jack Hills zircons and the formation of the Hadean crust. Earth Planet. Sci. Lett. 265:686-702. Doi:10.1016/j.epsl.2007.10.054. [454]

Bloch, J.D.; Timmons, J.M.; Crossey, L.J.; Gehrels, G.E.; and Karlstrom, K.E. 2006. Mudstone petrology of the Mesoproterozoic Unkar Group, Grand Canyon, U.S.A.: Provenance, weathering, and sediment transport on intracratonic Rodinia. J. Sed. Res. 76:1106-1119. [465]

Bodet, F., and Schärer, U. 2000. Evolution of SE-Asian continent from U-Pb and Hf isotopes in single grains of zircon and baddeleyite from large rivers. Geochem. Et Cosmochem. Acta. 64:2067-2091. [513]

Bodorkos, S.; Cawood, P.A.; Oliver, N.H.S.; and Nemchin, A.A. 2000. Rapidity of orogenesis in the Paleoproterozoic Halls Creek Orogen, Northern Australia: Evidence from SHRIMP zircon data, CL zircon images, and mixture modeling studies. Am. J. Sci. 300:60-82. [101]

Boger, S.D.; Raetz, M.; Giles, D.; Etchart, E.; and Fanning, C.M. 2005. U-Pb age data from the Sunsas region of Eastern Bolivia, evidence for the allochthonous origin of the Paragua Block. Precambrian Res. 139:121-146. [426]

Boher, M.; Abouchami, W.; Michard, A.; Albarede, F.; and Arndt, N.T. 1992. Crustal Growth in West Africa at 2.1 Ga. J. Geophys. Res. 97:345-369. [742]

Böhm, C.O.; Heaman, L.M.; Creaser, R.A.; and Corkery, M.T. 2000. Discovery of pre-3.5 Ga exotic crust at the northwestern Superior Province margin, Manitoba. Geology. 28:75-78. [220]

Böhm, C.O.; Heaman, L.M.; Stern, R.A.; Corkery, M.T.; and Creaser, R.A. 2003. Nature of Assean Lake ancient crust, Manitoba: A combined SHRIMP-ID-TIMS U-Pb geochronology and Sm-Nd isotope study. Precambrian Res. 126:55-94. [235]

Page 128: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

119

Borba, A.W.; Mizusaki, A.M.P.; Santos, J.O.S.; McNaughton, N.J.; Onoe, A.T.; and Hartmann, L.A. 2008. U-Pb zircon and 40Ar-39Ar K-feldspar dating of syn-sedimentary volcanism of the Neoproterozoic Maricá Formation: Constraining the age of foreland basin inception and inversion in the Camaquã Basin of southern Brazil. Basin Res. 20:359-375. Doi: 10.1111/j.1365-2117.2007.00349.x. [606]

Bosch, D.; Bruguier, O.; and Pidgeon, R.T. 1996. Evolution of an Archean Metamorphic Belt: A conventional and SHRIMP U-Pb study of Accessory minerals from the Jimperding Metamorphic Belt, Yilgarn Craton, West Australia. J. Geol. 104:695-711. [1029]

Bostock, H.H., and van Breemen, O. 1994. Ages of detrital and metamorphic zircons and monazites from a pre-Taltson magmatic zone basin at the western margin of Rae province. Can. J. Earth Sci. 31:1353-1364. [347]

Bovet, P.M. 2007. Miocene initiation of crustal shortening in the North Qilian Shan: Evidence from Cenozoic stratigraphy in the Western Hexi Corridor, Gansu Province, China. Unpublished MS. Indiana University. 173 pp. [884]

Bowring, S.A.; Grotzinger, J.P.; Condon, D.J.; Ramezani, J.; Newall, M.J.; and Allen, P.A. 2007. Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. Amer. J. Sci. 307:1097-1145. [527]

Boyd, R.; Ruming, K.; Goodwin, I.; Sandstrom, M.; and Schröder-Adams, C. 2008. Highstand transport of coastal sand to the deep ocean: A case study from Fraser Island, southeast Australia. Geology. 36:15-18. [604]

Bradley, D.C.; Haeussler, P.; O‘Sullivan, P.; Friedman, R.; Till, A.; Bradley, D.; and Trop, J. 2007. Detrital zircon geochronology of Cretaceous and Paleogene Strata across the South-Central Alaskan Convergent Margin. U.S.G.S. Prof. Paper 1760-F, 36 pp. [972]

Page 129: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

120

Bradley, D.C.; McClelland, W.C.; Wooden, J.L.; Till, A.B.; Roeske, S.M.; Miller, M.L.; Karl, S.M.; and Abbott, J.G. 2007. Detrital zircon geochronology of some Neoproterozoic to Triassic rocks in interior Alaska. GSA Special Paper 431: 155-189. [477]

Bream, B.R.; Hatcher, R.D. Jr.; Miller, C.F.; and Fullager, P.D. 2004. Detrital zircon ages and Nd isotopic data from the southern Appalachian crystalline core, Georgia, South Carolina, North Carolina and Tennessee: New provenance constraints for part of the Laurentian margin. In Tollo, R.P.; Corriveau, L.; McLelland, J.; and Bartholomew, M.J. eds., Proterozoic tectonic evolution of the Grenville orogen in North America. Boulder, Colorado. Geological Society of America Memoir 197: 459-475. [266]

Brown, E.H., and Gehrels, G.E., 2007. Detrital zircon constraints on terrane ages and affinities and timing of orogenic events in the San Juan Islands and North Cascades, Washington. Can. J. Earth Sci. 44:1375-1396. [449]

Bruguier, O. 1996. U-Pb ages on single detrital zircon grains from the Tasmiyele Group: Implications for the evolution of the Olekma Block (Aldan Shield, Siberia). Precambrian Res. 78:197-210. [173]

Bruguier, O.; Bosch, D.; Pidgeon, R.T.; Byrne, D.I.; and Harris, L.B. 1999. U-Pb chronology of the Northampton Complex, Western Australia—evidence for Grenvillian sedimentation, metamorphism and deformation and geodynamic implications. Contrib. Mineral. Petrol. 136:258-272. [393]

Bruguier, O.; Lancelot, J.R.; and Malavieille, J. 1997. U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganze flysch (Central China): Provenance and tectonic correlations. Earth Planet. Sci. Lett. 152:217-231. [217]

Buick, I.S.; Allen, C.; Pandit, M.; Rubatto, D.; and Hermann, J. 2006. The Proterozoic magmatic and metamorphic history of the Banded Gneiss Complex, central Rajasthan India: LA-ICP-MS U-Pb zircon constraints. Precambrian Research 151:119-142. [1002]

Page 130: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

121

Buick, I.S.; Hand, M.; Williams, I.S.; Mawby, J.; Miller, J.A.; and Nicoll, R.S. 2005. Detrital zircon provenance constraints on the evolution of the Harts Range Metamorphic Complex (central Australia): Links to the Centralian Superbasin. J. Geol. Soc. London. 162:777-787. [24]

Buick, I.S.; Miller, J.A.; Williams, I.S.; and Cartwright, I. 2001. Ordovician high-grade metamorphism of a newly recognized late Neoproterozoic terrane in the Northern Harts Range, central Australia. J. Metamorph. Geol. 19:373-394. [1003]

Buick, I.S.; Williams, I.S.; Gibson, R.L.; Cartwright, I.; and Miller, J.A. 2003. Carbon and U-Pb evidence for a Palaeoproterozoic crustal component in the Central Zone of the Limpopo Belt, South Africa. J. Geol. Soc. London. 160:601-612. [363]

Bulle, F.; Bröcker, M.; Gärtner, C.; and Keasling, A. 2010(in press). Geochemistry and geochronology of HP mélanges from Tinos and Andros, Cycladic blueschist belt, Greece. Lithos. Doi: 10.1016/j.lithos.2010.02.004. []

Buschmann, B.; Nasdale, L.; Jonas, P.; Linnemann, U.; and Gehmlich, M. 2001. SHRIMP U-Pb dating of tuff-derived and detrital zircons from Cadomian marginal basin fragments (Neoproterozoic) in the northeastern Saxothuringian Zone (Germany). N. Jb. Geol. Paläont. Mh:321-342. [509]

Cabbage, P.R. 2007. Constraining the source(s) of channeled scabland floodwaters, and detrital zircon geochronology of Pleistocene sediment of the lower Sanpoil River and Manilla Creek, northern Washington. Unpublished MS thesis. Washington State University. 106 pp. [882]

Calderon, M.; Fildani, A.; Herve, F.; Fanning, C.M.; Weislogel, A.; and Cordani, U. 2007. Late Jurassic bimodal magmatism in the northern sea-floor remnant of the Rocas Verdes basin, southern Patagonian Andes. J. Geol. Soc. London, 164:1011-1022. [361]

Page 131: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

122

Camacho, A.; Hensen, B.J.; and Armstrong, R. 2002. Isotopic test of a thermally driven intraplate orogenic model, Australia. Geology. 30:887-890. [411]

Campbell, I.H.; Reiners, P.W.; Allen, C.M.; Nicolescu, S.; and Upadhyay, R. 2005. He-Pb double dating of detrital zircons from the Ganges and Indus Rivers: Implications for quantifying sediment recycling and provenance studies. Earth Planet. Sci. Lett. 237:402-432. [67]

Cao, Y.T.; Liu, L.; Wang, C.; Chen, D.L.; and Zhang, A.D. 2009. P-T path of Early Paleozoic politic high-pressure granulite from Danshuiquan area in Altyn Tagh. Acta Petrol. Sin. 25:2260-2270. [1097]

Cardona, A.; Chew, D.; Valencia, V.A.; Bayona, G.; Miŝković, A.; and Ibañez-Mejía, M. 2010. Grenvillian remnants in the Northern Andes: Rodinian and Phanerozoic paleogeographic perspectives. J. South Am. Earth Sci. 29:92-104. doi:10.1016/j.jsames.2009.07.011. [1054]

Cardona, A.; Cordani, U.G.; Ruiz, J.; Valencia, V.A.; Armstrong, R.; Chew, D.; Nutman, A.; and Sanchez, A.W. 2009. U-Pb zircon geochronology and Nd Isotopic signatures of the Pre-Mesozoic metamorphic basement of a Late Neoproterozoic to Carboniferous accretionary orogen on the Northwest margin of Gondwana. J. Geol. 117:285-305. [840]

Cardona, A.; Valencia, V.; Bustamante, C.; García-Casco, A.; Ojeda, G.; Ruiz, J.; Saldarriaga, M.; and Weber, M. 2009(in press). Tectonomagmatic Setting and Provenance of the Santa Marta Schists, Northern Columbia: Insights on the Growth and Approach of Cretaceous Caribbean Oceanic Terranes to the South American Continent. J. South Am. Earth Sci. doi: 10.1016/j.jsames.2009.08.012. [949]

Carrigan, C.W.; Mukasa, S.B.; Haydoutov, I.; and Kolcheva, K. 2006. Neoproterozoic magmatism and Carboniferous high-grade metamorphism in the Sredna Gora Zone, Bulgaria: An extension of the Gondwana-derived Avalonian-Cadomian belt? Precambrian Res. 147: 404-416. [567]

Page 132: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

123

Carson, C.J.; Claoué-Long, J.; Stern, R.A.; Close, D.F.; Scrimgeour, I.R.; and Glass, L.M. 2009. Summary of results, Joint NTGS-GA geochronology project: Arunta and Pine Creek regions, July 2006-May 2007. Northern Territory Geological Survey Record 2009-001, 77 pp. [980]

Carson, C.J.; Worden, K.E.; Scrimgeour, I.R.; and Stern, R.A. 2008. The Palaeoproterozoic evolution of the Litchfield Province, western Pine Creek Orogen, northern Australia: Insight from SHRIMP U-Pb zircon and in situ monazite geochronology. Precambrian Res. 166:145-167. Doi: 10.1016/j.precamres.2006.12.016. [701]

Carter, A., and Moss, S.J. 1999. Combined detrital-zircon fission-track and U-Pb dating: A new approach to understanding hinterland evolution. Geology. 27:235-238. [75]

Carter, B.T.; Hibbard, J.P.; Tubrett, M.; and Sylvester, P. 2006. Detrital zircon geochronology of the Smith River Allochthon and Lynchburg Group, southern Appalachians: Implications for Neoproterozoic-Early Cambrian paleogeography. Precambrian Res. 147:279-304. [133]

Casquet, C.; Baldo, E.; Pankhurst, R.J.; Rapela, C.W.; Galindo, C.; Fanning, C.M.; and Saavedra, J. 2001. Involvement of the Argentine Precordillera terrane in the Famatinian mobile belt: U-Pb SHRIMP and metamorphic evidence from the Sierra de Pie de Palo. Geology. 29:703-706. [384]

Casquet, C.; Fanning, C.M.; Galindo, C.; Pankhurst, R.J.; Rapela, C.W.; and Torres, P. 2010. The Arequipa Massif of Peru: New SHRIMP and isotope constraints on a Paleoproterozoic inlier in the Grenvillian Orogen. J. South American Earth Sci. 29:128-142. doi: 10.1016/j.jsames.2009.08.009. [1043]

Casquet, C.; Pankhurst, R.J.; Fanning, C.M.; Baldo, E.; Galindo, C.; Rapela, C.W.; González-Casado, J.M.; and Dahlquist, J.A. 2006. U-Pb SHRIMP zircon dating of Grenvillian metamorphism in Western Sierras Pampeanas (Argentina): Correlation with the

Page 133: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

124

Arequipa-Antofalla craton and constraints on the extent of the Precordillera Terrane. Gondwana Res. 9:524-529. [425]

Casquet, C.; Pankhurst, R.J.; Rapela, C.W.; Galindo, C.; Fanning, C.M.; Chiaradia, M.; Baldo, E.; González-Casado, J.M.; and Dahlquist, J.A. 2008. The Mesoproterozoic Maz terrane in the Western Sierras Pampeanas, Argentina, equivalents to the Arequippa-Antofalla block of southern Peru? Implications for West Gondwana margin evolution. Gondwana Res. 13:163-175. Doi: 10.1016/j/gr.2007.04.005. [424]

Catalan, J.R.M.; Fernandez-Suarez, J.; Jenner, G.A.; Belousova, E.; and Montes, A.D. 2004. Provenance constraints from detrital zircon U-Pb ages in the NW Iberian Massif: implications for palaeozoic plate configuration and Variscan evolution. J. Geol. Soc. London 161:463-474. [15]

Catalan, J.R.M.; Fernández-Suárez, J.; Meireles, C.; Clavijo, E.G.; Belousova, E.; and Saeed, A. 2008. U-Pb detrital zircon ages in synorogenic deposits of the NW Iberian Massif (Variscan Belt): interplay of Devonian-Carboniferous sedimentation and thrust tectonics. J. Geol. Soc. London. 165:687-698. [582]

Cates, N.L., and Mojzsis, S.J. 2006. Chemical and isotopic evidence for widespread Eoarchean metasedimentary enclaves in southern West Greenland. Geochim. Cosmochim. Acta. 70:4229-4257. [596]

Cates, N.L., and Mojzsis, S.J. 2007. Pre-3750 Ma supracrustal rocks from the Nuvvaugittuq supracrustal belt, northern Quebec. Earth Planet. Sci. Lett. 255:9-21. [601]

Cawood, P.A.; Johnson, M.R.W.; and Nemchin, A.A. 2007b. Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana Assembly. Earth Planet. Sci. Lett. 255:70-84. [436]

Cawood, P.A.; Landis, C.A.; Nemchin, A.A.; and Hada, S. 2002. Permian fragmentation, accretion and subsequent translation of a low-latitude Tethyan seamount to the high-

Page 134: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

125

latitude east Gondwana margin: Evidence from detrital zircon age data. Geol. Mag. 139:131-144. [31]

Cawood, P.A., and Nemchin, A.A. 2000. Provenance record of a rift basin: U/Pb ages of detrital zircons from the Perth Basin, Western Australia. Sediment. Geol. 134:209-234. [219]

Cawood, P.A., and Nemchin, A.A. 2001. Paleogeographic development of the east Laurentian margin: Constraints from U-Pb dating of detrital zircons in the Newfoundland Appalachians. Geol. Soc. Am. Bull. 113:1234-1246. [4]

Cawood, P.A.; Nemchin, A.A.; Freeman, M.; and Sircombe, K. 2003. Linking source and sedimentary basin: Detrital zircon record of sediment flux along a modern river system and implications for provenance studies. Earth Planet. Sci. Lett. 210:259-268. [476]

Cawood, P.A.; Nemchin, A.A.; Leverenz, A.; Saeed, A.; and Balance, P.F. 1999. U/Pb dating of detrital zircons: Implications for the provenance record of Gondwana margin terranes. Geol. Soc. Am. Bul. 111:1107-1119. [352]

Cawood, P.A.; Nemchin, A.A.; Smith, M.; and Loewy, S. 2003. Source of the Dalradian Supergroup constrained by U-Pb dating of detrital zircon and implications for the East Laurentian margin. J. Geol. Soc. London, 160:231-246. [362]

Cawood, P.A.; Nemchin, A.A.; Strachan, R.; Kinny, P.D.; and Loewy, S. 2004. Laurentian provenance and an intracratonic tectonic setting for the Moine Supergroup, Scotland, constrained by detrital zircons from the Loch Eil and Glen Urquhart successions. J. Geol. Soc. London. 161:861-874. [364]

Cawood, P.A.; Nemchin, A.A.; and Strachan, R. 2007a. Provenance record of Laurentian passive-margin strata in the northern Caledonides: Implications for paleodrainage and paleogeography. Geol. Soc. Am. Bul. 119:993-1003. [342]

Page 135: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

126

Cecil, M.R. 2009. Development and application of geochronometric techniques to the study of Sierra Nevada Uplift and the dating of authigenic sediments. Unpublished Ph.D. dissertation. University of Arizona. 176 pp. [943]

Chen, B.; Jahn, B.M.; and Tian, W. 2009. Evolution of the Solonker suture zone: Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope composition of subduction- and collision-related magmas and forearc sediments. J. Asian Earth Sci. 34:245-257. doi:10/1016/j.seaes.2008.05.007. [591]

Chen, D.L.; Liu, L.; Sun, Y.; and Liou, J.G. 2009. Geochemistry and zircon U-Pb dating and its implications of the Yukahe HP/UHP terrane, the North Qaidam, NW China. J. Asian. Earth Sci. 35: 259-272. doi: 10.1016/jseaes.2008.12.001. [832]

Chen, D.; Sun, Y.; and Liu, L. 2007. The metamorphic ages of the Country Rocks of the Yukahe Eclogite in the Northern Margin of Qaidam Basin and its Geological Significance. Earth Sci. Front. 14:108-116. [576]

Chen, D.; Sun, Y.; and Liu, L. 2008. Zircon U-Pb dating of paragneiss interbed in the UHP eclogite from Yematan area, the North Qaidam UHP terrane, NW China. Acta. Petrol. Sinica. 24:1059-1067. [822]

Chen, F.; Guo, J.-H.; Jiang, L.-L.; Siebel, W.; Cong, B.; and Satir, M. 2003. Provenance of the Beihuaiyang lower-grade metamorphic zone of the Dabie ultrahigh-pressure collisional orogen, China: Evidence from zircon ages. J. Asian Earth Sci. 22:343-352. [297]

Chen, F.; Siebel, W.; Guo, J.; Cong, B.; and Satir, M. 2003. Late Proterozoic magmatism and metamorphism recorded in gneisses from the Dabie high-pressure metamorphic zone, eastern China: Evidence from zircon U-Pb geochronology. Precambrian Res. 120:131-148. [989]

Page 136: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

127

Chen, F.; Siebel, W.; Satir, M.; Terzioğlu, M.N.; and Saka, K. 2002. Geochronology of the Karadere basement (NW Turkey) and implications for the geological evolution of the Istanbul zone. Int. J. Earth Sci. 91:469-481. [296]

Chen, Y.-D.; Lin, S.; and van Staal, C.R. 1995. Detrital zircon geochronology of a conglomerate in the northeastern Cape Breton Highlands: Implications for the relationships between terranes in Cape Breton Island, the Canadian Appalachians. Can. J. Earth Sci. 32:216-223. [84]

Chernicoff, C.J.; Santos, J.O.S.; Zappettini, E.O.; and McNaughton, N.J. 2007. Esquistos del Paleozoico inferior en la Cante-Ra Green (35°04‘S-65°28‘O), Sur de San Luis: Edades U-Pb SHRIMP E implicancias geodinámicas. Rev. Assoc. Geol. Argentina 62:154-158. [890]

Chernicoff, C.J.; Zappettini, E.O.; Santos, J.O.S.; Beyer, E.; and McNaughton, N.J. 2008. Foreland basin deposits associated with Cuyania accretion in La Pampa Province, Argentina. Gondwana Res. 13: 189-203. [654]

Chew, D.M.; Flowerdew, M.J.; Page, L.M.; Crowley, Q.G.; Daly, J.S.; Cooper, M.; and Whitehouse, M.J. 2008. The tectothermal evolution and provenance of the Tyrone Central Inlier, Ireland: Grampian imbrications of an outboard Laurentian microcontinent? J. Geol. Soc. London. 165: 675-685. [590]

Chew, D.M.; Kirkland, C.; Schaltegger, U.; and Goodhue, R. 2007. Neoproterozoic glaciations in the Proto-Andes: Tectonic implications and global correlation. Geology. 35: 1095-1098. [665]

Chew, D.M.; Magna, T.; Kirkland, C.L.; Miŝković, A.; Cardona, A.; Spikings, R.; and Schaltegger, U. 2008. Detrital zircon fingerprint of the Proto-Andes: Evidence for a Neoprotorezoic active margin? Precambrian Res. 167:186-200 Doi: 10.1016/j.precamres.2008.08.002. [773]

Page 137: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

128

Chew, D.M.; Schaltegger, U.; Kŏsler, J.; Whitehouse, M.J.; Guthahr, M.; Spikings, R.A.; and Miŝković, A. 2007. U-Pb geochronologic evidence for the evolution of the Gondwanan margin of the north-central Andes. Geol. Soc. Am. Bul. 119:697-711. [181]

Cho, M.; Kim, H.; Wan, Y.; Liu, D., 2004. U-Pb zircon ages of a granitic gneiss boulder in metadiamictite from the Ogcheon metamorphic belt, Korea. Geosciences J. 8:355-362. [587]

Cina, S.E.; Yin, A.; Grove, M.; Dubey, C.S.; Shukla, D.P.; Lovera, O.M.; Kelty, T.K.; Gehrels, G.E.; and Foster, D.A. 2009. Gangdese arc detritus within the eastern Himalayan Neogene foreland basin: Implications for the Neogene evolution of the Yalu-Brahmaputra River system. Earth Planet. Sci. Lett. 285:150-162. Doi: 10.1016/j.epsl.2009.06.005. [918]

Claesson, S.; Bogdanova, S.V.; Bibikova, E.V.; and Gorbatschev, R. 2001. Isotopic evidence for Palaeoproterozoic accretion in the basement of the East European Craton. Tectonophysics. 339: 1-18. [562]

Claesson, S.; Huhma, H.; Kinny, P.D.; and Williams, I.S. 1993. Svecofennian detrital zircon ages—implications for the Precambrian evolution of the Baltic Shield. Precambrian Res. 64:109-130. [94]

Claoué-Long, J., and Egdoose, C. 2008. The age and significance of the Ngadarunga Granite in Proterozoic Central Australia. Precambrian Res. 166:219-229. Doi: 10.1016/j.precamres.2007.06.026. [719]

Claoué-Long, J.; Maidment, D.; and Donnellan, N. 2008a. Stratigraphic timing constraints in the Davenport province, central Australia: A basis for Palaeoproterozoic correlations. Precambrian Res. 166:204-218. Doi: 10.1016/j.precamres.2007.06.021. [700]

Page 138: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

129

Claoué-Long, J.; Maidment, D.; Hussey, K.; and Huston, D. 2008b. The duration of the Strangways Event in central Australia: Evidence for prolonged deep crust processes. Precambrian Res. 166:246-262. Doi: 10.1016/j.precamres.2007.06.023. [703]

Claoué-Long, J.; Edgoose, C.; and Worden, K. 2008c. A correlation of Aileron Province stratigraphy in central Australia. Precambrian Res. 166:230-245. Doi: 10.1016/j.precamres.2007.06.022. [704]

Clark, D.J.; Hensen, B.J.; and Kinny, P.D. 2000. Geochronological constraints for a two-stage history of the Albany-Fraser Orogen, Western Australia. Precambrian Res. 102:155-183. [1004]

Clarke, G.L.; Fitzherbert, J.A.; Milan, L.A.; Daczko, N.R.; and Gegeling, H.S. 2010. Anti-clockwise P-t paths in the lower crust: an example from a kyanite-bearing regional aureole, George Sound, New Zealand. J. Metamorph. Geol. 28:77-96. [1077]

Clifford, T.N.; Barton, E.S.; Stern, R.A.; and Duchesne, J.-C. 2004. U-Pb zircon calendar for Namaquan (Grenville) crustal events in the granulite-facies terrane of the O‘okiep Copper District of South Africa. J. Petrol. 45:669-691. [675]

Clift, P.D.; Campbell, I.H.; Pringle, M.S.; Carter, A.; Zhang, X.; Hodges, K.V.; Khan, A.A.; and Allen, C.M. 2004. Thermochronology of the modern Indus River bedload: New insight into the controls on the marine stratigraphic record. Tectonics. 23, TC5013. Doi:10.1029/2003TC001559. [276]

Clift, P.D.; Carter, A.; Campbell, I.H.; Pringle, M.S.; van Lap, N.; Allen, C.M.; Hodges, K.V.; and Tan, M.T. 2006. Thermochronology of mineral grains in the Red and Mekong Rivers, Vietnam: Provenance and exhumation implications for southeast Asia. Geochem. Geophy. Geosy. 7: doi:10.1029/2006GC001336. [369]

Clift, P.D.; Carter, A.; Draut, A.E.; Van Long, H.; Chew, D.M.; and Schouten, H.A. 2009. Detrital U-Pb zircon dating of Lower Ordovician Syn-Arc-Continent Collision

Page 139: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

130

Conglomerates in the Irish Caledonides. Tectonophysics. 479:165-174. Doi: 10.1016/j.tecto.2008.07.018. [641]

Clift, P.D.; Giosan, L.; Blusztajn, J.; Campbell, I.H.; Allen, C.; Pringle, M.; Tabrez, A.R.; Danish, M.; Rabbani, M.M.; Alizai, A.; Carter, A.; Lückge, A. 2008. Holocene erosion of the Lesser Himalaya triggered by intensified summer monsoon. Geology. 36:79-82. [486]

Collins, A.S., and Buchan, C. 2004. Provenance and age constraints of the South Stack Group, Anglesey, UK: U-Pb SIMS detrital zircon data. J. Geol. Soc. London. 161:743-746. [365]

Collins, A.S.; Kröner, A.; Fitzsimons, I.C.W.; and Razakamanana, T. 2003. Detrital footprint of the Mozambique ocean: U-Pb SHRIMP and Pb evaporation zircon geochronology of metasedimentary gneisses in eastern Madagascar. Tectonophysics. 375: 77-99. [630]

Collins, A.S.; Reddy, S.M.; Buchan, C.; and Mruma, A. 2004. Temporal constraints on Palaeoproterozoic eclogite formation and exhumation (Usagaran Orogen, Tanzania). Earth Planet. Sci. Lett. 224: 175-192. [572]

Collins, A.S.; Santosh, M.; Braun, I.; and Clark, C. 2007. Age and sedimentary provenance of the Southern Granulites, South India: U-Th-Pb SHRIMP secondary ion mass spectrometry. Precambrian Res. 155: 125-138. [617]

Collo, G.; Astini, R.A.; Cawood, P.A.; Buchan, C.; and Pimentel, M. 2009. U-Pb detrital zircon ages and Sm-Nd isotopic features in low-grade metasedimentary rocks of the Famatina belt: Implications for late Neoproterozoic—early Palaeozoic evolution of the proto-Andean margin of Gondwana. J. Geol. Soc. London. 166:303-319. [800]

Colpron, M.; Mortensen, J.K.; Gehrels, G.E.; and Villeneuve, M. 2006. Basement complex, Carboniferous magmatism and Paleozoic deformation in Yukon-Tanana terrane of central Yukon: Field, geochemical and geochronological constraints from Glenlyon map area. In Colpron, M., and Nelson, J.L. eds. Paleozoic Evolution and Metallogy of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan

Page 140: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

131

Cordillera. St. John‘s, Newfoundland. Geological Association of Canada Special Paper 45:131-151. [187]

Compston, W., and Pidgeon, R.T. 1986. Jack Hills, evidence of more very old detrital zircons in Western Australia. Nature. 321:766-769. [196]

Condie, K.C.; Beyer, E.; Belousova, E.; Griffin, W.L.; and O‘Reilly, S.Y. 2005. U-Pb isotopic ages and Hf isotopic composition of single zircons: The search for juvenile Precambrian continental crust. Precambrian Res. 139:42-100. [71]

Condie, K.C.; Kröner, A.; and Milisenda, C.C. 1996. Geochemistry and geochronology of the Mkhondo suite, Swaziland: Evidence for passive-margin deposition and granulite facies metamorphism in the Late Archean of Southern Africa. J. Afr. Earth Sci. 21: 483-506. [699]

Connelly, J.N.; Thrane, K.; Krawiec, A.W.; and Garde, A.A. 2006. Linking the Paleoproterozoic Nagssugtoqidian and Rinkian orogens through the Disko Bugt region of West Greenland. J. Geol. Soc. London. 163:319-335. [48]

Cope, T.; Ritts, B.D.; Darby, B.J.; Fildani, A.; and Graham, S.A. 2005. Late Paleozoic sedimentation on the northern margin of the North China Block: Implications for regional tectonics and climate change. Int. Geol. Rev. 47:270-296. [253]

Corfu, F.; Davis, D.W.; Stone, D.; and Moore, M.L. 1998. Chronostratigraphic constraints on the genesis of Archean greenstone belts, northwestern Superior Province, Ontario, Canada. Precambrian Research 92:277-295. [987]

Corfu, F. and Lin, S. 2000. Geology and U-Pb geochronology of the Island Lake greenstone belt, northwestern Superior Province, Manitoba. Can. J. Earth Sci. 37:1275-1286. [988]

Page 141: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

132

Cornelius, M.K. 2008. UHP metamorphic rocks of the Eastern Rhodope Masif, NE Greece: New constraints from petrology, geochemistry and zircon ages. Unpublished PhD dissertation. Der Johannes Gutenberg-Universität Mainz. 164 pp. [889]

Cornell, D.H., and Pettersson, Å. 2007. Ion probe zircon dating of metasediments from the Areachap and Kakamas terranes, Namaqua-Natal Province and the stratigraphic integrity of the Areachap Group. South Afr. J. Geol. 110:575-584. [474]

Cornell, D.H.; Pettersson, Å,; Whitehouse, M.J.; and Scherstén, A. 2009. A new chronostratigraphic paradigm for the age and tectonic history of the Mesoproterozoic Bushmanland Ore District, South Africa. Econ. Geol. 104: 385-404. [896]

Corvino, A.F.; Boger, S.D.; Henjes-Kunst, F.; Wilson, C.J.L.; and Fitzsimons, I.C.W. 2008. Superimposed tectonic events at 2450 Ma, 2100 Ma, 900 Ma and 500 Ma in the North Mawson Escarpment, Antarctic Prince Charles Mountains. Precambrian Res. 167:281-302. Doi:10.1016/j.precamres.2008.09.001. [764]

Corvino, A.F., and Henjes-Kunst, F. 2007. A record of 2.5 and 1.1 billion year old crust in the Lawrence Hills, Antarctic Southern Prince Charles Mountains. Terra Antarc. 14:13-30. [637]

Cox, R.; Armstrong, R.A.; and Ashwal, L.D. 1998. Sedimentology, geochronology and provenance of the Proterozoic Itremo Group, central Madagascar, and implications for pre-Gondwana palaeogeography. J. Geol. Soc. London. 155:1009-1024. [268]

Cox, R.; Coleman, D.S.; Chokel, C.B.; DeOreo, S.B.; Wooden, J.L.; Collins, A.S.; de Waele, B.; and Kröner, A. 2004. Proterozoic tectonostratigraphy and paleogeography of Central Madagascar derived from detrital zircon U-Pb age populations. J. Geol. 112:379-399. [50]

Page 142: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

133

Cross, A.J., and Crispe, A.J. 2007. SHRIMP U-Pb analyses of detrital zircon: A window to understanding the Paleoproterozoic development of the Tanami Region, northern Australia. Miner. Deposita. 42:27-50. [121]

Crowley, J.L. 1997. U-Pb geochronologic constraints on the cover sequence of the Monashee complex, Canadian Cordillera: Paleoproterozoic deposition on basement. Can. J. Earth Sci. 34: 1008-1022. [649]

Crowley, J.L.; Myers, J.S.; Sylvester, P.J.; and Cox, R.A. 2005. Detrital zircon from the Jack Hills and Mount Narryer, Western Australia: Evidence for diverse >4.0 Ga source rocks. J. Geol. 113:239-263. [49]

Cury, L.F. 2009. Geologia do Terreno Paranaguá. Unpublished Ph.D. dissertation. Universidade de São Paulo. 188 pp. [974]

Cutten, H.; Johnson, S.P.; and de Waele, B. 2006. Protolith ages and timing of metasomatism related to the formation of whiteschists at Mautia Hill, Tanzania: Implications for the assembly of Gondwana. J. Geol. 114:683-698. [309]

Dahlgreen, S., and Corfu, F. 2001. Northward sediment transport from the late Carboniferous, Variscan Mountains: Zircon evidence from the Oslo Rift, Norway. J. Geol. Soc. London. 158:29-36. [33]

Dangerfield, A. 2008. Geochemistry, Structure, and Tectonic Evolution of the Eldivan Ophiolite, Ankara, Mélange, Central Turkey. Unpublished M.S. thesis. Brigham Young University. 58 pp. [852]

Darby, B.J., and Gehrels, G.E. 2006. Detrital zircon reference for the North China block. J. Asian Earth Sci. 26:637-348. [100]

Page 143: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

134

Darby, B.J.; Wyld, S.J.; and Gehrels, G.E. 2000. Provenance and paleogeography of the Black Rock terrane, northwestern Nevada: Implications of U-Pb detrital zircon geochronology. In Soreghan., M.J. and Gehrels, G.E., eds. Paleozoic and Triassic paleogeography and tectonics of western Nevada and northern California. Boulder, Colorado. Geological Society of America Special Paper 347:77-87. [144]

Das, R. 2006. Geochemical and geochronological investigations in the southern Appalachians, Southern Rocky Mountains and Deccan Traps. Unpublished PhD dissertation. Florida State University. 159 pp. [867]

Davis, D.W. 2002. U-Pb geochronology of Archean metasedimentary rocks in the Pontiac and Abitibi subprovinces, Quebec, constraints on timing, provenance and regional tectonics. Precambrian Res. 115:97-117. [390]

Davis, D.W.; Amelin, Y.; Nowell, G.M.; and Parrish, R.R. 2005. Hf isotopes in zircon from the western Superior province, Canada: Implications for Archean crustal development and evolution of the depleted mantle reservoir. Precambrian Res. 140:132-156. [713]

Davis, D.W.; Hirdes, W.; Schaltegger, U.; and Nunoo, E.A. 1994. U-Pb age constraints on deposition and provenance of Birimian and gold-bearing Tarkwaian sediments in Ghana, West Africa. Precambrian Res. 67:89-107. [95]

Davis, D.W., and Lin, S. 2003. Unraveling the geologic history of the Hemlo Archean gold deposit, Superior Province, Canada: A U-Pb geochronological study. Econ. Geol. 98:51-67. [308]

Davis, D.W.; Rainbird, R.H.; Aspler, L.B.; and Chiarenzelli, J.R. 2005. Detrital zircon geochronology of the Paleoproterozoic Hurwitz and Kiyuk groups, western Churchill Province, Nunavut. Geological Survey of Canada Current Research. 2005-F1. 13 pp. [753]

Page 144: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

135

Davis, W.J.; Ryan, J.J.; Sandeman, H.A.; and Tella, S. 2008. A Paleoproterozoic detrital zircon age for a key conglomeratic horizon within the Rankin Inlet area, Kivalliq Region, Nunavut: Implications for Archean and Proterozoic evolution of the area. Geological Survey of Canada Current Research 2008-8, 8 pp. [746]

Dawson, G.C.; Krapez, B.; Fletcher, I.R.; McNaughton, M.J.; and Rasmussen, B. 2002. Did Late Palaeoproterozoic assembly of proto-Australia involve collision between the Pilbara, Yilgarn and Gawler Cratons? Geochronological evidence from the Mount Barren Group in the Albany-Fraser Orogen of Western Australia. Precambrian Res. 118: 195-220. [76]

De Broekert, P.P.; Wilde, S.A.; and Kennedy, A.K. 2004. Variety, age and origin of zircons in the mid-Cenozoic Westonia Formation, southwestern Yilgarn Craton, western Australia. Aus. J. Earth Sci. 51:157-171. [155]

DeCelles, P.G.; Carrapa, B.; and Gehrels, G.E. 2007. Detrital zircon U-Pb ages provided provenance and chronostratigraphic information from Eocene synorogenic deposits in northwestern Argentina. Geology. 35:323-326. [168]

DeCelles, P.G.; Gehrels, G.E.; Najman, Y.; Martin, A.J.; Carter, A.; and Garzanti, E. 2004. Detrital geochronology and geochemistry of Cretaceous-Early Miocene strata of Nepal: Implications for timing and diachroneity of initial Himalayan orogenesis. Earth Planet. Sci. Lett. 227:313-330. [265]

DeCelles, P.G.; Gehrels, G.E.; Quade, J.; LaReau, B.; and Spurlin, M. 2000. Tectonic implications of U-Pb zircon ages of the Himalayan orogenic belt in Nepal. Science. 288:497-499. [292]

DeCelles, P.G.; Gehrels, G.E.; Quade, J.; Ojha, T.P. 1998. Eocene-early Miocene foreland basin development and the history of Himalayan thrusting, western and central Nepal. Tectonics. 17:741-765. [407]

Page 145: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

136

DeGraaff-Surpless, K.; Graham, S.A.; Wooden, J.L.; and McWilliams, M.O. 2002, Detrital zircon provenance analysis of the Great Valley Group, California: Evolution of an arc-forearc system. Geol. Soc. Am. Bull. 114:1564-1580. [3]

DeGraaff-Surpless, K.; Mahoney, J.B.; Wooden, J.L.; and McWilliams, M.O. 2003, Lithofacies control in detrital zircon provenance studies: Insights from the Cretaceous Methow basin, southern Canadian Cordillera. Geol. Soc. Am. Bull. 115:899-915. [2]

De Haas, G.-J. L.M.; Andersen, T.; and Vestin, J. 1999. Detrital zircon geochronology: New evidence for an old model for accretion of the southwest Baltic Shield. J. Geol. 107:569-586. [228]

De Araújo, C.E.G.; Pinéo, T.R.G.; Caby, R.; Costa, F.G.; Cavalcante, J.C.; Vasconcelos, A.M.; and Rodrigues, J.B. 2010(in press). Provenance of the Novo Oriente Group, southwestern Ceará Central Domain, Borborema Province (NE-Brazil): a dismembered sedment of a magma poor-passive margin or a restricted rift-related basin? Gondwana Res. Doi: 10.1016/j.gr.2010.02.001. [1092]

De Sa Carneiro Craves, M.L.; Dussin, T.M.; and Sano, Y. 2000. The source of the Espinhaqo diamonds: Evidences from SHRIMP U-Pb zircon ages of the Sopa Conglomerate and Pb-Pb zircon evaporation ages of metavolcanic rocks. Rev. Brasil. Geosci. 30:265-269. [1088]

De Waele, B., and Fitzsimons, I.C.W. 2007. The nature and timing of Palaeoproterozoic sedimentation at the southeastern margin of the Congo craton; zircon U-Pb geochronology of plutonic, volcanic and clastic units in northern Zambia. Precambrian Res 159:95-116. doi:10.1016/j.precamres.2007.06.004. [291]

De Wit, M.J.; Bowring, S.A.; Ashwal, L.D.; Randrianasolo, L.G.; Morel, V.P.I.; Rambeloson, R.A. 2001. Age and tectonic evolution of Neoproterozoic ductile shear zones in southwestern Madagascar, with implications for Gondwana studies. Tectonics 20: 1-45. [692]

Page 146: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

137

Demoux, A.; Kröner, A.; Badarch, G.; Jian, P.; Tomurhuu, D.; and Wingate, M.T.D. 2009. Zircon ages from the Baydrag Block and the Bayankhongor Ophiolite Zone: Time constraints on Late Neoproterozoic to Cambrian subduction- and accretion-related magmatism in Central Mongolia. J. Geol. 117:377-397. [887]

Deng, J.; Wang, Q.; Yang, S.; Liu, X.; Zhang, Q.; Yang, L.; and Yang, Y. 2010. Genetic relationship between the Emeishan plume and the bauxite deposits in Western Guangxi, China: Constraints from U-Pb and Lu-Hf isotopes of the detrital zircons in bauxite ores. J. Asian Earth Sci. 37:412-424. doi:10.1016/j.jseaes.2009.10.005. [968]

Dhuime, B.; Bosch, D.; Bruguier, O.; Caby, R.; and Pourtales, S. 2007. Age, provenance and post-deposition metamorphic overprint of detrital zircons from the Nathorst Land group (NE Greenland)—A LA-ICP-MS and SIMS study. Precambrian Res. 155:24-46. [176]

DiPietro, J.A., and Isachsen, C.E. 2001. U-Pb zircon ages from the Indian plate in northwest Pakistan and their significance to Himalayan and pre-Himalayan geologic history. Tectonics 20:510-525. [711]

Dickinson, W.R., and Gehrels, G.E. 2003. U-Pb ages of detrital zircons from Permian and Jurassic eolian sandstones of the Colorado Plateau, USA: Paleogeographic implications. Sediment. Geol. 163:29-66. [38]

Dickinson, W.R., and Gehrels, G.E. 2009. U-Pb ages of detrital zircons in Jurassic eolian and associated sandstones of the Colorado Plateau: Evidence for transcontinental dispersal and intraregional recycling of sedimens. Geol. Soc. Am. Bull. 121:408-433. [813]

Dickinson, W.R., and Gehrels, G.E. 2008a. U-Pb ages of detrital zircons in relation to paleogeography: Triassic paleodrainage networks and sediment dispersal across southwest Laurentia. J. Sed. Res. 78:745-764. [817]

Page 147: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

138

Dickinson, W.R., and Gehrels, G.E. 2008b. Sediment delivery to the Cordilleran Foreland Basin: Insights from U-Pb ages of detrital zircons in Upper Jurassic and Cretacous strata of the Colorado Plateau. Am. J. Sci. 308:1041-1082. [818]

Dickinson, W.R.; Lawton, T.F.; and Gehrels, G.E. 2009. Recycling detrital zircons: A case study from the Cretaceous Bisbee Group of southern Arizona. Geology. 37: 503-506. [893]

Ding, L.; Kapp, P.; and Wan, X. 2005. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics. 24: doi: 10.1029/2004TC001729. [501]

Diwu, C.; Sun, Y.; Yuan, H.; Wang, H.; Zhong, X.; Liu, X. 2008. U-Pb ages and Hf isotopes for detrital zircons from quartzite in the Paleoproterozoic Songshan Group on the southwestern margin of the North China Craton. Chin. Sci. Bull. 53:2828-2839. [792]

Dodson, M.H.; Compston, W.; Williams, I.S.; and Wilson, J.F. 1988. A search for ancient detrital zircons in Zimbabwean sediments. J. Geol. Soc. London. 145:977-983. [174]

Dodson, S. 2008. Petrographic and geochronologic provenance analysis of Upper Pennsylvanian fluvial sandstones of the Conemaugh and Monongahela Groups, Athens County, Ohio. Unpublished MS thesis. Ohio University. 86 pp. [853]

Dong, X.; Zhang, Z.M.; Wang, J.L.; Zhao, G.C.; Liu, F.; Wang, W.; and Yu, F. 2009. Provenance and formation age of the Nyingchi Group in the southern Lhasa Terrane, Tibetan Plateau: Petrology and zircon U-Pb geochronology. Acta Petrol. Sin. 25:1678-1694. [1095]

Dong, Y.; Liu, D.; Li, J.; Wan, Y.; Zhou, H.; Li, C.; Yang, Y.; and Xie, L. 2007. Palaeoproterozoic khondalite belt in the western North China Craton: New evidence from SHRIMP dating and Hf isotope composition of zircons from metamorphic rocks in the Bayan Ul-Helan Mountains area. Chin. Sci. Bull. 52:2984-2994 [586]

Page 148: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

139

Doornbos, C.; Heaman, L.M.; Doupé, J.P.; England, J.; Simonetti, A.; and Lajeunesse, P. 2009. The first integrated use of in situ U-Pb geochronology and geochemical analyses to determine long-distance transport of glacial erratic from mainland Canada into the Western Arctic Archipelago. Can. J. Earth Sci. 46:101-122. [839]

Dorais, M.J.; Wintsch, R.P.; Nelson, W.R.; and Tubrett, M. 2009. Insights into the Acadian orogeny, New England Appalachians: a provenance study of the Carrabassett and Kittery formations, Maine. Atlantic Geol. 45:50-71. [937]

Dorland, H.C. 2004. Provenance ages and timing of sedimentation of selected Neoarchean and Paleoproterozoic successions on the Kaapvaal craton. Unpub. Ph.D. dissertation, Rand Afrikaans University, Johannesburg. [215]

Doughty, P.T., and Chamberlain, K.R.. 2007. Age of Paleoproterozoic basement and related rocks in the Clearwater Complex, northern Idaho, U.S.A. In Proterozoic Geology of western North America and Siberia, SEPM Special Publication 86:9-35. [339]

Doughty, P.T., and Chamberlain, K.R. 2008. Protolith age and timing of Precambrian magmatic and metamorphic events in the Priest River Complex, northern Rockies. Can. J. Earth Sci. 45:99-116. [497]

Drobe, M.; López de Luchi, M.G.; Steenken, A.; Frei, R.; Naumann, R.; Siegesmund, S.; and Wemmer, K. 2009. Provenance of the late Proterozoic to early Cambrian metaclastic sediments of the Sierra de San Luis (Eastern Sierras Pampeanas) and Cordillera Oriental, Argentina. J. South Am. Earth Sci. 28:239-262. [961]

Drost, K.; Linnemann, U.; McNaughton, N.J.; Fatka, O.; Kraft, P.; Gehmlich, M.; Tonk, C.; and Marek, J. 2004. New data on the Neoproterozoic-Cambrian geotectonic setting of the Teplá-Barrandian volcano-sedimentary successions: Geochemistry, U-Pb zircon ages, and provenance (Bohemian Massif, Czech Republic). Int. J. Earth Sci. 93:742-757. [256]

Page 149: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

140

Drewery, S.; Cliff, R.A.; and Leeder, M.R. 1987. Provenance of Carboniferous sandstones from U-Pb dating of detrital zircons. Nature. 325:50-53. [190]

Druschke, P.; Hanson, A.D.; Wells, M.L.; Rasbury, T.; Stockli, D.F.; and Gehrels, G.E. 2009. Synconvergent surface-breaking normal faults of Late Cretaceous age within the Sevier hinterland, east-central Nevada. Geology. 37:447-450. [883]

Ducea, M.N.; Lutkov, V.; Minaev, V.T.; Hacker, B.; Ratschbacher, L.; Luffi, P.; Schwab, M.; Gehrels, G.E.; McWilliams, M.; Vervoort, J.; and Metcalf, J. 2003. Building the Pamirs: The view from the underside. Geology. 31:849-852. [537]

Duhart, P., and Adriasola, A.C. 2008. New time-constraints on provenance, metamorphism and exhumation of the Bahía Mansa Metamorphic Complex on the Main Chiloé Island, south-central Chile. Rev. Geol. De Chile. 35:79-104. [526]

Dunn, S.J.; Nemchin, A.A.; Cawood, P.A.; and Pidgeon, R.T. 2005. Provenance record of the Jack Hills metasedimentary belt: Source of the Earth‘s oldest zircons. Precambrian Res. 138:235-254. [430]

Dunphy, J.M.; Fletcher, I.R.; Cassidy, K.F.; and Champion, D.C. 2003. Compilation of SHRIMP U-Pb geochronological data, Yilgarn Craton, Western Australia, 2001-2002. Geoscience Australia. Record 2003/15. [380]

Dupuis, C.; Malo, M.; Bédard, J.; Davis, B.; and Villeneuve, M. 2009. A lost arc-back-arc terrane of the Dunnage oceanic tract recorded in clasts from the Garin Formation and McCrea mélange in the Gaspé Appalachians of Quebec. Geol. Soc. Am. Bull. 121: 17-38. Doi: 10.1130/B26251.1. [806]

Dusel-Bacon, C., and Williams, I.S. 2009. Evidence for prolonged mid-Paleozoic plutonism and ages of crustal sources in east-central Alaska from SHRIMP U-Pb dating of syn-magmatic, inherited and detrital zircons. Can. J. Earth Sci. 46:21-39. [833]

Page 150: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

141

Dziggel, A.; Armstrong, R.A.; Stevens, G.; and Nasdala, L. 2005. Growth of zircon and titanite during metamorphism in the granitoid-gneiss terrane south of the Barberton greenstone belt, South Africa. Mineral. Mag. 69:1019-1036. [986]

Dziggel, A.; Stevens, G.; Poujol, M.; and Armstrong, R.A. 2006. Contrasting source components of clastic metasedimentary rocks in the lowermost formations of the Barberton greenstone belt. In Reimold, W.U., and Gibson, R.L., eds. Processes on the Early Earth: Boulder, Colorado. Geological Society of America Special Paper 405:157-172. [171]

Egger, A.E.; Colgan, J.P.; and York, C. 2009. Provenance and palaeogeographic implications of Eocene-Oligocene sedimentary rocks in the northwestern Basin and Range. Int. Geol. Rev. 51:900-919. [938]

Eisele, J., and Isachsen, C.E. 2001. Crustal growth in southern Arizona: U-Pb geochronologic and Sm-Nd isotopic evidence for addition of the Paleoproterozoic Cochise block to the Mazatzal province. Am. J. Sci. 301:773-797. [199]

Elliot, D.H., and Fanning, C.M. 2008. Detrital zircons from upper Permian and lower Triassic Victoria Group sandstones, Shackleton Glacier region, Antarctica: Evidence for multiple sources along the Gondwana plate margin. Gondwana Res. 13:259-274. Doi:10.1016/j.gr.2007.05.003. [189]

Enkelmann, E.; Garver, J.I.; and Pavlis, T.L. 2008. Rapid exhumation of ice-covered rocks of the Chugach-St. Elias orogen, Southeast Alaska. Geology. 36:915-918. [826]

Enkelmann, E.; Weislogel, A.; Ratschbacher, L.; Eide, E.; Renno, A.; and Wooden, J.L. 2007. How was the Triassic Songpan-Ganzi basin filled? A provenance study. Tectonics. 26. doi:10.1029/2006TC002078. [350]

Page 151: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

142

Eriksson K.A.; Campbell, I.H.; Palin, J.M.; and Allen, C.M. 2003. Predominance of Grenvillian magmatism recorded in detrital zircons from modern Appalachian rivers. J. Geol. 111:707-717. [73]

Eriksson, K.A.; Campbell, I.H.; Palin, J.M.; Allen, C.M.; and Bock, B. 2004. Evidence for multiple recycling in Neoproterozoic through Pennsylvanian sedimentary rocks of the Central Appalachian Basin. J. Geol. 112:261-276. [78]

Ermolaeva, T. 2004. Sedimentpetrographische, mineralchemische und geochronologische Untersuchungen am Detritus neoproterozoicscher und devonischer Siliziklastika im westlichen Südural. Unpublished PhD. Rheinisch-Westfälischen Technischen Hochschule Aachen. 327 pp. [860]

Ernst, W.G.; Martens, U.; and Valencia, V. 2009. U-Pb ages of detrital zircons in Pacheco Pass metagraywackes: Sierran-Klamath source of mid- and Late Cretaceous Franciscan deposition and underplating. Tectonics. TC6011. Doi: 10.1029/2009TC002527. [940]

Escalona-Alcázar, F. de J.; Delgado-Argote, L.A.; Weber, B.; Núñez-Peña, E.P.; Valencia, V.A.; and Ortiz-Acevedo. 2009. Kinematics and U-Pb dating of detrital zircons from the Sierra de Zacatecas, Mexico. Rev. Mex. De Cien. Geol. 26:48-64. [858]

Escaloya, M.P.; Pimentel, M.M.; and Armstrong, R. 2007. Neoproterozoic backarc basin: Sensitive high-resolution ion microprobe U-Pb and Sm-Nd isotopic evidence from the Eastern Pampean Ranges, Argentina. Geology. 35:495-498. [192]

Evenchick, C.A., and McNicoll, V.J. 2002. Stratigraphy, structure, and geochronology of the Anyox Pendant, northwest British Columbia, and implications for mineral exploration. Can. J. Earth Sci. 39: 1313-1332. [554]

Evins, P.M.; Mansfield, J.; and Laajoki, K. 2002. Geology and Geochronology of the Suomujärvi Complex: A new Archaean gneiss region in the NE Baltic Shield, Finland. Precambrian Res. 116: 285-306. [553]

Page 152: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

143

Farmer, G.L.; Bowring, S.A.; Matzel, J.; Maldonado, G.E.; Fedo, C.; and Wooden, J. 2005. Paleoproterozoic Mojave province in northwestern Mexico? Isotopic and U-Pb zircon geochronologic studies of Precambrian and Cambrian crystalline and sedimentary rocks, Caborca, Sonora. In Anderson, T.H.; Nourse, J.A.; McKee, J.W.; and Steiner, M.B. (eds.). The Mojave-Sonora Megashear Hypothesis: Development, Assessment, and Alternatives. Geological Society of America Special Paper 393: 183-198. [760]

Faupl, P.; Pavlopoulos, A.; Klötzli, U.; and Petrakakis, K. 2006. On the provenance of mid-Cretaceous turbidites of the Pindos zone (Greece): implications from heavy mineral distribution, detrital zircon ages and chrome spinel chemistry. Geol. Mag. 143:329-342. [36]

Feng, R., and Kerrich, R. 1991. Single zircon age constraints on the tectonic juxtaposition of the Archean Abitibi greenstone belt and Pontiac subprovince, Quebec, Canada. Geochim. Cosmochim. Acta 55:3437-3441. [1028]

Fergusson, C.L.; Carr, P.F.; Fanning, C.M.; and Green, T.J. 2001. Proterozoic-Cambrian detrital zircon and monazite ages from the Anakie Inlier, central Queensland: Grenville and Pacific-Gondwana signatures. Aus. J. Earth Sci. 48:857-866. [402]

Fergusson, C.L.; and Fanning, C.M. 2002. Late Ordovician stratigraphy, zircon provenance and tectonics, Lachlan Fold Belt, southeastern Australia. Aus. J. Earth Sci. 49:423-436. [935]

Fergusson, C.L.; Fanning, C.M.; Phillips, D.; and Ackerman, B.R. 2005. Structure, detrital zircon U-Pb ages and 40Ar/39Ar geochronology of the early Palaeozoic Girilambone Group, central New South Wales: Subduction, contraction and extension associated with the Benambran Orogeny. Aus. J. Earth Sci. 52:137-159. [154]

Fergusson, C.L.; Henderson, R.A.; Fanning, C.M.; and Withnall, I.W. 2007. Detrital zircon ages in Neoproterozoic to Ordovician siliciclastic rocks, northeastern Australia: implications

Page 153: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

144

for the tectonic history of the East Gondwana continental margin. J. Geol. Soc. London. 164:215-225. [123]

Fernández, R.D.; Martínez Catalan, J.R.; Gerdes, A.; Abati, J.; Arenas, R.; and Fernández-Suárez, J. 2009(in press). U-Pb ages of detrital zircons from the basal allochthonous units of NW Iberia: Provenance and paleoposition on the northern margin of Gondwana during the Neoproterozoic and Paleozoic. Gondwana Res. Doi: 10.1016/j.gr.2009.12.006. [1052]

Fernández-Suárez, J.; Garcia, F.D.; Jeffries, T.E.; Arenas, R.; and Abati, J. 2003. Constraints on the provenance of the uppermost allochthonous terrane of the NW Iberian Massif: Inferences from detrital zircon U-Pb gaes. Terra Nova. 15:138-144. [323]

Fernández-Suárez, J.; Gutierrez Alonso, G.; and Jeffries, T.E. 2002. The importance of along-margin terrane transport in northern Gondwana: insights from detrital zircon parentage in Neoproterozoic rocks from Iberia and Brittany. Earth Planet. Sci. Lett. 204:75-88. [39]

Fernández-Suárez, J.; Gutiérrez-Alonso, G.; Jenner, G.A.; and Tubrett, M.N. 2000. New ideas on the Proterozoic-Early Palaeozoic evolution of NW Iberia: Insights from U-Pb detrital zircon ages. Precambrian Res. 102:185-206. [442]

Figueiredo, F.T. 2008. Fácies sedimentares e proveniência da Formação Bebedouro, Neoproterozóico. Unpublished PhD dissertation. Universidade de São Paulo. 159 pp. [861] [see also Figueiredo et al. 2009. Terra Nova, 21:375-385. doi:10.1111/j.1365-3121.2009.00893.x]

Fildani, A.; Cope, T.D.; Graham, S.A.; and Wooden, J.L. 2003. Initiation of the Magallanes foreland basin: Timing of the southernmost Patagonian Andes orogeny revised by detrital zircon provenance analysis. Geology. 31:1081-1084. [22]

Finley-Blasi, L. 2006. U-Pb dating of detrital zircon from the Fond du Lac and Hinckley Formations of Northern Minnesota. Unpub. Senior Thesis, Carleton College, Northfield. [288]

Page 154: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

145

Finney, S.; Gleason, J.; Gehrels, G.E.; Peralta, S.; and Acenolaza, G. 2003. Early Gondwanan connection for the Argentine Precordillera terane. Earth Planet. Sci. Lett. 205:349-359. [282]

Finney, S.; Peralta, S.; Gehrels, G.E.; and Marsaglia, K. 2005. The early Paleozoic history of the Cuyania (greater Precordillera) terrane of western Argentina: Evidence from geochronology of detrital zircons from Middle Cambrian sandstones. Geol. Ac. 3:339-354. [274]

Fitzsimons, I.C.W., and Hulscher, B. 2005. Out of Africa: Detrital zircon provenance of central Madagascar and Neoproterozoic terrane transfer across the Mozambique Ocean. Terra Nova. 17:224-235. [64]

Fletcher, I.R.; Dunphy, J.M.; Cassidy, K.F.; and Champion, D.C. 2001. Compilation of SHRIMP U-Pb geochronological data, Yilgarn Craton, Western Australia, 2000-2001. Geoscience Australia. Record 2001/47. [381]

Fletcher, J.M.; Grove, M.; Kimbrough, D.; Lovera, O.; and Gehrels, G.E. 2007. Ridge-trench interactions and the Neogene tectonic evolution of the Magdalena shelf and southern Gulf of California: Insights from detrital zircon U-Pb ages from the Magdalena fan and adjacent areas. Geol. Soc. Am. Bull. 119:1313-1336. [498]

Flowerdew, M.J.; Milnar, I.L.; Curtis, M.L.; Vaughan, A.P.M.; Whitehouse, M.J.; and Fanning, C.M. 2007. Combined U-Pb geochronology and Hf isotope geochemistry of detrital zircons from early Paleozoic sedimentary rocks, Ellsworth-Whitmore Mountains Block, Antarctica. Geol. Soc. Am. Bul. 119:275-288. [166]

Fonneland, H.C. 2002. Radiogenic Isotope Sytematics of Clastic Sedimentary Rocks – with Emphasis on Detrital Zircon Geochronology. Unpublished PhD dissertation, University of Bergen, Bergen Norway. [679]

Page 155: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

146

Fontanelli, P.de R.; De Ros, L.F.; Remus, M.V.D. 2009. Provenance of Deep-water Reservoir Sandstones from the Jubarte Oilfield, Campos Basin, Eastern Brazilian Margin. Mar. Petrol. Geol. 26:1274-1298. Doi: 10.1016/j.marpetgeo.2008.09.010. [796]

Fralick, P.; Hollings, P.; Metsaranta, R.; and Heaman, L.M. 2009. Using sediment geochemistry, detrital zircon geochronology to categorize eroded igneous units: An example from the mesoarchean birch-uchi greenstone belt, superior province. Precambrian Res. 168:106-122. Doi: 10.1016/j.precamres.2008.05.009. [786]

Fralick, P.; Purdon, R.H.; and Davis, D.W. 2006. Neoarchean trans-subprovince sediment transport in southwestern Superior Province: Sedimentological, geochemical and geochronological evidence. Can. J. Earth Sci. 43:1055-1070. [307]

Friend, C.R.L., and Kinny, P.D. 2001. A reappraisal of the Lewisian Gneiss Complex: Geochronological evidence for its tectonic assembly from disparate terranes in the Proterozoic. Contrib. Mineral. Petrol. 142:198-218. [770]

Friend, C.R.L.; Strachan, R.A.; Kinny, P.D.; and Watt, G.R. 2003. Provenance of the Moine Supergroup of NW Scotland: Evidence from geochronology of detrital and inherited zircons from (meta)sedimentary rocks, granites and migmatites. J. Geol. Soc. London. 160: 247-257. [25]

Frimmel, H.E.; Tack, L.; Basei, M.S.; Nutman, A.P.; and Boven, A. 2006. Provenance and chemostratigraphy of the Neoproterozoic West Congolian Group in the Democratic Republic of Congo. J. Afr. Earth Sci. 46:221-239. [97]

Froude, D.O.; Ireland, T.R.; Kinny, P.D.; Williams, I.S.; Compston, W.; Williams, I.R.; and Myers, J.S. 1983. Ion microprobe identification of 4,100-4,200 Myr-old terrestrial zircons. Nature. 304:616-618. [203]

Page 156: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

147

Fuentes, F.; DeCelles, P.G.; and Gehrels, G.E. 2009. Jurassic onset of foreland basin deposition in northwestern Montana, USA: Implications for along-strike synchroneity of Cordilleran orogenic activity. Geology. 37:379-382. [851]

Gandhi, S.S., and van Breemen, O. 2005. SHRIMP U-Pb geochronology of detrital zircons from the Treasure Lake Group—new evidence for Paleoproterozoic collisional tectonics in the southern Hottah terrane, northwestern Canadian Shield. Can. J. Earth Sci. 42:833-845. [68]

Ganwa, A.A.; Wolfgang, F.; Wolfgang, S.; Kongnyuy, C.S.; Joseph, M.O.; Muharrem, S.; and Jacqueline, T.N.; 2008. Zircon 207Pb/206Pb evaporation ages of Panafrican metasedimentary rocks in the Kombé-II area (Bafia Group, Cameroon): constraints on protolith age and provenance. J. Afr. Earth. 51:77-88. Sci. doi: 10.1016/j.afrearsci.2007.12.003. [473]

Gao, L.; Zhao, T.; Wan, Y.; Zhao, X.; Ma, Y.; and Yang, S. 2006. Report on 3.4 Ga SHRIMP zircon age from the Yuntaishan Geopark in Jiaozuo, Henan Province. Acta Geologica. Sinica. 80: 52-57. [315]

Gao, S.; Qiu, Y.; Ling, W.; McNaughton, N.J.; and Groves, D.I. 2001. SHRIMP single zircon U-Pb dating of the Kongling high-grade metamorphic terrain: Evidence for >3.2 Ga old continental crust in the Yangtze craton. Sci. in China (series D) 44: 326-335. [662]

Gardner, D.W. 2008. Sedimentology, Stratigraphy, and Provenance of the Upper Purcell Supergroup,

southeastern British Columbia, Canada: Implications for Syn-depositional Tectonism,

Basin Models, and Paleogeographic Reconstructions. MSc. University of Victoria, 76 pp. [626]

Gastil, R.G., and Girty, M.S. 1993. A reconnaissance U-Pb study of detrital zircon in sandstones of peninsular California and adjacent areas. In Gastil, R.G., and Miller, R.H., eds. The

Page 157: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

148

Prebatholithic Stratigraphy of Peninsular California. Boulder, Colorado. Geological Society of America Special Paper 279: 135-144. [92]

Gates, A.E.; Valentino, D.W.; Chiarenzelli, J.R.; Solar, G.S.; Hamilton, M.A. 2004. Exhumed Himalayan-type syntaxis in the Grenville orogen, northeastern Laurentia. J. Geodynamics. 37: 337-359. [580]

Gaucher, C.; Finney, S.C.; Poiré, D.G.; Valencia, V.A.; Grove, M.; Blanco, G.; Pamoukaghlián, K.; and Peral, L.G. 2008. Detrital zircon ages of Neoproterozoic sedimentary successions in Uruguay and Argentina: Insights inot the geological evolution of the Rio de la Plata Craton. Precambrian Res. 167:150-170. Doi:10.1016/j.precamres.2008.07.006. [771]

Gaudette, H.E.; Vitrac-Michard, A.; and Allégre, C.J. 1981. North American Precambrian history recorded in a single sample high-resolution U-Pb systematics of the Potsdam sandstone detrital zircons, New York State. Earth Planet. Sci. Lett. 54:248-260. [351]

Gebauer, D.; Williams, I.S.; Compston, W.; and Grünenfelder, M. 1988. The development of the Central European continental crust since the Early Archaean based on conventional and ion-microprobe dating of detrital zircons up to 3.84 b.y. old. Bull. Swiss. Assoc. Petrol.-Geol. And Eng. 54:65-82. [415]

Gebauer, D.; Williams, I.S.; Compston, W.; and Grünenfelder, M. 1989. The development of the central European continental crust since the Early Archaean based on conventional and ion-microprobe dating of up to 3.84 b.y. old detrital zircons. Tectonophysics. 157:81-96. [348]

Gehmlich, M. 2003. Die Cadomiden und Varisziden des Saxothuringischen Terranes – Geochonologie magmatischer Ereignisse. Freiberger Forschungshefte C500: 1-129. [740]

Gehrels, G.E. 2000. Reconnaissance geology and U-Pb geochronology of the western flank of the Coast Mountains between Juneau and Skagway, southeastern Alaska. In Stowell, H.H., and McClelland, W.C. (eds.). Tectonics of the Coast Mountains, Southeastern

Page 158: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

149

Alaska and British Columbia. Geological Society of America Special Paper 343: 213-233. [776]

Gehrels, G.E. 2002. Detrital zircon geochronology of the Taku terrane, southeast Alaska. Can. J. Earth Sci. 39:921-931. [150]

Gehrels, G.E., and Boghossian, N.D. 2000. Reconnaissance geology and U-Pb geochronology of the west flank of the Coast Mountains between Bella Coola and Prince Rupert, coastal British Columbia. In Stowell, H.H., and McClelland, W.C. (eds.). Tectonics of the Coast Mountains, Southeastern Alaska and British Columbia. Geological Society of America Special Paper 343: 61-75. [774]

Gehrels, G.E.; Butler, R.F.; and Bazard, D.R. 1996. Detrital zircon geochronology of the Alexander terrane, southeastern Alaska. Geol. Soc. Am. Bull. 108:722-734. [7]

Gehrels, G.E.; DeCelles, P.G.; Ojha, T.P.; and Upreti, B.N. 2006a. Geologic and U-Pb geochronologic evidence for early Paleozoic tectonism in the Dadeldhura thrust sheet, far-west Nepal Himalaya. J. Asian Earth Sci. 28:385-408. [117]

Gehrels, G.E.; DeCelles, P.G.; Ohja, T.P.; and Upreti, B.M. 2006b. Geologic and U-Th-Pb geochronologic evidence for early Paleozoic tectonism in the Kathmandu thrust sheet, central Nepal Himalaya. Geol. Soc. Am. Bull. 118:185-198. [1009]

Gehrels, G.E., and Dickinson, W.R. 1995. Detrital zircon provenance of Cambrian to Triassic miogeoclinal and eugeoclinal strata in Nevada. Am. J. Sci. 295:18-48. [86]

Gehrels, G.E., and Dickinson, W.R. 2000. Detrital zircon geochronology of the Antler overlap and foreland basin assemblages, Nevada. In Soreghan., M.J. and Gehrels, G.E., eds. Paleozoic and Triassic paleogeography and tectonics of western Nevada and northern California. Boulder, Colorado. Geological Society of America Special Paper 347:567-63. [142]

Page 159: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

150

Gehrels, G.E.; Dickinson, W.R.; Riley, B.C.D.; Finney, S.C.; and Smith, M.T. 2000. Detrital zircon geochronology of the Roberts Mountain allochton, Nevada. In Soreghan., M.J. and Gehrels, G.E., eds. Paleozoic and Triassic paleogeography and tectonics of western Nevada and northern California. Boulder, Colorado. Geological Society of America Special Paper 347:19-42. [140]

Gehrels, G.E.; Johnsson, M.J.; and Howell, D.G. 1999. Detrital zircon geochronology of the Adams Argillite and Nation River Formation, East-Central Alaska, U.S. J. Sediment. Res. 69:135-144. [21]

Gehrels, G.E., and Kapp, P.A. 1998. Detrital zircon geochronology and regional correlation of metasedimentary rocks in the Coast Mountains, southeastern Alaska. Can. J. Earth Sci. 35:269-279. [383]

Gehrels, G.E.; McClelland, W.C.; Samson, S.D.; Patchett, P.J. 1991. U-Pb geochronology of detrital zircons from a continental margin assemblage in the northern Coast Mountains, southeastern Alaska. Can. J. Earth Sci. 28:1285-1300. [87]

Gehrels, G.E., and Miller, M.M. 2000. Detrital zircon geochronologic study of upper Paleozoic strata in the eastern Klamath terrane, northern California. In Soreghan., M.J. and Gehrels, G.E., eds. Paleozoic and Triassic paleogeography and tectonics of western Nevada and northern California. Boulder, Colorado. Geological Society of America Special Paper 347:99-107. [146]

Gehrels, G.E., and Ross, G.M. 1998. Detrital zircon geochronology of Neoproterozoic to Permian miogeoclinal strata in British Columbia and Alberta. Can. J. Earth Sci. 35:1380-1401. [298]

Gehrels, G.E., and Stewart, J.H. 1998. Detrital zircon U-Pb geochronology of Cambrian to Triassic miogeoclinal and eugeoclinal strata of Sonora, Mexico. J. Geophys. Res. 103:2471-2487. [109]

Page 160: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

151

Gehrels, G.E.; Stewart, J.H.; and Ketner, K.B. 2002. Cordilleran-margin quartzites in Baja California—implications for tectonic transport. Earth Planet. Sci. Lett. 199:201-210. [128]

Gehrels, G.E.; Yin, A.; and Wang, X.-F. 2003. Detrital-zircon geochronology of the northeastern Tibetan plateau. Geol. Soc. Am. Bull. 115:881-896. [409]

Geisler, T.; Vinx, R.; Martin-Gombojav, N.; and Pidgeon, R.T. 2005. Ion microprobe (SHRIMP) dating of detrital zircon grains from quartzites of the Eckergneiss Complex, Harz Mountains (Germany): Implications for the provenance and the geological history. Int. J. Earth Sci. 94:369-384. [533]

Genier, F.; Epard, J.-L.; Bussy, F.; and Magna, T. 2008. Lithostratigraphy and U-Pb zircon dating in the overturned limb of the Siviez-Mischabel nappe: a new key for Middle Penninic nappe geometry. Swiss. J. Geosci. 101:431-452. Doi:10.1007/s00015-008-1261-5. [769]

Gerbi, C., and West, D.P.Jr. 2007. Use of U-Pb geochronology to identify successive, spatially overlapping tectonic episodes during Silurian-Devonian orogenesis in south-central Maine, USA. Geol. Soc. Am. Bull. 119:1218-1231. [459]

Gerdes, A., and Zeh, A. 2006. Combined U-Pb and Hf isotope LA-(MC)ICP-MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet. Sci. Lett. 249:47-61. [134]

Geslin, J.K.; Link, P.K.; and Fanning, C.M. 1999. High-precision provenance determination using detrital-zircon ages and petrography of Quaternary sands on the eastern Snake River Plain, Idaho. Geology. 27:295-298. [79]

Page 161: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

152

Ghosh, A.K. 2009. Reconnaissance U-Pb geochronology of Precambrian crystalline rocks from the northern Black Hills, South Dakota: Implications for regional thermotectonic history. Unpublished MS thesis. Kent State University. 131 pp. [897]

Giacomini, F.; Bomparola, R.M.; Ghezzo, C.; and Guldbransen, H. 2006. The geodynamic evolution of the Southern European Variscides: constraints from the U/Pb geochronology and geochemistry of the lower Palaeozoic magmatic-sedimentary sequences of Sardinia (Italy). Contrib. Mineral. Petrol. 152:19-42. [326]

Gibson, G.M., and Ireland, T.R. 1996. Extension of Delamerian (Ross) orogen into western New Zealand: Evidence from zircon ages and implications for crustal growth along the Pacific margin of Gondwana. Geology. 24:1087-1090. [417]

Giles, D., and Nutman, A.P. 2003. SHRIMP U-Pb zircon dating of the host rocks of the Cannington Ag-Pb-Zn deposit, southeastern Mt Isa Block, Australia. Aus. J. Earth Sci. 50:295-309. [399]

Gillis, R.J.; Gehrels, G.E.; Ruiz, J.; and Flores de Dios Gonzalez, L.A. 2005. Detrital zircon provenance of Cambrian-Ordovician and Carboniferous strata of the Oaxaca terrane, southern Mexico. Sediment. Geol. 182:87-100. [8]

Girty, G.H., and Wardlaw, M.S. 1985. Petrology and provenance of pre-late Devonian sandstones, Shoo Fly Complex, northern Sierra Nevada, California. Geol. Soc. Am. Bull. 96:516-521. [712]

Giustina, M.E.S.D.; de Oliveira, C.G.; Pimentel, M.M.; and Buhn, B. 2009. Neoproterozoic magmatism and high-grade metamorphism in the goiás massif: New LA-MC-ICMPS U-Pb and Sm-Nd data and implications for collisional history of the Brasiías belt. Precambrian Res. 172: 67-79. Doi:10.1016/j.precamres.2009.03.012. [844]

Gladkochub, D.P.; Donskaya, T.V.; Wingate, M.T.D.; Poller, U.; Kröner, A.; Fedorovsky, V.S.; Mazukahzov, A.M.; Todt, W.; and Pisarevsky, S.A. 2008. Petrology, geochronology, and

Page 162: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

153

tectonic implications of c. 500 Ma metamorphic and igneous rocks along the northern margin of the Central Asian Orogen (Olkhon terrane, Lake Baikal, Siberia). J. Geol. Soc. London. 165:235-246. [1065]

Gleason, J.D.; Finney, S.C.; and Gehrels, G.E. 2002. Paleotectonic implications of a Mid- to Late-Ordovician provenance shift, as recorded in sedimentary strata of the Ouachita and Southern Appalachian Mountains. J. Geol. 110:291-304. [285]

Gleason, J.D.; Finney, S.C.; Peralta, S.H.; Gehrels, G.E.; and Marsaglia, K.M. 2007. Zircon and whole-rock Nd-Pb isotopic provenance of Middle and Upper Ordovician siliciclastic rocks, Argentine Precordillera. Sedimentology. 54:107-136. [120]

Gleason, J.D.; Gehrels, G.E.; Dickinson, W.R.; Patchett, P.J.; and Kring, D.A. 2007. Laurentian sources for detrital zircon grains in turbidite and deltaic sandstones of the Pennsylvanian Haymond Formation, Marathon Assemblage, West Texas, U.S.A. Journal of Sedimentary Research, 77: 888-900. [466]

Glover, J.F. III. 2008. Detrital zircon geochronology of Bonneville Flood Deposits along the Snake River, Idaho: Implications for the sediment dispersal patterns of megafloods. Unpublished MS thesis. Washington State University. 142 pp. [923]

Goldstein, S.L.; Arndt, N.T.; and Stallard, R.F. 1997. The history of a continent from U-Pb ages of zircons from Orinoco River sand and Sm-Nd isotopes in Orinoco basin river sediments. Chem. Geol. 139:271-286. [505]

González-León, C.M.; Stanley, G.D. Jr.; Gehrels, G.E.; and Centeno-Garcia, E. 2005, New data on the lithostratigraphy, detrital zircon and Nd isotope provenance, and paleogeographic setting of the El Antimonio Group, Sonora, Mexico. In Anderson, T.H.; Nourse, J.A.; McKee, J.W.; and Steiner, M.B.; eds. The Mojave-Sonora megashear hypothesis: Development, assessment, and alternatives. Boulder, Colorado. Geological Society of America Special Paper 393:259-282. [185]

Page 163: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

154

González-León, C.M.; Valencia, V.A.; Lawton, T.F.; Amato, J.M.; Gehrels, G.E.; Leggett, W.J.; Montijo-Contreras, O.; and Fernández, M.A. 2009. The Lower Mesozoic record of detrital zircon U-Pb geochronology of Sonora, Mexico, and its paleogeographic implications. Rev. Mex. Cien. Geol. 26:301-314. [1005]

Goodge, J.W.; Myrow, P.; Williams, I.S.; and Bowring, S.A. 2002. Age and provenance of the Beardmore Group, Antarctica: Constraints on Rodinia supercontinent breakup. J. Geol. 110:393-406. [464]

Goodge, J.W.; Vervoort, J.D.; Fanning, C.M.; Brecke, D.M.; Farmer, G.L.; Williams, I.S.; Myrow, P.M.; and DePaola, D.J. 2008. A positive test of East Antarctica—Laurentia juxtaposition within the Rodinia Supercontinent. Science. 321: 235-240. [611]

Goodge, J.W.; Williams, I.S.; and Myrow, P. 2004. Provenance of Neoproterozoic and lower Paleozoic siliciclastic rocks of the central Ross orogen, Antarctica: Detrital record of rift-, passive-, and active-margin sedimentation. Geol. Soc. Am. Bul. 116:1253-1279. [12]

Goscombe, B.; Gray, D.; Armstrong, R.; Foster, D.A.; and Vogl, J. 2005. Event geochronology of the Pan-African Kaoko Belt, Namibia. Precambrian Res. 140: 103-131. [571]

Goswomi, J.N.; Mishra, S.; Wiedenbeck, M.; Ray, S.L.; and Saha, A.K. 1995. 3.55 Ga old zircon from Singhbhum—Orissa Iron Ore Craton, eastern India. Current Sci. 69:1008-1012. [1006]

Gower, C.F.; Kamo, S.L.; Kwok, K.; and Krogh, T.E. 2008. Proterozoic southward accretion and Grenvillian orogenesis in the interior Grenville Province in eastern Labrador: Evidence from U-Pb geochronological investigations. Precambrian Res. 165: 61-95. [647]

Grace, R.L.B.; Chamberlain, K.R.; Frost, B.R.; and Frost, C.D. 2006. Tectonic histories of the Paleo- to Mesoarchean Sacawee block and Neoarchean Oregon Trail structural belt of the south-central Wyoming Province. Can. J. Earth Sci. 43:1445-1466. [708]

Page 164: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

155

Grange, M.L.; Wilde, S.A.; Nemchin, A.A.; and Pidgeon, R.T. 2010. Proterozoic events recorded in quartzite cobbles at Jack Hills, Western Australia: New constraints on sedimentation and source of >4 Ga zircons. Earth Planet. Sci. Lett. 292:158-169. Doi:10.1016/j.epsl.2010.01.031. [1087]

Grasse, S.W.; Gehrels, G.E.; Lahren, M.M.; Schweickert, R.A.; and Barth, A.P. 2001. U-Pb geochronology of detrital zircons from the Snow Lake pendant, central Sierra Nevada—Implications for Late Jurassic-Early Cretaceous dextral strike-slip faulting. Geology. 29:307-310. [29]

Grauert, B.; Seitz, M.G.; and Soptrajanova, G. 1974. Uranium and lead gain of detrital zircon studied by isotopic analyses and fission-track mapping. Earth Planet. Sci. Lett. 21:389-399. [139]

Gray, M.B., and Zeitler, P.K. 1997. Comparison of clastic wedge provenance in the Appalachian foreland using U/Pb ages of detrital zircons. Tectonics. 16:151-160. [429]

Greentree, M.R., and Li, Z.-X., 2008. The oldest known rocks in south western China: SHRIMP U-Pb magmatic crystallization age and detrital provenance analysis of the Paleoproterozoic Dahongshan Group. J. Asian Earth Sci. 33:289-302. doi:10.1016/j.jseases.2008.01.001. [493]

Greentree, M.R.; Li, Z.-X.; Li, X.-H.; and Wu, H. 2006. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia. Precambrian Res. 151:79-100. [1007]

Greig, C.J., and Gehrels, G.E. 1995. U-Pb zircon geochronology of Lower Jurassic and Paleozoic Stikinian strata and Tertiary intrusions, northwestern British Columbia. Can. J. Earth Sci. 32:1155-1171. [846]

Page 165: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

156

Griffin, W.L.; Belousova, E.A.; O‘Reilly, S.Y. 2007. TerraneChronTM analysis of zircons from Western Australian samples. Geological Survey of Western Australia Record 2007/04, 52 pp. [520]

Griffin, W.L.; Belousova, E.A.; Shee, S.R.; Pearson, N.J.; and O‘Reilly, S.Y. 2004. Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf isotope evidence from detrital zircons. Precambrian Res. 131:231-282. [447]

Griffin, W.L.; Belousova, E.A.; Walters, S.G.; and O‘Reilly, S.Y. 2006. Archean and Proterozoic crustal evolution in the eastern succession of the Mt Isa district, Australia: U-Pb and Hf-isotope studies of detrital zircons. Aus. J. Earth Sci. 53:125-149. [157]

Grimmer, J.C.; Ratschbacher, L.; McWilliams, M.; Franz, L.; Gaitzsch, I.; Tichomirowa, M.; Hacker, B.R.; and Zhang. Y. 2003. When did the ultrahigh-pressure rocks reach the surface? A 207Pb/206Pb zircon, 40Ar/39Ar white mica, Si-in-white mica, single-grain provenance study of Dabie Shan synorogenic foreland sediments. Chem. Geol. 197:87-110. [77]

Grodzicki, K.R.; Nance, R.D.; Keppie, J.D.; Dostal, J.; and Murphy, J.B. 2008. Structural, geochemical and geochronological analysis of metasedimentary and metavolcanic rocks of the Coatlaco area, Acatlán Complex, southern Mexico. Tectonophysics. 461:311-323. Doi: 10.1016/j.tecto.2008.01.016. [725]

Gross, E.L.; Stewart, J.H.; and Gehrels, G.E. 2000. Detrital zircon geochronology of Neoproterozoic to Middle Cambrian miogeoclinal and platformal strata: Northwest Sonora, Mexico. Geofis. Int. 39:295-308. [159]

Guanghi, W.; Baoshou, Z.; Wen, S.; Hai, W.; and Qin, X. 2009. Detrital zircon U-Pb ages and its significance of Silurian from tazhong area in Tarim Basin. Chin. J. Geol. 44:1025-1035. [1093]

Page 166: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

157

Guerra-Sommer, M.; Cazzulo-Klepzig, M.; Formoso, M.L.L.; Menegat, R.; and Fo, J.G.F. 2008. U-Pb dating of tonstein layers from a coal succession of the southern Paraná Basin (Brazil): A new geochronological approach. Gondwana Res. 14: 474-482. [643]

Gutiérrez-Alonso, G.; Fernández-Suárez. J.; Jeffries, T.E.; Jenner, G.A.; Tubrett, M.N.; Cox, R.; and Jackson, S.E. 2003. Terrane accretion and dispersal in the northern Gondwana margin. An early Paleozoic analogue of a long-lived active margin. Tectonophysics. 365:221-232. [221]

Gutjahr, M.; Bradshaw, J.D.; Weaver, S.; Münker, C.; and Ireland, T. 2006. Provenance of Cambrian conglomerate from New Zealand: Implications for the tectomagmatic evolution of the SE Gondwana margin. J. Geol. Soc. London. 163: 997-1010. [625]

Guynn, J.H. 2006. Age and tectonic evolution of the Amdo Basement: Implications for development of the Tibetan Plateau and Gondwana paleogeography. Unpublished PhD. University of Arizona. 324 pp. [924]

Haeussler, P.J.; Gehrels, G.E.; and Karl, S.M. 2004. Constraints on the age and provenance of the Chugach accretionary complex from detrital zircons in the Sitka greywacke near Sitka, Alaska. USGS Prof. Paper. 1709-F, 24 pp. [193]

Haines, P.W., and Wingate, M.T.D. 2007. Contrasting depositional histories, detrital zircon

provenance and hydrocarbon systems: Did the Larapintine Seaway link the

Canning and Amadeus basins during the Ordovician? Special Publication of the Northern Territory Geological Survey 2: 36-51. [658]

Halilovic, J.; Cawood, P.A.; Jones, J.A.; Pirajno, F.; and Nemchin, A.A. 2004. Provenance of the Earaheedy Basin: Implications for assembly of the Western Australian Craton. Precambrian Res. 128:343-366. [40]

Page 167: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

158

Hall, C.E.; Jones, S.A.; and Bodorkos, S. 2008. Sedimentology, structure and SHRIMP zircon provenance of the Woodline Formation, Western Australia: Implications for the tectonic setting of the West Australian Craton during the Paleoproterozoic. Precambrian Res. 162:577-598. [521]

Hallsworth, C.R.; Morton, A.C.; Claoue-Long, J.; and Fanning, C.M. 2000. Carboniferous sand provenance in the Pennine Basin, UK: constraints from heavy mineral and detrital zircon age data. Sediment. Geol. 137:147-185. [102]

Hampton, B.A.; Ridgway, K.D.; O‘Neill, J.M.; Gehrels, G.E.; Schmidt, J.; and Blodgett, R.B. 2007. Pre-, syn-, and postcollisional stratigraphic framework and provenance of Upper Triassic-Upper Cretaceous strata in the northwestern Talkeetna Mountains, Alaska. GSA Special Paper 431: 401-438. [483]

Hampton, L.B. 1998. U-Pb detrital zircon and geochemical provenance study of Precambrian Low-grade Metasedimentary rocks from eastern Kansas and Western Missouri. Unpublished MS thesis. University of Kansas. 89 pp. [868]

Hanski, E.; Huhma, H.; and Perttunen, V. 2005. SIMS U-Pb, Sm-Nd isotope and geochemical study of an arkosite-amphibolite suite, Peräpohja Schist Belt: Evidence for ca. 1.98 Ga A-type felsic magmatism in northern Finland. Bull. Geol. Soc. Finland. 77:5-29. [269]

Harding, J.P.; Gehrels, G.E.; Harwood, D.S.; and Girty, G.H. 2000. Detrital zircon geochronology of the Shoo Fly Complex, northern Sierra terrane, northeastern California. In Soreghan., M.J. and Gehrels, G.E., eds. Paleozoic and Triassic paleogeography and tectonics of western Nevada and northern California. Boulder, Colorado. Geological Society of America Special Paper 347:43-55. [141]

Hargrove, U.S.; Stern, R.J.; Kimura, J.-I.; Manton, W.I.; and Johnson, P.R. 2006. How juvenile is the Arabian-Nubian Shield? Evidence from Nd isotopes and pre-Neoproterozoic inherited zircon in the Bi‘r Umq suture zone, Saudi Arabia. Earth Planet. Sci. Lett. 252:308-326. [744]

Page 168: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

159

Hark, J.S. 2009. Zircon, monazite, and xenotime as provenance indicators in selected Precambrian crystalline rocks, Black Hills Uplift, South Dakota. Unpublished MS thesis. Kent State University. 143 pp. [928]

Harrison, T.M.; Schmitt, A.K.; McCulloch, M.T.; and Lovera, O. 2008. Early (≥4.5 Ga) Formation of Terrestrial Crust: Lu-Hf, δ18O, and Ti Thermometry results for Hadean Zircons. Earth Planet. Sci. Lett.268:476-486. [522]

Hartlaub, R.P.; Heaman, L.M.; Ashton, K.E.; and Chacko, T. 2004. The Archean Murmac Bay Group: Evidence for a giant Archean rift in the Rae Province, Canada. Precambrian Res. 131:345-372. [41]

Hartlaub, R.P.; Heaman, L.M.; Simonetti, A.; and Böhm, C.O. 2006. Relicts of Earth‘s earliest crust: U-Pb, Lu-Hf, and morphological characteristics of >3.7 Ga detrital zircon of the western Canadian Shield. In Reimold, W.U., and Gibson, R.L., eds. Processes on the Early Earth: Boulder, Colorado. Geological Society of America Special Paper 405:157-172. [172]

Hartmann, L.A.; Campal, N.; Santos, J.O.S.; McNaughton, N.J.; Bossi, J.; Schipilov, A.; and Lafon, J.-M. 2001. Archean crust in the Rio de la Plata Craton, Uruguay—SHRIMP U-Pb zircon reconnaissance geochronology. J. South Am. Earth Sci. 14:557-570. [124]

Hartmann, L.A.; Endo, I.; Tadeu, M; Suita, F.; Santos, J.O.S.; Fratz, J.C.; Carneiro, M.A.; McNaughton, N.J.; and Barley, M.E. 2006. Provenance and age delimitation of Quadrilatero sandstones based on zircon U-Pb isotopes. J. South Am. Earth Sci. 20:273-285. [130]

Hartmann, L.A.; Phillipp, R.P.; Liu, D.; Wan, Y.; Wang, Y.; Santos, J.O.S.; and Vasconcellos, M.A.Z. 2004. Paleoproterozoic magmatic provenance of detrital zircons, Porongos Complex Quartzites, southern Brazil Shield. Int. Geol. Rev. 46:127-157. [250]

Page 169: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

160

Hartman, L.A.; Santos, J.O.S.; and McNaughton, N.J. 2008. Detrital zircon U-Pb Age Data, and Precambrian Provenance of the Paleozoic Guaritas Formation, Southern Brazilian Shield. Int. Geol. Rev. 50: 364-374. [549]

Hegner, E.; Gruler, M.; Hann, H.P.; Chen, F.; and Güldenpfennig, M. 2005. Testing tectonic models with geochemical provenance parameters in greywacke. J. Geol. Soc. London. 162:87-96. [69]

Hellman, F.J.; Gee, D.G.; Johansson, Å.; and Witt-Nilson, P. 1997. Single-zircon Pb evaporation geochronology constrains basement-cover relationships in the Lower Hecla Hoek Complex of northern Ny Friesland, Svalbard. Chem. Geol. 137:117-134. [354]

Herve, F., and Fanning, C.M. 2001. Late Triassic detrital zircons in meta-turbidites of the Chonos Metamorphic Complex, southern Chile. Rev. Geol. Chile. 28:91-104. [222]

Herve, F.; Fanning, C.M.; and Pankhurst, R.J. 2003. Detrital zircon age patterns and provenance of the metamorphic complexes of southern Chile. J. S. Am. Earth Sci. 16: 107-123. [60]

Herve, F.; Faundez, V.; Brix, M.; Fanning, C.M. 2006. Jurassic sedimentation of the Miers Bluff Formation, Livingston Island, Antarctica: Evidence from SHRIMP U-Pb ages of detrital and plutonic zircons. Antarct. Sci. 18:229-238. [42]

Heumann, M.J.; Bickford, M.E.; Hill, B.M.; McLelland, J.M.; Selleck, B.W.; Jercinovic, M.J. 2006. Timing of anatexis in metapelites from the Adirondack lowlands and southern highlands: A manifestation of the Shawinigan orogeny and subsequent anorthosite-mangerite-charnockite-granite magmatism. Geol. Soc. Am. Bull. 118:1283-1298. [1010]

Hidaka, H.; Shimizu, H.; and Adachi, M. 2002. U-Pb geochronology and REE geochemistry of zircons from Palaeoproterozoic paragneiss clasts in the Mesozoic Kamiaso conglomerate, central Japan: Evidence for an Archean provenance. Chem. Geol. 187:279-293. [530]

Page 170: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

161

Hietpas, J.; Samson, S.; Moecher, D.; and Schmitt, A.K. 2010. Recovering tectonic events from the sedimentary record: detrital monazite plays in high fidelity. Geology 38:167-170. [1090]

Highton, A.J.; Hyslop, E.K.; and Noble, S.R. 1999. U-Pb zircon geochronology of migmatization in the northern Central Highlands: Evidence for pre-Caledonian (Neoproterozoic) tectonometamorphism in the Grampian block, Scotland. J. Geol. Soc. London. 156:1195-1204. [1008]

Hill, B.M., and Bickford, M.E. 2001. Paleoproterozoic rocks of central Colorado: Accreted arcs or extended older crust? Geology. 29: 1015-1018. [551]

Himmerkus, F.; Reischmann, T.; Kostopoulos, D. 2006. Late Proterozoic and Silurian basement units within the Serbo-Macedonian Massif, northern Greece: The significance of terrane accretion in the Hellenides. In. Tectonic Development of the Eastern Mediterranean Region. Eds. Robertson, A.H.F., and Mountrakis, D. Geological Society London Special Publication 260:35-50. [819]

Hinchey, A.M.; Ryan, J.J.; Davis, W.J.; Nadeau, L.; and James, D.T. 2007. Detrital zircon geochronology of the Archean volcano-sedimentary sequence of the Barclay belt and the Paleoproterozoic marble-quartzite sequence of the Northern Chantrey group, Boothia mainland area, Kitikmeot region, Nunavut. Geological Survey of Canada Current Research. 2007-C1, 19 pp. [756]

Hinojosa-Prieta, H.R.; Nance, R.D.; Keppie, J.D.; Dostal, J.V.; Ortega-Rivera, A.; Lee, J.K.W. 2008. Ordovician and Late Paleozoic-Early Mesozoic tectonothermal history of the La Noria area, northern Acatlán Complex, southern Mexico: Record of convergence in the Rheic and paleo-Pacific Oceans. Tectonophysics. 461:324-342. Doi: 10.11016/j.tecto.2008.06.002. [763]

Hirdes, W., and Davis, D.W. 2002. U-Pb geochronology of Paleoproterozoic rocks in the Southern Part of the Kedougou-Kéniéba Inlier, Senegal, West Africa: Evidence for

Page 171: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

162

Diachronous accretionary development of the Eburnean province. Precambrian Res. 118: 83-99. [652]

Hodges, M.K.V.; Link, P.K.; and Fanning, C.M. 2009. The Pliocene Lost River found to west: Detrital zircon evidence of drainage disruption along a subsiding hotspot track. J. Volcan. Geotherm. Res. 188:237-249. Doi: 10.1016/j.volgeores.2009.08.019. [946]

Hokada, T.; Misawa, K.; Yokoyama, K.; Shiraishi, K.; and Yamaguchi, A. 2004. SHRIMP and electron microprobe chronology of UHT metamorphism in the Napier Complex, East Antarctica: Implications for zircon growth at >1,000°C. Contrib. Mineral. Petrol. 147:1-20. [545]

Hollis, J.A.; Clarke, G.L.; Klepeis, K.A.; Daczko, N.R.; and Ireland, T.R. 2004. The regional significance of Cretaceous magmatism and metamorphism in Fiordland, New Zealand, from U-Pb zircon geochronology. J. Metamorphic Geol. 22:607-627. [264]

Holm, D.; Schneider, D.; and Coath, C.D. 1998. Age and deformation of Early Proterozoic quartzites in the southern Lake Superior region: Implications for extent of foreland deformation during final assembly of Laurentia. Geology. 26:907-910. [110]

Hopcroft, B.S. 2009. Lithology and provenance of late Eocene – Oligocene sediments in eastern Taranaki Basin margin and implications for paleogeography. Unpublished MS thesis. University of Waikato, 618 pp. [963]

Horie, K.; Tsutsumi, Y.; Kim, H.; Cho, M.; Hidaka, H.; and Terada, K. 2009. A U-Pb geochronological study of migmatitic gneiss complex, Gyeonggi Massif, Korea. Geosci. J. 13:205-215. [983]

Horton, B.K.; Hassanzadeh, J.; Stockli, D.F.; Axen, G.J.; Gillis, R.J.; Guest, B.; Amini, A.; Fakhari, M.; Zamanzadeh, S.M.; and Grove, M. 2008. Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: Implications for chronostratigraphy and

Page 172: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

163

collisional tectonics. Tectonophysics. 451:97-122. Doi:10.1016/j.tecto.2007.11.063. [485]

Houketchang, M.B.; Toteu, S.F.; Deloule, E.; Penaye, J.; Van Schmus, W.R. 2009. U-Pb and Sm-Nd dating of high-pressure granulites from Tcholliré and Banyo regions: Evidence for a Pan-African granulite facies metamorphism in north-central Cameroon. J. Afr. Earth Sci. 54:144-154. doi:10.1016/j.afrearsci.2009.03.013. [848]

Hourigan, J.K.; Brandon, M.T.; Solviev, A.V.; Kirmasov, A.B.; Garver, J.I.; Stevenson, J.; and Reiners, P.W. 2009. Eocene arc-continent collision and crustal consolidation in Kamchatka, Russian Far East. Am. J. Sci. 309: 333-396. [905]

Howard, K.E.; Hand, M.; Barovich, K.M.; Reid, A.; Wade, B.P.; and Belousova, E.A. 2009. Detrital zircon ages: Improving interpretations via Nd and Hf isotopic data. Chem. Geo. 262: 277-292. doi: 10.1016/j.chemgeo.2009.01.029. [812]

Hu, B.; Zhai, M.; Guo, J.; Peng, P.; Liu, F.; and Liu, S. 2009. LA-ICP-MS U-Pb geochronology of detrital zircons from the Huade Group in the northern margin of the North China Craton and its tectonic significance. Acta Petrol. Sinica. 25:193-211. [865]

Hu, X.; Jansa, L.; Chen, L.; Griffin, W.L.; O‖Reilly, S.Y.; and Wang, J. 2010. Provenance of Lower Cretaceous Wölong volcaniclastics in the Tibetan Tethyan Himalaya: Implications for the final breakup of Eastern Gondwana. Sediment. Geol. 223:193-205. Doi: 10.1016/j.sedgeo.2009.11.008. [1056]

Huhma, H.; Claesson, S.; Kinny, P.D.; and Williams, I.S. 1991. The growth of Early Proterozoic crust: New evidence from Svecofennian detrital zircons. Terra Nova. 3:175-179. [414]

Hunter, M.A.; Cantrill, D.J.; Flowerdew, M.J.; and Millar, I.L. 2005. Mid-Jurassic age for the Botany Bay Group: Implications for Weddell Sea Basin creation and southern hemisphere biostratigraphy. J. Geol. Soc. London. 162:745-748. [359]

Page 173: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

164

Hunter, M.A.; Riley, T.R.; Cantrill, D.J.; Flowerdew, M.J.; and Millar, I.L. 2006. A new Stratigraphy for the Latady Basin, Antarctic Peninsula: Part 1, Ellsworth Land Volcanic Group. Geol. Mag. 143:777-796. [317]

Ireland, T.R. 1992. Crustal evolution of New Zealand: Evidence from age distributions of detrital zircons in western province paragneisses and Torlesse greywacke. Geochim. Cosmochim. Ac. 56:911-920. [345]

Iizuka, T.; Hirata, T.; Komiya, T.; Rino, S.; Katayama, I.; Motoki, A.; and Maruyama, S. 2005. U-Pb and Lu-Hf isotope systematics of zircons from the Mississippi River sand: Implications for reworking and growth of continental crust. Geology. 33:485-488. [257]

Iizuka, T.; Komiya, T.; Rino, S.; Maruyama, S.; and Hirata, T. 2010. Detrital zircon evidence for Hf isotopic evolution of granitoid crust and continental growth. Geochim. Cosmochim. Acta. 74:2450-2472. Doi: 10.1016/j.gca.2010.01.023. [1105]

Ireland, T.R.; Flöttman; Fanning, C.M.; Gibson, G.M.; and Preiss, W.V. 1998. Development of the early Paleozoic Pacific margin of Gondwana from detrital-zircon ages across the Delamerian orogen. Geology. 26:243-246. [16]

Isachsen, C.E., and Bowring, S.A. 1997. The Bell Lake Group and Anton Complex: A Basement—Cover sequence beneath the Archean Yellowknife greenstone belt revealed and implicated in greenstone belt formation. Can. J. Earth Sci. 34:169-189. [1034]

Izsak, G.M. 2008. A translational model for the Great Valley Group, California: A detrital zircon analysis. Unpublished MS thesis. University of Georgia. 117 pp. [862]

Jacobson, C.E.; Barth, A.P.; and Grove, M. 2000. Late Cretaceous protolith age and provenance of the Pelona and Orocopia Schists, southern California: Implications for evolution of the Cordilleran margin. Geology. 28:219-222. [240]

Page 174: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

165

Jacques-Ayala, C.; Barth, A.P.; Wooden, J.L.; and Jacobson, C.E. 2009. Provenance and U-Pb geochronology of the Upper Cretaceous El Chanate Group, northwest Sonora, Mexico, and its tectonic significance. Int. Geol. Rev. 51:9-11. [933]

Jagodzinski, E.A. 2005. Compilation of SHRIMP U-Pb geochronological data, Olympic Domain, Gawler Craton, South Australia. Geoscience Australia. Report 2005/20. [379]

Janák, M.; Cornell, D.; Froitzheim, M.; de Hoog, J.C.M.; Broska, I.; Vrabec, M.; and Hurai, V. 2009. Eclogite-hosting metapelites from the Pohorje Mountains (Eastern Alps): P-t evolution, zircon geochronology and tectonic implications. Eur. J. Mineral. 21:1191-1212. [1091]

Jeon, H.; Cho, M.; Kim, H.; Horie, K.; and Hidaka, H., 2007. Early Archean to Middle Jurassic evolution of the Korean Peninsula and its correlation with Chinese cratons: SHRIMP U-Pb zircon age constraints. J. Geol. 115:525-539. [340]

Jie, Y.; Shan, G.; Honglin, Y.; Hujun, G.; Hong, Z.; and Shiwen, X. 2007. Detrital Zircon Ages of Hanjiang River: Constraints on Evolution of Northern Yangtze Craton, South China. J. China Univ. Geo. 18:210-222. [534]

Jinnah, Z.A.; Roberts, E.M.; Deino, A.L.; Larsen, J.S.; Link, P.K.; and Fanning, C.M. 2009. New 40Ar-39Ar and detrital zircon U-Pb ages for the Upper Cretaceous Wahweap and Kaiparowits Formations on the Kaiparowits Plateau, Utah: Implications for regional correlation, provenance and biostratigraphy. Cret. Res. 30:287-299. Doi:10.1016/j.cretres.2008.07.012. [731]

Johnson, C.M., and Winter, B.L. 1999. Provenance analysis of lower Paleozoic cratonic quartz arenites of the North American mid-continent region: U-Pb and Sm-Nd isotope geochemistry. Geol. Soc. Am. Bul. 111:1723-1738. [105]

Page 175: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

166

Johnson, S.P.; De Waele, B.; Evans, D.; Banda, W.; Tembo, F.; Milton, J.A.; and Tani, K. 2007. Geochronology of the Zambezi supracrustal sequence, Southern Zambia: A record of Neoproterozoic divergent processes along the southern margin of the Congo Craton. J. Geol. 115:355-374. [169]

Johnston, S.T.; Armstrong, R.; Heaman, L.; McCourt, S.; Mitchell, A.; Bisnath, A.; and Arima, M. 2001. Preliminary U-Pb geochronology of the Tugela terrane, Natal Belt, eastern South Africa. Mem. Natl. Inst. Polar Res. Spec. Issue 55:40-58. [757]

Jones, J.V. III; Connelly, J.N.; Karlstrom, K.E.; Williams, M.L.; and Doe, M.F. 2009, Age, provenance, and tectonic setting of Paleoproterozoic quartzite successions in the southwestern United States. Geol. Soc. Am. Bull. 121:247-264. [807]

Jöns. N.; Emmel, B.; Schenk, V.; and Razakamana, T. 2009. From orogenesis to passive margin – the cooling history of the Bemarivo Belt, a multi-thermochronometer approach. Gondwana Res. 16: 72-81. Doi: 10.1016/j.gr.2009.02.006. [799]

Jost, H.; Chemale, F. Jr.; Dussin, I.A.; Tassinari, C.C.G.; and Martins, R. 2010(in press). A U-Pb zircon paleoproterozoic age for the metasedimentary host rocks and gold mineralization of the Crixás greenstone belt, Goiás, Central Brazil. Ore Geol. Rev. doi: 10.1016/j.oregeorev.2010.01.003. [1075]

Kalbas, J.L.; Ridgway, K.D.; and Gehrels, G.E. 2007. Stratigraphy, depositional systems, and provenance of the Lower Cretaceous Kahiltna assemblage, western Alaskan Range: Basin development in response to oblique collision. GSA Special Paper 431: 307-343. [481]

Kalsbeek, F.; Frei, D.; and Affaton, P. 2008. Constraints on provenance, stratigraphic correlation and structural context of the Volta Basin, Ghana, from detrital zircon geochronology: An Amazonian connection? Sed. Geol. 212:86-95. Doi: 10.1016/j.sedgeo.2008.10.005. [791]

Page 176: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

167

Kalsbeek, F.; Pulvertaft, T.C.R.; and Nutman, A.P. 1998. Geochemistry, age and origin of metagraywackes from the Palaeoproterozoic Karrat Group, Rinkian Belt, West Greenland. Precambrian Res. 91: 383-399. [694]

Kampunzu, A.B.; Armstrong, R.A.; Modisi, M.P.; Mapeo, R.B.M. 2000. Ion microprobe U-Pb ages on detrital zircon grains from the Ghanzi Group: implications for the identification of a Kibaran-age crust in northwest Botswana. J. Afr. Earth Sci. 30:579-587. [59]

Kapp, P.A.; DeCelles, P.G.; Gehrels, G.E.; Heizler, M.; and Ding, L. 2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geol. Soc. Am. Bul. 119:917-932. [341]

Kapp, P.A.; DeCelles, P.G.; Leier, A.L.; Fabijanic, J.M.; He, S.; Pullen, A.; and Gehrels, G.E. 2007. The Gangdese retroarc thrust belt revealed. GSA Today. 17:4-9. [330]

Kapp, P.A., and Gehrels, G.E. 1998. Detrital zircon constraints on the tectonic evolution of the Gravina Belt, southeastern Alaska. Can. J. Earth Sci. 35:253-268. [111]

Kapp, P.A.; Yin, A.; Manning, C.E.; Harrison, M.T.; and Taylor, M.H. 2003. Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet. Tectonics. 22. doi:10.1029/2002TC001383. [318]

Karabinos, P., and Gromet, L.P. 1993. Applications of single-grain zircon evaporation analyses to detrital grain studies and age discrimination in igneous suites. Geochim. Cosmochim. Ac. 57:4257-4267. [243]

Keay, S., and Lister, G. 2002. African provenance for the metasediments and metaigneous rocks of the Cyclades, Aegean Sea, Greece. Geology. 30:235-238. [531]

Page 177: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

168

Keay, S.; Steele, D.; and Compston, W. 1999. Identifying granite sources by SHRIMP U-Pb zircon geochronology: An application to the Lachlan foldbelt. Contrib. Mineral. Petrol. 137:323-341. [231]

Kelsey, D.E.; Wade, B.P.; Collins, A.S.; Hand, M.; Sealing, C.R.; and Netting, A. 2008. Discovery of a Neoproterozoic basin in the Prydz belt in East Antarctica and its implications for Gondwana assembly and ultrahigh temperature metamorphism. Precambrian Res. 161: 355-388. [615]

Kelty, T.K.; Yin, A.; Dash, B.; Gehrels, G.E.; and Ribeiro, A. 2008. Detrital zircon geochronology of Paleozoic sedimentary rocks in the Hangay-Hentey basin, north-central Mongolia: Implications for the tectonic evolution of the Mongol-Okhotsk Ocean in central Asia. Tectonophysics 451:290-311. Doi:10.1016/j.tecto.2007.11.052. [489]

Kemp, A.J.S.; Foster, G.L.; Scherstén, A.; Whitehouse, M.J.; Darling, J.; and Storey, C. 2009. Concurrent Pb-Hf isotope analysis of zircon by laser ablation multi-collector ICP-MS, with implications for the crustal evolution of Greenland and the Himalayas. Chem. Geol. 261: 244-260. Doi: 10.1016/j.chemgeo.2008.06.019. [733]

Kemp, A.J.S.; Hawkesworth, C.J.; Paterson, B.A.; and Kinny, P.D. 2006. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature. 439: 580-583. [758]

Keppie, J.D.; Davis, D.W.; and Krogh, T.E. 1998. U-Pb geochronological constraints on Precambrian stratified units in the Avalon Composite Terrane of Nova Scotia, Canada: Tectonic implications. Can. J. Earth Sci. 35:222-236. [420]

Keppie, J.D.; Dostal, J.; Miller, B.V.; Ramos-Arias, M.A.; Morales-Gámez, M.; Nance, R.D.; Murphy, J.B.; Ortega-Rivera, A.; Lee, J.W.K.; Housh, T.; and Cooper, P. 2008. Ordovician—earliest Silurian rift tholeiites in the Acatlán Complex, southern Mexico: Evidence of rifting on the southern margin of the Rheic Ocean. Tectonophysics. 461:130-156. Doi:10.1016/j.tecto.2008.01.010. [718]

Page 178: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

169

Keppie, J.D.; Nance, R.D.; Fernandez-Suarez, J.; Storey, C.D.; Jeffries, T.E.; and Murphy, J.B. 2006. Detrital zircon data from the Eastern Mixtexa Terrane, southern Mexico: Evidence for an Ordovician-Mississippian continental rise and a Permo-Triassic clastic wedge adjacent to Oazaquia. Int. Geol. Rev. 48: 97-111. [10]

Ketchum, J.W.F.; Jackson, S.E.; Culshaw, N.; Barr, S.M. 2001. Depositional and tectonic setting of the Paleoproterozoic Lower Aillik Group, Makkovik Province, Canada: Evolution of a passive margin-foredeep sequence based on petrochemistry and U-Pb (TIMS and LAM-ICP-MS) geochronology. Precambrian Res. 105:331-356. [446]

Khudoley, A.K.; Rainbird, R.H.; Stern, R.A.; Kropachev, A.P.; Heaman, L.M.; Zanin, A.M.; Podkovyrov, V.N.; Belova, V.N.; and Sukhorukov, V.I. 2001. Sedimentary evolution of the Riphean-Vendean basin of southeastern Siberia. Precambrian Res. 111: 129-163. [43]

Kimbrough, D.L.; Abbott, P.L.; Grove, M.; Smith, D.P.; Mahoney, J.B.; Moore, T.E.; and Gehrels, G.E. 2006. Contrasting cratonal provenances for Upper Cretaceous Valle Group quartzite clasts, Baja California. In Girty, G.H., and Cooper, J.D. (eds.), Using Stratigraphy, Sedimentology, and Geochemistry to Unravel the Geologic History of the Southwestern Cordillera. Pacific Section Society of Economic Paleontologists and Mineralogists 101: 97-110. [578]

Kimbrough, D.L.; Smith, D.P.; Mahoney, J.B.; Moore, T.E.; Grove, M.; Gastil, R.G.; Ortega-Rivera, A.; and Fanning, C.M. 2001. Forearc-basin sedimentary response to rapid Late Cretaceous batholith emplacement in the Peninsular Ranges of southern and Baja California. Geology. 29:491-494. [51]

Kinnaird, T.C.; Prave, A.R.; Kirkland, C.L.; Horstwood, M.; Parrish, R.; and Batchelor, R.A. 2007. The late Mesoproterozoic—early Neoproterozoic tectonostratigraphic evolution of NW Scotland: the Torridonian revisited. J. Geol. Soc. London. 164:541-551. [431]

Page 179: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

170

Kinny, P.D.; Friend, C.R.L.; Strachan, R.A.; Watt, G.R.; and Burns, I.M. 1999. U-Pb geochronology of regional migmatites in East Sutherland, Scotland: Evidence for crustal melting during the Caledonian orogeny. J. Geol. Soc. London. 156:1143-1152. [444]

Kirkland, C.L.; Daly, J.S.; Chew, D.M.; and Page, L.M. 2008. The Finnmarkian Orogeny revisited: An isotopic investigation in eastern Finnmark, Arctic Norway. Tectonophysics. 460:158-177. Doi: 10.1016/j.tecto.2008.08.001. [659]

Kirkland, C.L.; Daly, J.S.; and Whitehouse, M.J. 2005. Early Silurian magmatism and the Scandian evolution of the Kalak Nappe Complex, Finnmark, Norway. J. Geol. Soc. London. 162:985-1003. [360]

Kirkland, C.L.; Daly, J.S.; and Whitehouse, M.J. 2007. Provenance and terrane evolution of the Kalak Nappe Complex, Norwegian Caledonides: Implications for Neoproterozoic paleogeography and tectonics. J. Geol. 115:21-41. [160]

Kirkland, C.L.; Daly, J.S.; and Whitehouse, M.J. 2008. Basement-cover relationships of the Kalak Nappe Complex, Arctic Norwegian Caledonides and constraints on Neoproterozoic terrane assembly in the North Atlantic region. Precambrian Res. 160:245-276. [788] (Also: Kirkland, C.L.; Daly, J.S.; and Whitehouse, M.J. 2009. Erratum to ―Basement-cover relationships of the Kalak Nappe Complex, Arctic Norwegian Caledonides and constraints on Neoproterozoic terrane assembly in the North Atlantic region‖ [Precambrian Res. 160 (2008) 245-276]. Precambrian Res. 172:364-372. Doi: 10.1016/j.precamres.2009.04.007).

Kirkland, C.L.; Pease, V.; Whitehouse, M.J.; and Ineson, J.R. 2009. Provenance record from Mesoproterozoic-Cambrian sediments of Peary Land, North Greenland: Implications for the ice-covered Greenland Shield and Laurentian paleogeography. Precambrian Res. 170:43-60. Doi: 10.1016/j.precamres.2008.11.006. [830]

Kirkland, C.L.; Strachan, R.A.; and Prave, A.R. 2008. Detrital zircon signature of the Moine Supergroup, Scotland: Contrasts and comparisons with other Neoproterozoic successions

Page 180: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

171

within the circum-North Atlantic Region. Precambrian Res. 163:332-350. Doi: 10.1016/j.precamres.2008.01.003. [490]

Kirkland, C.L.; Whitehouse, M.J.; Pease, V.; and van Kranendonk, M. 2010. Oxygen isotopes in detrital zircons: Insight into crustal recycling during the evolution of the Greenland Shield. Lithosphere 2:3-12. [1081]

Kirstein, L.A.; Fellin, M.G.; Willett, S.D.; Carter, A.; Chen, Y.-G.; Garver, J.I.; and Lee, D.C. 2010. Pliocene onset of rapid exhumation in Taiwan during arc-continent collision: new insights from detrital thermochronometry. Basin Res. 22:270-285. Doi: 10.1111/j.1365-2117.2009.00426.x. [921]

Klama, K.O. 2008. U-Pb Geochronologie, Hf Isotopie und Spurenelementgeochemie detritischer Zirkone aus rezenten Sedimenten des Orange- und Vaal River Flusssystems in Südafrika. Unpublished Ph.D. dissertation. Der Johann Wolfgang Goethe-Universität Frankfurt am Main. 179 pp. [1080]

Klein, E.L.; Moura, C.A.V.; Krymsky, R.S.; and Griffin, W.L. 2005. The Gurupi Belt, northern Brazil: Lithostratigraphy, geochronology, and geodynamic evolution. Precambrian Res. 141:83-105. [1011]

Knudson, T.-L. 2001. Contrasting provenance of Triassic/Jurassic sediments in North Sea Rift: A single zircon (SIMS), Sm-Nd and trace element study. Chem. Geol. 171:273-293. [251]

Knudson, T.-L.; Andersen, T.; Whitehouse, M.J.; and Vestin, J. 1997: Detrital zircon ages from southern Norway—Implications for the Proterozoic evolution of the southwestern Baltic Shield. Contrib. Mineral. Petrol. 130:47-58. [122]

Knudson, T.-L., and Fossen, H. 2001. The Late Jurassic Bjorøy Formation: A provenance indicator for offshore sediments derived from SW Norway as based on single zircon (SIMS) data. Norw. J. Geol. 81: 283-292. [670]

Page 181: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

172

Knudson, T.-L.; Griffin, W.L.; Hartz, E.H.; Andresen, A.; and Jackson, S.E. 2001. In-situ hafnium and lead isotope analyses of detrital zircons from the Devonian sedimentary basin of NE Greenland: A record of repeated crustal reworking. Contrib. Mineral. Petrol. 141:83-94. [116]

Kober, B.; Kalt, A.; Hanel, M.; and Pidgeon, R.T. 2004. SHRIMP dating of zircons from high-grade metasediments of the Schwarzwald/SW-Germany and implications for the evolution of the Moldanubian basement. Contrib. Mineral. Petrol. 147:330-345. [311]

Kock, S.; Martini, R.; Reischmann, T.; and Stampfli, G.M. 2007. Detrital zircon and micropaleontological ages as new constraints for the lowermost tectonic unit (Talea Ori unit) of Crete, Greece. Palaeogeogr. Palaeocl. 243:307-321. [131]

Kohn, M.J.; Paul, S.K.; and Corrie, S.L. 2010. The Lower Lesser Himalayan Sequence: A Paleoproterozoic arc on the northern margin of the Indian Plate. Geol. Soc. Am. Bull. 122: 323-335. [1100]

Kohút. M.; Poller, U.; Gurk, C.; and Todt, W. 2008, Geochemistry and U-Pb detrital zircon ages of metasedimentary rocks of the Lower Unit, Western Tatra Mountains (Slovakia). Acta. Geol. Pol. 58:371-384. [816]

Kokonyangi, J.W.; Kampunzu, A.B.; Armstrong, R.A.; Arima, M.; Yoshida, M.; and Okudaira, T. 2007. U-Pb SHRIMP dating of detrital zircons from the Nzilo Group (Kibaran Belt): Implications for the Source of sediments and Mesoproterozoic evolution of Central Africa. J. Geol. 115:99-113. [119]

Kolodner, K.; Avigad, D.; Ireland, T.R.; and Garfunkel, Z. 2009. Origin of Lower Cretaceous (‗Nubian‘) sandstones of North-east Africa and Arabia from detrital zircon U-Pb SHRIMP dating. Sedimentology. 56:2010-2023. Doi: 10.1111/j.1365-3091.2009.01067-x. [907]

Page 182: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

173

Kolodner, K.; Avigad, D.; McWilliams, M.; Wooden, J.L.; Weissbrod, T.; and Feinstein, S. 2006. Provenance of north Gondwana Cambrian-Ordovician sandstone: U-Pb SHRIMP dating of detrital zircons from Israel and Jordan. Geol. Mag. 143:367-391. [280]

Kong, P.; Granger, D.E.; Wu, F.-Y.; Caffee, M.W.; Wang, Y.-J.; Zhao, X.-T.; and Zheng, Y. 2009. Cosmogenic nuclide burial ages and provenance of the Xigenda paleo-lake: Implications for evolution of the Middle Yangtze River. Earth Planet. Sci. Lett. 278: 131-141. Doi: 10.1016/j.epsl.2008.12.003. [815]

Kontinen, A.; Käpyaho, A.; Huhma, H.; Karhu, J.; Matukov, D.I.; Larionov, A.; and Sergeev, S.A. 2007. Nurmes paragneisses in eastern Finland, Karelian craton: Provenance, tectonic setting and implications for Neoarchaean craton correlation. Precambrian Res. 152:119-148. [437]

Kopp, J.; Bankwitz, P.; and Naumann, R. 2002. Magmenentwicklung im Wirkungsfeld einer transregionalen Scherzone: Geochemie und Geochronologie der Metamorphite der Bohrung Schleusingen 3/63. Z.Geol.Wiss., Berlin 30:293-315. [1089]

Korsch, R.J.; Adams, C.J.; Black, L.P.; Foster, D.A.; Fraser, G.L.; Murray, C.G.; Foudoulis, C.; and Griffin, W.L. 2009. Geochronology and provenance of the Late Paleozoic accretionary wedge and Gympie Terrane, New England Orogen, eastern Australia. Aus. J. Earth Sci. 56:655-685. [916]

Kositcin, N.; Brown, S.J.A.; Barley, M.E.; Krapêz, B.; Cassidy, K.F.; and Champion, D.C. 2008. SHRIMP U-Pb zircon age constraints on the Late Archean tectonostratigraphic architecture of the Eastern Goldfields Superterrane, Yilgarn Craton, Western Australia. Precambrian Res. 161: 5-33. [616]

Kositcin, N., and Krapez, B. 2004, Relationship between detrital zircon age-spectra and the tectonic evolution of the Late Archaean Witwatersrand Basin, South Africa. Precambrian Res. 129:141-168. [9]

Page 183: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

174

Kŏsler, J.; Fonneland, H.; Sylvester, P.; Tubrett, M.; and Pedersen, R.-B. 2002. U-Pb dating of detrital zircons for sediment provenance studies—a comparison of laser ablation ICPMS and SIMS techniques. Chem. Geol. 182:605-618. [127]

Kozhevnikov, V.N.; Berezhnaya, N.G.; Presnyakov, S.L.; Lepekhina, E.N.; Antonov, A.V.; and Sergeev, S.A. 2006. Geochronology (SHRIMP II) of zircons from Archean stratotectonic associations of Karelian Greenstone Belts: Significance for stratigraphic and geodynamic reconstructions. Stratigr. Geol. Correl.14:240-259. [329]

Krapez, B.; Brown, S.J.A.; Hand, J.; Barley, M.E.; Cas, R.A.F. 2000. Age constraints on recycled crustal and supracrustal sources of Archaean metasedimentary sequences, Eastern Goldfields Province, Western Australia: Evidence from SHRIMP zircon dating. Tectonophysics. 322:89-133. [385]

Krapež, B., and Pickard, A.L. 2010. Detrital zircon age-spectra for Late Archaean synorogenic basins of the eastern Goldfields Superterrane, Western Australia. Precambrian Res. 178:91-118. Doi: 10.1016/j.precamres.2010.01.014. [1076]

Krogh, T.E., and Keppie, J.D. 1990. Age of detrital zircon and titanite in the Meguma Group, southern Nova Scotia, Canada: Clues to the origin of the Meguma terrane. Tectonophysics. 177:307-323. [82]

Kröner, A.; Braun, I.; and Jaeckel, P. 1996. Zircon geochronology of anatectic melts and residues from a high-grade politic assemblage at Ihosy, southern Madagascar: Evidence for Pan-African granulite metamorphism. Geol. Mag. 133: 311-325. [648]

Kröner, A.; Eyal, M.; and Eyal, Y. 1990. Early pan-African evolution of the basement around Elat, Israel, and the Sinai Peninsula revealed by single-zircon evaporation dating, and implications for crustal accretion rates. Geology. 18:545-548. [233]

Page 184: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

175

Kröner, A.; Jaeckel, P.; Hofmann, A.; Nemchin, A.A.; and Brandl, G. 1998. Field relationships and ages of supracrustal Beit Bridge Complex and associated granitoid gneisses in the Central Zone of the Limpopo Belt, South Africa. S.Af.J. Geol. 101:201-213. [1031]

Kröner, A.; Jaeckel, P.; and Williams, I.S. 1994. Pb-loss patterns in zircons from a high-grade metamorphic terrain as revealed by different dating methods: U-Pb and Pb-Pb ages for igneous and metamorphic zircons from northern Sri Lanka. Precambrian Res. 66: 151-181. [646]

Kröner, A.; Muhongo, S.; Hegner, E.; and Wingate, M.T.D. 2003. Single-zircon geochronology and Nd isotopic systematics of Proterozoic high-grade rocks from the Mozambique belt of southern Tanzania (Masasi area): Implications for Gondwana assembly. J. Geol. Soc. London, 160:745-757. [358]

Kröner, A., and Tegtmeyer, A. 1994. Gneiss-greenstone relationships in the Ancient Gneiss Complex of southwestern Swaziland, southern Africa, and implications for early crustal evolution. Precambrian Res. 67:109-139. [242]

Kröner, A.; Wendt, I.; Liew, T.C.; Compston, W.; Todt, W.; Fiala, J.; Vankova, V.; and Vanek, J. 1988. U-Pb zircon and Sm-Nd model ages of high-grade Moldanubian metasediments, Bohemian Massif, Czechoslovakia. Contrib. Mineral. Petrol. 99:257-266. [224]

Kröner, A.; Williams, I.S.; Compston, W.; Baur, N.; Vitanage, P.W.; and Perera, L.R.K. 1987. Zircon ion microprobe dating of high-grade rocks in Sri Lanka. J. Geol. 95:775-791. [645]

Kuznetsov, N.B.; Natapov, L.M.; Belousova, E.A.; O‘Reilly, S.Y.; and Griffin, W.L. 2010. Geochronological, geochemical and isotopic study of detrital zircon suites from late Neoproterozoic clastic strata along the NE margin of the East European Craton: Implications for plate tectonic models. Gondwana Res. 17: 583-601. Doi: 10.1016/j.gr.2009.08.005. [965]

Page 185: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

176

Kryza, R.; Zalasiewicz, J.; Mazur, S.; Aleksandrowski, P.; Sergeev, S.; and Larionov, A. 2007. Precambrian crustal contribution to the Variscan accretionary prism of the Kaczawa Mountains (Sudetes, SW Poland): evidence from SHRIMP dating of detrital zircons. Int. J. Earth Sci. 96:1153-1162. Doi:10.1007/s00531-006-0147-x. [114]

Laajoki, K., and Huhma. H. 2006. Detrital zircon dating of the Palaeoproterozoic Himmerkinlahti Member, Posio, northern Finland; lithostratigraphic implications. Bull. Geol. Soc. Finland. 78:177-182. [270]

Lahtinen, R.; Huhma, H.; Kähkönen, Y.; and Mänttäri, I. 2009. Paleoproterozoic sediment recycling during multiphase orogenic evolution in Fennoscandia, the Tampere and Pirkanmaa belts, Finland. Precambrian Res. 174:310-336. Doi: 10.1016/j.precamres.2009.08.008. [948]

Lahtinen, R.; Huhma, H.; Kontinen, A.; Kohonen, J.; Sorjonen-Ward, P. 2010. New constraints for the source characteristics, deposition and age of the 2.1-1.9 Ga metasedimentary cover at the western margin of the Karelian Province. Precambrian Res. 176:77-93. Doi:10.1016/j.precamres.2009.10.001. [1012]

Lahtinen, R.; Huhma, H.; and Kousa, J. 2002. Contrasting source components of the Paleoproterozoic Svecofennian metasediments: Detrital zircon U-Pb, Sm-Nd and geochemical data. Precambrian Res. 116:81-109. [125]

Lan, C.-Y.; Usuki, T.; Wang, K.-L.; Yui, T.-F.; Okamoto, K.; Lee, Y.-H.; Hirata, T.; Kon, Y.; Orihashi, Y.; Liou, J.G.; and Lee, C.-S. 2009. Detrital Zircon evidence for the antiquity of Taiwan. Geosci. J. 13:233-243. [982]

Lawrence, R.L. 2007. Testing for hydrodynamic fractionation of zircon populations in a sedimentary microenvironment. Unpublished B.S. thesis. Williams College, Williamstown. 84 pp. [941]

Page 186: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

177

Lawton, T.F.; Bradford, I.A.; Vega, F.J.; Gehrels, G.E.; and Amato, J.M. 2009. Provenance of Upper Cretaceous-Paleogene sandstones in the foreland basin system of the Sierra Madre Oriental, northeastern Mexico, and its bearing on fluvial dispersal systems of the Mexican Laramide Province. Geol. Soc. Am. Bull. 121:820-836. [880]

Le Guerroué, E.; Allen, P.A.; Cozzi, A.; Etienne, J.L.; and Fanning, C.M. 2006. 50 Myr recovery from the largest negative δ13C excursion in the Ediacaran ocean. Terra Nova. 18:147-153. [434]

Lease, R.O.; Burbank, D.W.; Gehrels, G.E.; Wang, Z.; and Yuan, D. 2007. Signatures of Mountain Building: Detrital zircon U/Pb ages from northeastern Tibet. Geology. 35:239-242. [158]

Leier, A.L.; DeCelles, P.G.; Kapp, P.; and Gehrels, G.E. 2007, Lower Cretaceous strata in the Lhasa terrane, Tibet, with implications for understanding the early tectonic history of the Tibetan Plateau, J. Sed. Res. 77:809-825. [467]

Leier, A.L.; Kapp, P.; Gehrels, G.E.; and DeCelles, P.G. 2007. Detrital zircon geochronology of Carboniferous-Cretaceous strata in the Lhasa terrane, southern Tibet. Basin Res. 19:361-378. doi:10.1111/j.1365-2117.2007.00330.x. [333]

Leite, J.A.D., and Saes, G.S. 2003, Geocronologia Pb/Pb de Zircões Detríticos e Análise Estratigráfica das Coberturas Sedimentares Proterozóicas do Sudoeste do Cráton Amazônico. Rev. Inst. Geocien –USP 3: 113-127. [680]

Lemieux, Y.; Thompson, R.I.; Erdmer, P.; Simonetti, A.; and Creaser, R.A. 2007. Detrital zircon geochronology and provenance of Late Proterozoic and mid-Paleozoic successions outboard of the miogeocline, southeastern Canadian Cordillera. Can. J. Earth Sci. 44:1675-1693. [475]

Lerouge, C.; Cocherie, A.; Toteu, S.F.; Penaye, J.; Milési, J.-P.; Tchameni, R.; Nsifa, E.N.; Fanning, C.M.; and Deloule, E. 2006. SHRIMP U-Pb zircon age evidence for

Page 187: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

178

Paleoproterozoic sedimentation and 2.05 Ga syntectonic plutonism in the Nyong Group, South-Western Cameroon: Consequences for the Eburnean-Transamazonian belt of NE Brazil and Central Africa. J. Afr. Earth Sci. 44:413-427. [432]

Leslie, A.G., and Nutman, A.P. 2003. Evidence for Neoproterozoic orogenesis and early high temperature Scandian deformation events in the southern East Greenland Caledonides. Geol. Mag. 140:309-333. [319]

Leslie, C.D. 2009. Detrital zircon geochronology and rift-related magmatism: Central Mackenzie Mountains, Northwest Territories. Unpublished MS thesis. University of British Columbia. Vancouver. 224 pp. [901]

Lewis, R.S.; Vervoort, J.D.; Burmeister, R.F.; McClelland, W.C.; and Chang, Z. 2007. Geochronological constraints on Mesoproterozoic and Neoproterozoic(?) high-grade metasedimentary rocks of north-central Idaho, U.S.A. In Proterozoic Geology of western North America and Siberia, SEPM Special Publication 86:37-53. [337]

Li, H.; Xu, Y.; Huang, X.; He, B.; Luo, Z.; and Yan, B. 2009. Activation of northern margin of the North China Craton in Late Paleozoic: Evidence from U-Pb dating and Hf isotopes of detrital zircons from the Upper Carboniferous Taiyuan Formation in the Ningwu-Jingle Basin. Chin. Sci. Bull. 54: 677-686. Doi: 10.1007/s11434-008-0444-9. [823]

Li, Q.; Chen, X.; Liu, S.; Wang, Z.; Zhou, Y.; Zhang, J.; and Wang, T. 2009. Evaluating the Provenance of Metasedimentary rocks of the Jiangxian Group from the Zhongtiao Mountains using whole-rock geochemistry and detrital zircon Hf Isotope. Acta Geol. Sinica. 83: 550-561. [909]

Li, Q.; Liu, S.; Wang, Z.; Chu, Z.; Song, B.; Wang, Y.; and Wang, T. 2008. Contrasting provenance of late Archean metasedimentary rocks from the Wutai Complex, North China Craton: Detrital zircon U-Pb, whole-rock Sm-Nd isotopic, and geochemical data. Int. J. Earth Sci. 97:443-458. doi: 10.1007/s00531-007-0170-6. [300]

Page 188: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

179

Li, Q.-L.; Chen, F.; Guo, J.-H.; Li, X.-H.; Yang, Y-H.; and Siebel, W. 2007. Zircon ages and Nd-Hf isotopic composition of the Zhaertai Group (Inner Mongolia): Evidence for early Proterozoic evolution of the northern North China block. J. Asian Earth Sci. 30:573-590. [178]

Li, R.; Li, S.; Jin, F.; Wan, Y.; and Zhang, S. 2004. Provenance of Carboniferous sedimentary rocks in the northern margin of Dabie Mountains, central China and the tectonic significance: Constraints from trace elements, mineral chemistry and SHRIMP dating of zircons. Sed. Geol. 166:245-264. [570]

Li, R.; Wan, Y.; Cheng, Z.; Zhou, J.; Li, S.; Jin, F.; Meng, Q.; Li, Z.; and Jiang, M. 2005. Provenance of Jurassic sediments in the Hefei Basin, east-central China and the contribution of high-pressure metamorphic rocks from the Dabie Shan. Earth Planet. Sci. Lett. 231:279-294. [1035]

Li, R.; Wang, Y.; Cheng, Z.; Zhou, J.; Xu, Y.; Li, Z.; and Jiang, M. 2005. The Dabie Orogen as the early Jurassic sedimentary provenance: Constraints from the detrital zircon SHRIMP U-Pb dating. Science in China Ser. D Earth Sciences. 48: 145-155. [548]

Li, X.-H.; Chen, F.; Guo, J.-H.; Li, Q.-L.; Xie, L.-W.; and Siebel, W. 2007. South China provenance of the lower-grade Penglai Group north of the Sulu UHP orogenic belt, eastern China: Evidence from detrital zircon ages and Nd-Hf isotopic composition. Geochem. J. 41:29-45. [462]

Li, X.-P.; Yang, Z.; Zhao, G.; Grapes, R.; and Guo, J. 2010(in press). Geochronology of Khondalite series rocks of the Jining Complex: Confirmation of depositional age and tectonometamorphic evolution of the North China Craton. Int. Geol. Rev. doi: 10.1080/00206810903548984. [1083]

Li, Y.P.; Li, J.Y.; Sun, G.; Zhu, Z.X.; and Yang, Z.Q. 2007. Basement of Junggar basin: Evidence from detrital zircons in sandstone of previous Devonian Kalamaili formation. Acta Petrol. Sinica. 23: 1577-1590. [900]

Page 189: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

180

Li. Z., and Peng, S. 2010. Detrital zircon geochronology and its provenance implications: Responses to Jurassic through Neogene basin-range interactions along northern margin of the Tarim Basin, Northwest China. Basin Res. 22:126-138. Doi:10.1111/j.1365-2117.2009.00440.x. [976]

Li, Z.; Peng, S.; Xu, C.; Han, Y.; and Zhai, M. 2009. U-Pb ages of the Paleozoic sandstone detrital zircons and their tectonic implications in the Tabeaksan basin, Korea. Acta Petrol. Sinica 25:182-192. [866]

Li, Z.-X.; Li, X.-H.; Zhou, H.; and Kinny, P.D. 2002. Grenvillian continental collision in south China: New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology. 30:163-166. [408]

Li, Z.-X.; Li, X.H.; Li, W.X.; and Ding, S. 2008. Was Cathaysia part of Proterozoic Laurentia? – new data from Hainan Island, South China. Terra Nova. 20:154-164. [525]

Li, Z.-X.; Wartho, J.-A.; Occhipinit, S.; Zhang, C.L.; Li, X.-H.; Wang, J.; and Bao, C. 2007. Early history of the eastern Sibao Orogen (South China) during the assembly of Rodinia: New mica 40Ar/39Ar dating and SHRIMP U-Pb detrital zircon provenance constraints. Precambrian Res. 159:79-94. doi:10.1016/j.precamres.2007.05.003. [261]

Liang, Y.-H.; Chung, S.-L.; Liu, D.; Xu, Y.; Wu, F.-Y.; Yang, J.-H.; Wang, Y.; Lo, C.-H. 2008. Detrital zircon evidence from Burma for reorganization of the eastern Himalayan river system. Am. J. Sci. 308: 618-638. [687]

Liati, A. 2005. Identification of repeated Alpine (ultra) high-pressure metamorphic events by U-Pb SHRIMP geochronology and REE geochemistry of zircon: the Rhodope zone of northern Greece. Contrib. Mineral. Petrol. 150: 608-630. [556]

Page 190: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

181

Liati, A.; Gebauer, D.; and Fanning, C.M. 2009. Geochronological evolution of HP metamorphic rocks of the Adula nappe, Central Alps, in pre-Alpine and Alpine subduction cycles. J. Geol. Soc. London. 166: 797-810. [903]

Link, P.K.; Fanning, C.M.; Lund, K.I.; and Aleinikoff, J.N. 2007. Detrital-zircon populations and provenance of Mesoproterozoic strata of east-central Idaho, U.S.A.: Correlation with Belt Supergroup of southwest Montanna. In Proterozoic Geology of western North America and Siberia, SEPM Special Publication 86:101-128. [338]

Linnemann, U.; Gehmlich, M.; Tichomirowa, M.; Buschmann, B.; Nasdala, L.; Jonas, P.; Lützner, H.; and Bombach, K. 2000. From Cadomian subduction to Early Palaeozoic rifting: the evolution of Saxo-Thuringia at the margin of Gondwana in the light of single zircon geochronology and basin development (Central European Variscides, Germany). In Franke, W.; Haak, V.; Oncken, O.; and Tanner, D. eds. Geological Society London Special Publication 179:131-153. [508]

Linnemann, U.; Gerdes, A.; Drost, K.; and Buschmann, B. 2007. The continuum between Cadomian orogenesis and opening of the Rheic Ocean: Constraints from LA-ICP-MS U-Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian zone, northeastern Bohemian Massif, Germany). In Linnemann, U.; Nance, R.D.; Kraft, P.; and Zulauf, G. eds. The evolution of the Rheic Ocean: From Avalonian-Cadomian active margin to Alleghenian-Variscan collision. Geological Society of America Special Paper 423: 61-96. [507]

Linnemann, U.; McNaughton, N.J.; Romer, R.L.; Gehmlich, M.; Drost, K.; Tonk, C. 2004. West African provenance for Saxo-Thuringia (Bohemian Massif): Did Armorica ever leave pre-Pangean Gondwana? – U/Pb-SHRIMP zircon evidence and the Nd-Isotopic record. Int. J. Earth Sci. 93:683-705. [248]

Linnemann, U.; Pereira, F.; Jeffries, T.E.; Drost, K.; and Gerdes, A. 2008. The Cadomian Orogeny and the opening of the Rheic Ocean: The diacrony of geotectonic processes constrained by LA-ICP-MS U-Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics. 461:21-43. Doi: 10.1016/j.tecto.2008.05.002. [569]

Page 191: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

182

Liu, D.Y.; Nutman, A.P.; Compston, W.; Wu, J.S.; and Shen, Q.H. 1992. Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean cratón. Geology 20:339-342. [1013]

Liu,F.; Gerdes, A.; Liou, J.G.; Xue, H.M.; and Liang, F.H. 2006. SHRIMP U-Pb zircon dating Sulu-Dabie dolomitic marble, Eastern China: constraints on prograde, ultrahigh-pressure and retrograde metamorphic ages. J. Metamorphic Geol. 24: 569-589. [564]

Liu, F.; Liou, J.G.; and Xu, Z. 2005. U-Pb SHRIMP ages recorded in the coesite-bearing zircon domains of paragneisses in the southwestern Sulu terrane, Eastern China: New interpretation. Amer. Min. 90: 790-800. [550]

Liu, L.; Zhang, A.; Chen, D.; Yang, J.; Luo, J.; and Wang, C. 2007. Implications based on LA-ICP-MS zircon U-Pb ages of ecologite and its country rock from Jianggalesayi Area, Altyn Tagh, China. Earth Sci. Front. 14: 98-107. [717]

Liu, X.; Gao, S.; Diwu, C.; and Ling, W. 2008. Precambrian crustral growth of Yangtze Craton as revealed by detrital zircon studies. Am. J. Sci. 308: 421-468. [716]

Liu, X.; Jahn, B.-M.; Dong, S.; Lou, Y.; and Cui, J. 2008. High-pressure metamorphic rocks from Tongbaishan, central China: U-Pb and 40Ar/39Ar age constraints on the provenance of protoliths and timing of metamorphism. Lithos. 105:301-318. Doi: 10.1016/j.lithos.2008.04.009. [640]

Liu, X.; Jahn, B.-M.; Zhao, Y.; Zhao, G.; and Liu, X. 2007. Geochemistry and geochronology of high-grade rocks from the Grove Mountains, East Antarctica: Evidence for an Early Neoproterozoic basement metamorphosed during a single Late Neoproterozoic/Cambrian tectonic cycle. Precambrian Res. 158: 93-118. [546]

Llanos, M.P.I.; Tait, J.A.; Popov, V.; and Abalmassova, A. 2005. Palaeomagnetic data from Ediacaran (Vendian) sediments of the Arkhangelsk region, NW Russia: An alternative

Page 192: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

183

apparent polar wander path of Baltica for the Late Proterozoic—Early Paleozoic. Earth Planet. Sci. Lett. 240: 732-747. [573]

Loehn, C.W. 2009. Monazite geochronology of the Madison mylonite zone and environs, southwestern Montana, with implications for Precambrian thermotectonic evolution of the northern Wyoming Province. Unpublished MS thesis. Virginia Polytechnic Institute and State University. 94 pp. [895]

Long, S.P.; Link, P.K.; Janecke, S.U.; Perkins, M.E.; and Fanning, C.M. 2006. Multiple phases of Tertiary extension and synextensional deposition of the Miocene-Pliocene Salt Lake Formation in an evolving supradetachment basin, Malad Range, southeast Idaho, U.S.A. Rocky Mountain Geology. 41:1-27. [57]

Long, X.; Sun, M.; Yuan, C.; Xiao, W.; Lin, S.; Wu, F.; Xia, X.; and Cai, K. 2007. Detrital zircon age and Hf isotopic studies for metasedimentary rocks from the Chinese Altai: Implications for the Early Paleozoic tectonic evolution of the Central Asian Orogenic Belt. Tectonics. 26: doi: 10.1029/2007TC002128. [457]

Long, X.; Yuan, C.; Sun, M.; Xiao, W.; Zhao, G.; Wang, Y.; Cai, K.; Xia, X.; and Xie, L. 2010. Detrital zircon ages and Hf isotopes of the early Paleozoic flysch sequence in the Chinese Altai, NW China: New constraints on depositional age, provenance and tectonic evolution. Tectonophysics. 480:213-231. Doi:10.1016/j.tecto.2009.10.013. [973]

Loos, S., and Reischmann, T. 1999. The evolution of the southern Menderes Massif in SW Turkey as revealed by zircon dating. J. Geol. Soc. London 156: 1021-1030. [696]

Lorenz, H.; Gee, D.G.; and Simonetti, A. 2008. Detrital zircon ages and provenance of the Late Neoproterozoic and Palaeozoic successions on Severnayaa Zemlya, Kara Shelf: A tie to Baltica. Nor. J. Geol. 88:235-258. [856]

Page 193: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

184

Loske, W.P.; Miller, H.; and Kramm, U. 1988. U-Pb systematics of detrital zircons from low-grade metamorphic sandstones of the Trinity Peninsula Group (Antartica). J. South Am. Earth Sci. 1:301-307. [262]

Lu, S.N.; Li, H.K.; Wang, H.C.; Chen, Z.H.; and Xiang, Z.Q. 2009. Detrital zircon population of Proterozoic metasedimentary strata in the Qinling-Qilian-Kunlun Orogen. Acta Petrol. Sin. 25:2195-2208. [1096]

Lund, K.; Aleinikoff, J.N.; Yacob, E.Y.; Unruh, D.M.; and Fanning, C.M. 2008. Coolwater culmination: Sensitive high-resolution ion microprobe (SHRIMP) U-Pb and isotopic evidence for continental delamination in the Syringa Embayment, Salmon River suture, Idaho. Tectonics. 27, TC2009, doi:10.1029/2006TC002071. [542]

Lundquist, R. 2006. Provenance analysis of the Marquette Range Supergroup sedimentary rocks from northwestern Wisconsin and western Michigan using U-Pb isotopic geochemistry on detrital zircons by LA-ICP-MS. Unpub. Senior Thesis, Carleton College, Northfield. [287]

Luo, Y.; Sun, M.; Zhao, G.; Li, S.; Xia, X. 2006. LA-ICP-MS U-Pb Zircon geochronology of the Yushulazi Group in the Eastern Block, North China Craton. Int. Geol. Rev. 48: 828-840. [668]

Luo, Y.; Sun, M.; Zhao, G.; Li, S.; Xu, P.; Ye, K.; and Xia, X. 2004. LA-ICP-MS U-Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton: Constraints on the evolution of the Jiao-Liao-Ji Belt. Precambrian Res. 134:349-371. [395]

Luo, Y.; Sun, M.; Zhao, G.; Li, S.; Ayers, J.C.; Xia, X.; and Zhang, J. 2008. A comparison of U-Pb and Hf isotopic compositions of detrital zircons from the North and South Liaohe Groups: Constraints on the evolution of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Res. 163: 279-306. Doi:10.1016/j.precamres.2008.01.002. [495]

Page 194: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

185

Maas, R.; Kinny, P.D.; Williams, I.S.; Froude, D.O.; and Compston, W. 1992. The Earth‘s oldest known crust: A geochronological and geochemical study of 3900-4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochim. Cosmochim. Ac. 56:1281-1300. [344]

Maas, R.; Nicholls, I.A.; Greig, A.; and Nemchin, A.A. 2001. U-Pb zircon studies of mid-crustal metasedimentary enclaves from the S-type Deddick Granodiorite, Lachlan Fold Belt, SE Australia. J. Petrol. 42:1429-1448. [443]

MacDonald, F.A.; McClelland, W.C.; Schrag, D.P.; and MacDonald, W.P. 2009. Neoproterozoic glaciation on a carbonate platform margin in Arctic Alaska and th origin of the North Slope subterrane. Geol. Soc. Am. Bull. 121:448-473. [814]

MacDonald, J.H. Jr. 2006. Petrology, Petrogenesis, and Tectonic setting of Jurassic rocks of the

Central Cascades, Washington, and Western Klamath Mountains, California-Oregon, Unpublished PhD Dissertation, State University of New York, Albany, 357 pp. [541]

Machado, N., and Gauthier, G. 1996. Determination of 207Pb/206Pb ages on zircon and monazite

by laser-ablation ICPMS and application to a study of sedimentary provenance and metamorphism in southeastern Brazil. Geochim. Et Coshmochem. Acta 60:5063-5073. [715]

Machado, N.; Schrank, A.; Noce, C.M.; and Gauthier, G. 1996. Ages of detrital zircon from Archean-Paleoproterozoic sequences: Implications for greenstone belt setting and evolution of a Transamazonian foreland basin in Quadrilátero Ferrífero, southeast Brazil. Earth Planet. Sci. Lett. 141:259-276. [218]

Machado, N.; Zwanzig, H.; and Parent, M. 1999. U-Pb ages of plutonism, sedimentation, and metamorphism of the paleoproterozoic Kisseynew metasedimentary belt, Trans-Hudson Orogen (Manitoba, Canada). Can. J. Earth Sci. 36:1829-1842. [1014]

Maclean, J.S. 2007. Detrital zircon geochronologic provenance analyses that test and expand the East Siberia—West Laurentia Rodinia reconstruction. Unpublished PhD. University of Montana. 206 pp. [854]

Page 195: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

186

Mahoney, J.B.; Mustard, P.S.; Haggart, J.W.; Friedman, R.M.; Fanning, C.M.; and McNicoll, V.J. 1999. Archean zircons in the Cretaceous strata of the western Canadian Cordillera: The ―Baja B.C.‖ hypothesis fails a ―crucial test‖. Geology. 27:195-198. [56]

Maidment, D.W.; Williams, I.S.; and Hand, M. 2007. Testing long-term patterns of basin sedimentation by detrital zircon geochronology, Centralian Superbasin, Australia. Basin Res. 19:335-360. [410]

Mallmann, G.; Chemale, F. Jr.; Ávila, J.N.; Kawashita, K.; and Armstrong, R.A. 2007. Isotope geochemistry and geochronology of the Nico Pérez Terrane, Rio de la Plata Craton, Uruguay. Gondwana Res. 12:489-508. Doi:10.1016/j.gr.2007.01.002. [372]

Malone, S.J.; Meert, J.G.; Banerjee, D.M.; Pandit, M.K.; Tamrat, E.; Kamenov, G.D.; Pradhan, V.R.; and Sohl, L.E. 2008. Paleomagnetism and detrital zircon geochronology of the Upper Vindhyan Sequence, Son Valley and Rajasthan, India: A ca. 1000 Ma Closure age for the Purana Basins? Precambrian Res. 164:137-159. [597]

Mänttäri, I. 2008. Mesoarchean to Lower Jurassic U-Pb and Sm-Nd ages from NW Mozambique. In Pekkala, Y.; Lehto, T.; and Mäkitie, H.(eds.) GTK Consortium Geological Surveys in Mozmambique 2002-2007. Geological Survey of Finland Special Paper 48: 81-119. [892]

Manuszak, J.D.; Ridgway, K.D.; Trop, J.M.; and Gehrels, G.E. 2007. Sedimenary record of the tectonic growth of a collisional continental margin: Upper Jurassic-Lower Cretaceous Nutzotin Mountains sequence, eastern Alaska Range, Alaska. GSA Special Paper 431:345-377. [482]

Manuszak, J.D.; Satterfield, J.I.; and Gehrels, G.E.. 2000. Detrital zircon geochronology of Upper Triassic strata in western Nevada. In Soreghan., M.J. and Gehrels, G.E., eds. Paleozoic and Triassic paleogeography and tectonics of western Nevada and northern California. Boulder, Colorado. Geological Society of America Special Paper 347:109-118. [147]

Page 196: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

187

Mapeo, R.B.M.; Armstrong, R.A.; and Kampunzu, A.B. 2001. SHRIMP U-Pb zircon geochronology of gneisses from the Gweta borehole, northeast Botswana: Implications for the Palaeoproterozoic Magondi Belt in southern Africa. Geol. Mag. 138:299-308. [258]

Mapeo, R.B.M.; Armstrong, R.A.; Kampunzu, A.B.; Modisi, M.P.; Ramokate, L.V.; and Modie, B.N.J. 2006. A ca. 200 Ma hiatus between the Lower and Upper Transvaal Groups of southern Africa: SHRIMP U-Pb detrital zircon evidence from the Segwaga Group, Botswana: Implications for Palaeoproterozoic glaciations. Earth Planet. Sci. Lett. 244:113-132. [135]

Mapeo, R.B.M.; Kampunzu, A.B.; and Armstrong, R.A. 2000. Ages of detrital zircon grains from Neoproterozoic siliciclastic rocks in the Shakawe area: implications for the evolution of Proterozoic crust in northern Botswana. S. Afr. J. Geol. 103:156-161. [27]

Mapeo, R.B.M.; Ramokate, L.V.; Armstrong, R.A.; and Kampunzu, A.B. 2004. U-Pb zircon age of the upper Palapye Group (Botswana) and regional implications. J. Afr. Earth Sci. 40:1-16. [98]

Mapes, R.W. 2009. Past and Present Provenance of the Amazon River. Unpublished Ph.D. dissertation. University of North Carolina at Chapel Hill. 185 pp. [964]

Martel, E.; van Breemen, O.; and Berman, R.G. 2008. Geochronology and tectonometamorphic history of the Snowbird Lake area, Northwest Territories, Canada: new insights into the architecture and significance of the Snowbird tectonic zone. Precambrian Res. 161: 201-230. doi:10.1016/j.precamres.2007.07.007. [357]

Martin, A.J. 2005. Tectonics of the southern Annapurna Range, Central Nepal Himalaya. Unpublished PhD dissertation. University of Arizona. 203 pp. [919]

Page 197: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

188

Martin, D. McB.; Sircombe, K.N.; Thorne, A.M.; Cawood, P.A.; and Nemchin, A.A. 2008. Provenance history of the Bangemall supergroup and implications for the Mesoproterozoic paleogeography of the West Australian Craton. Precambrian Res. 166:93-110. Doi: 10.1016/j.precamres.2007.07.027. [702]

Martin, J.R. 2008. Sedimentological and provenance constraints on the Late Paleozoic Gondwanan Ice Age in the Canning Basin (Western Australia) and Oman. Unpublished PhD dissertation. University of Manchester. 287 pp. [891]

Martin, M.W., and Walker, J.D. 1992. Extending the western North American Proterozoic and Paleozoic continental crust through the Mojave Desert. Geology. 20:753-756. [91]

Martin-Gombojav, N., and Winkler, W. 2008. Recycling of Proterozoic crust in the Andean Amazon foreland of Ecuador: Implications for orogenic development of the Northern Andes. Terra Nova. 20:22-31. [795]

Martinez-Catalan, J.R.; Fernandez-Suarez, J.; Jenner, G.A.; Belousova, E.; and Montes, A.D. 2004. Provenance constraints from detrital zircon U-Pb ages in the NW Iberian Massif: implications for Palaeozoic plate configuration and Variscan evolution. J. Geol. Soc. London. 161:463-476. [15]

Martinez-Catalan, J.R.; Fernandez-Suarez, J.; Meireles, C.; Gonzalez-Clavijo, E.; Belousova, E.; and Saeed, A. 2008. U-Pb detrital zircon ages in synorogenic deposits of the NW Iberian Massif (Variscan Belt); Interplay of Devonoian-Carboniferous sedimentation and thrust tectonics. J. Geol. Soc. London. 165:687-698. [582]

Martini, M.; Ferrari, L.; López-Martínez, M.; Cerca-Martínez, M.; Valencia, V.A.; and Serrano-Durán, L. 2009. Cretaceous-Eocene magmatism and Laramide deformation in southwestern Mexico: No role for terrane accretion. In Kay, S.M.; Ramos, V.A.; and Dickinson, W.R. (eds.). Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision. Geological Society of America Memoir 204: 151-182. [960]

Page 198: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

189

Martins, M.; Karfunkel, J.; Noce, C.M.; Babinski, M.; Pedrosa-Soares, A.C.; Sial, A.N.; and Liu, D.2008. A sequência pré-glacial do Grupo Macaúbas na area-tipo e o registro da abertura do rifte Araçuaí. Rev. Brasil. Geosci. 38:761-772. [1104]

Mason, A.J.; Temperley, S.; and Parrish, R.R. 2004. New light on the construction, evolution and correlation of the Langavat Belt (Lewisian Complex), Outer Hebrides, Scotland: Field, petrographic and geochronological evidence for an early Proterozoic imbricate zone. J. Geol. Soc. London. 161:837-848. [842]

Master, S.; Rainaud, C.; Armstrong, R.A.; Phillips, D.; and Robb, L.J. 2005. Provenance ages of the Neoproterozoic Katanga Supergroup (Central African Copperbelt), with implications for basin evolution. J. Afr. Earth Sci. 42:41-60. [44]

Matonia, K.J. 2009. U-Pb and Hf analysis of detrital zircons: Implications for provenance of the Earaheedy Basin, Capricorn. Geological Survey of Western Australia Record 2009/19. [1053]

Mattinson, C.G.; Wooden, J.L.; Zhang, J.X.; and Bird, D.K. 2009. Paragneiss zircon geochronology and trace element geochemistry, North Qaidam HP/UHP terrane, Western China. J. Asian Earth Sci. 35:298-309. doi: 10.1016/j.seaes.2008.12.007. [809]

Matzel, J.E.P.; Bowring, S.A.; and Miller, R.B. 2004. Protolith age of the Swakane Gneiss, North Cascades, Washington: Evidence of rapid underthrusting of sediments beneath an arc. Tectonics 23: doi:10.1029/2003TC001577. [595]

Mazur, S.; Aleksandrowski, P.; Turniak, K.; Krzemiński, L.; Mastalerz, K.; Górecka-Nowak, A.; Kurowski, L.; Krzywiec, P.; Żelaźniewicz, A.; and Fanning, M.C. 2008(in press). Uplift and late orogenic deformation of the Central European Variscan belt as revealed by sediment provenance and structural record in the Carboniferous foreland basin of western Poland. Int. J. Earth Sci. doi: 10.1007/s00531-008-0367-3. [784]

Page 199: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

190

Mazur, S.; Turniak, K.; and Bröcker, M. 2004. Neoproterozoic and Cambro-Ordovician magmatism in the Variscan Kłodzko Metamorphic Complex (West Sudetes, Poland): New insights from U/Pb zircon dating. Int. J. Earth Sci. 93:758-772. [320]

McArthur, K.L. 2007. Tectonic Reconstruction and sediment provenance of a far-traveled nappe, west-central Norway. Unpublished MS. University of Wyoming. 140 pp. [864]

McBride, S. 2008. Sediment provenance and tectonic significance of the Cretaceous Pirgua Subgroup, NW Argentina. Unpublished MS thesis, University of Arizona, 52 pp. [922]

McClung, C.R. 2006. Basin analysis of the Mesoproterozoic Bushmanland Group of the Namaqua Metamorphic Povince, South Africa. Unpublished Ph.D. dissertation. University of Johannesburg. 509 pp. [1063]

McConnell, B.; Riggs, N.; and Crowley, Q.G. 2009. Detrital zircon provenance and Ordovician terrane amalgamation, western Ireland. J. Geol. Soc. London. 166:473-484. [886]

McCourt, S.; Kampunzu, A.B.; Bagai, Z.; and Armstrong, R.A. 2004. The crustal architecture of Archaean terranes in northeastern Botswana. S. Afr. J. Geol. 107:146-158. [260]

McDaniel, D.K.; Sevigny, J.H.; Hanson, G.N.; and McLennan, S.M. 1997. Grenvillian provenance for the amphibolites-grade Trap Falls Formation: Implications for early Paleozoic tectonic history of New England. Can. J. Earth Sci. 34:1286-1294. [1033]

McDonough, M.R., and McNicoll, V.J. 1997. U-Pb age constraints on the timing of deposition of the Waugh Lake and Burntwood (Athabasca) groups, southern Taltson magmatic zone, northeastern Alberta. In Radiogenic Age and Isotopic Studies: Report 10. Geological Survey of Canada. 1997-F: 101-111. [387]

Page 200: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

191

McHugh, J.B. 2003. Microfaunal succession and Stratigraphy of the Bone Basin Member (Renova Formation) at McCarty‘s Mountain and Mantle Ranch, southwest Montana. Unpub. M.S. thesis. Idaho State University, Pocatello. [281]

McInnes, B.I.A.; Evans, N.J.; McDonald, B.J.; Kinny, P.D.; Jakimowicz, J. 2009. Zircon U-Th-Pb-He double dating of the Merlin Kimberlite field, Northern Territory, Australia. Lithos. 112S:592-599. Doi: 10.1016/j.lithos.2009.05.006. [912]

McLennan, S.M.; Bock, B.; Compston, W.; Hemming, S.R.; and McDaniel, D.K. 2001. Detrital zircon geochronology of Taconian and Acadian foreland sedimentary rocks in New England. J. Sediment. Res. 71:305-317. [14]

McNaughton, N.J.; Rasmussen, B.; and Fletcher, I.R. 1999. SHRIMP Uranium-lead dating of diagenetic xenotime in siliciclastic sedimentary rocks. Science. 285:78-80. [200]

McNicoll, V.J.; Harrison, J.C.; Trettin, H.P.; and Thorsteinsson, R. 1995. Provenance of the Devonian clastic wedge of Arctic Canada: Evidence provided by detrital zircon ages. In Dorobek, S.L. and Ross, G.M. (eds.) Stratigraphic Evolution of Foreland Basins, SEPM Special Publication 52:77-93. [438]

McQuarrie, N.; Robinson, D.; Long, S.; Tobgay, T.; Grujic, D.; Gehrels, G.; and Ducea, M. 2008. Preliminary stratigraphic and structural architecture of Bhutan: Implications for the along strike architecture of the Himalayan system. Earth Planet. Sci. Lett. 272:105-117. Doi: 10.1016/j.epsl.2008.04.030. [614]

Meffre, S.; Large, R.R.; Scott, R.; Woodhead, J.; Chang, Z.; Gilbert, S.E.; Danyushevsky, L.V.; Maslennikov, V.; Hergt, J.M. 2008. Age and pyrite Pb-isotopic composition of the giant Sukhoi Log sediment-hosted gold deposit, Russia. Geochim. Cosmochim. Acta. 72: 2377-2391. [618]

Page 201: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

192

Meffre, S.; Scott, R.J.; Glen, R.A.; and Squire, R.J. 2007. Re-evaluation of contact relationships between Ordovician volcanic belts and the quartz-rich turbidites of the Lachlan Orogen. Aus. J. Earth Sci. 54: 363-383. [661]

Meinhold, G., and Frei, D. 2008. Detrital zircon ages from the islands of Inousses and Psara, Aegean Sea, Greece: Constraints on depositional age and provenance. Geol. Mag. 145:886-891. [790]

Meinhold, G.; Kostopoulos, D.; Frei, D.; Himmerkus, F.; and Reischmann, T. 2009(in press). U-Pb LA-SF-ICP-MS zircon geochronology of the Serbo-Macedonian Massif, Greece: Palaeotectonic constraints for Gondwana-derived terranes in the Eastern Mediterranean. Int. J. Earth Sci. doi: 10.1007/s00531-009-0425-5. [798]

Meinhold, G.; Kostopoulos, D.; Reischmann, T.; Frei, D.; BouDagher-Fadel, M.K. 2009. Geochemistry, provenance and stratigraphic age of metasedimentary rocks from the eastern Vardar suture zone, northern Greece. Palaeogeograph. Palaeoclim. Palaeoecol. 277:199-225. Doi: 10.1016/j.palaeo.2009.04.005. [877]

Meinhold, G.; Reischmann, T.; Kostopoulos, D.; Lehnert, O.; Matukov, D.; and Sergeev, S. 2008. Provenance of sediments during subduction of Palaeotethys: Detrital zircon ages and olistolith analysis in Palaeozoic sediments from Chios Island, Greece. Palaeogeo. Palaeoclimat. Palaeco.263:71-91. Doi: 10.1016/j.paleo.2008.02.013. [584]

Melezhik, V.A.; Huhma, H.; Condon, D.J.; Fallick, A.E.; and Whitehouse, M.J. 2007. Temporal constraints on the Paleoproterozoic Lomagundi-Jatuli carbon isotopic event. Geology. 35:655-658. [328]

Melleton, J.; Cocherie, A.; Faure, M.; and Rossi, P. 2010. Precambrian protoliths and early Paleozoic magmatism in the French Massif Central: U-Pb data and the North Gondwana connection in the west European Variscan Belt. Gondwana Res. 17:13-25. Doi: 10.1016/j.gr.2009.05.007. [911]

Page 202: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

193

Mello, E.F.; Xavier, R.P.; McNaughton, N.J.; Hagemann, S.G.; Fletcher, I.; and Snow, L. 2006. Age constraints on felsic intrusions, metamorphism and gold mineralization in the Palaeoproterozoic Rio Itapicuru greenstone belt, NE Bahia State, Brazil. Miner. Deposita. 40:849-866. [772]

Meng, E.; Xu, W.-L.; Pei, F.-P.; Yang, D.-B.; Yu, Y.; and Zhang, X.-Z. 2010. Detrital zircon geochronology of Late Paleozoic sedimentary rocks in eastern Heilongjiang Province, NE China: Implications for the tectonic evolution of the eastern segment of the Central Asian Orogenic Belt. Tectonophysics. 485:42-51. Doi: 10.1016/j.tecto.2009.11.015. [1049]

Miao, L.; Liu, D.; Zhang, F.; Fan, W.; Shi, Y.; and Xie, H. 2007. Zircon SHRIMP U-Pb ages of the ―Xinghuadukou Group‖ in Hanjiayuanzi and Xinlin areas and the ―Zhalantun Group‖ in Inner Mongolia, Da Hinggan Mountains. Chin. Sci. Bull. 52:1112-1124. [821]

Micheletti, F.; Fornelli, A.; Piccareta, G.; Barbey, P.; and Tiepolo, M. 2008. The basement of Calabria (Southern Italy) within the context of the Southern European Variscides: LA-ICPMS and SIMS U-Pb zircon study. Lithos, 104:1-11. doi: 10.1016/j.lithos.2007.11.003. [461]

Mikes, T.; Baresel, B.; Kronz, A.; Frei, D.; Dunkl, I.; Tolosana-Delgado, R.; and von Eynatten, H. 2009. Jurassic granitoid magmatism in the Dinaride Neotethys: Geochronological Constraints from Detrital Minerals. Terra Nova. 21:495-506. [1015]

Mikes, T.; Christ, D.; Petri, R.; Dunkl, I.; Frei, D.; Baldi-Beke, M.; Reitner, J.; Wemmer, K.; Hrvatovic, H.; and von Eynatten, H. 2008. Provenance of the Bosnian Flysch. Swiss J. Geosci.101:S31-S54. [967]

Mil‘kevich, R.I.; Myskova, T.A.; Glebovitsky, V.A.; L‘vov, A.B.; and Berezhnaya, N.G. 2007. Kalikorva Structure and Its position in the system of the northern Karelian Greenstone belts: Geochemical and geochronological data. Geochem. Int. 45:428-450. [579]

Page 203: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

194

Miller, B.V.; Samson, S.D.; and D‘Lemos, R.S. 2001. U-Pb geochronological constraints on the timing of plutonism, volcanism, and sedimentation, Jersey, Channel Islands, UK. J. Geol. Soc. London. 158:243-252. [236]

Miller. C. Konzett, J.; Tiepolo, M.; Armstrong, R.A.; and Thöni, M. 2007. Jadeite-gneiss from the Eclogite zone, Tauern Window, Eastern Alps, Austria: Metamorphic, geochemical and zircon record of a sedimentary protolith. Lithos. 93: 68-88. [621]

Miller, E.L.; Soloviev, A.; Kuzmichev, A.; Gehrels, G.E.; Toro, J.; and Tuchkova, M. 2008. Jurassic and Cretaceous foreland basin deposits of the Russian Arctic: Separated by birth of the Makarov Basin? Nor. J. Geol. 88:201-226. [857]

Miller, E.L.; Toro, J.; Gehrels, G.E.; Amato, J.M.; Prokopiev, A.; Tuchkova, M.I.; Akinin, V.V.; Dumitru, T.A.; Moore, T.E.; and Cecile, M.P. 2006. New insights into Arctic paleogeography and tectonics from U-Pb detrital zircon geochronology. Tectonics. 25:TC3013. doi:10.1029/2005TC0001830. [188]

Miller, H.; Loske, W.; and Kramm, U. 1987. Zircon provenance and Gondwana Reconstruction: U-Pb Data of Detrital Zircons from Triassic Trinity Peninsula Formation Metasandstones. Polarforschung 57:59-69. [741]

Miller, M.L.; Bradley, D.C.; Bundtzen, T.K.; Blodgett, R.B.; Pessagno, E.A. Jr.; Tucker, R.D.; and Harris, A.G. 2007. The restricted Gemuk Group: A Triassic to Lower Cretaceous succession in southwestern Alasla. GSA Special paper 431: 273-305. [480]

Miller, M.M., and Saleeby, J.B. 1991. Continental detrital zircon in Carboniferous ensimatic arc rocks, Bragdon Formation, eastern Klamath terrane, northern California. Geol. Soc. Am. Bul. 103:268-276. [30]

Miller, M.M., and Saleeby, J.B. 1995. U-Pb geochronology of detrital zircon from Upper Jurassic synorogenic turbidites, Galice Formation, and related rocks, western Klamath

Page 204: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

195

Mountains: Correlation and Klamath Mountains provenance. J. Geophys. Res.100:18,045-18,058. [85]

Miller, N.; Johnson, P.R.; and Stern, R.J. 2008. Marine versus non-marine environments for the Jibalah Group, NW Arabian Shield: A sedimentological and geochemical survey and report of possible metazoan in the Dhaiqa Formation. Arab. J. Sci. Eng. 33(1C):55-77. [767]

Mishra, S.; Deomurari, M.P.; Wiedenbeck, M.; Goswami, J.N.; Ray, S.; and Saha, A.K. 1999. 207Pb/206Pb zircon ages and the evolution of the Singhbhum Craton, eastern India: an ion microprobe study. Precambrian Res. 93:139-151. [1016]

Miyamoto, T., and Yanagi, T. 1996. U-Pb dating of detrital zircons from the Sangun metamorphic rocks, Kyushu, Southwest Japan: An evidence for 1.9-2.0 Ga granite emplacement in the provenance. Geochem. J. 30:261-271. [693]

Moore, T.E.; Aleinikoff, J.N.; and Harris, A.G. 1997. Stratigraphic and structural implications of conodont and detrital zircon U-Pb ages from metamorphic rocks of the Coldfoot terrane, Brooks Range, Alaska. J. Geophys. Res. 102:20,797-20,820. [232]

Morales-Gámez, M.; Keppie, J.D.; and Norman, M. 2008. Ordovician-Silurian rift-passive margin on the Mexican margin of the Rheic Ocean overlain by Carboniferous-Permian periarc rocks: Evidence from the eastern Acatlán Complex, southern Mexico. Tectonophysics. 461:291-310. Doi: 10.1016/j.tecto.2008.01.014. [511]

Mori, H. 2009. Dinosaurian faunas of the Cedar Mountain Formation with detrital zircon ages for three stratigraphic sections and the relationship between the degree of abrasion and U-Pb-LA-ICP-MS ages of detrital zircons. Unpublished M.S. thesis. Brigham Young University, 102 pp. [1102]

Page 205: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

196

Morisani, A.M. 2006. Detrital zircon geochronology and petrography of Franciscan greywacke blocks at San Simeon, California: Implications for mélange genesis. Unpublished MS thesis. University of Texas at Austin, 391 pp. [873]

Mortimer, N.; Gans, P.B.; Palin, J.M.; Meffre, S.; Herzer, R.H.; and Skinner, D.N.B. 2010. Location and migration of Miocene-Quaternary volcanic arcs in the SW Pacific region. J. Volcan. Geotherm. Res. 190:1-10. Doi:10.1016/j.jvolgeores.2009.02.017. [845]

Morton, A.C.; Clauoé-Long, J.C.; and Berge, C. 1996. SHRIMP constraints on sediment provenance and transport history in the Mesozoic Statfjord Formation, North Sea. J. Geol. Soc. London. 153:915-929. [299]

Morton, A.C.; Clauoé-Long, J.C.; and Hallsworth, C.R. 2001. Zircon age and heavy mineral constraints on provenance of North Sea Carboniferous sandstones. Mar. Petrol. Geol. 18:319.337. [149]

Morton, A.C.; Fanning, M.; and Milner, P. 2008. Provenance characteristics of Scandinavian basement terrains: Constraints from detrital zircon ages in modern river sediments. Sediment. Geol. 210:61-85. Doi: 10.1016/j.sedgeo.2008.07.001. [623]

Morton, A.C.; Hallsworth, C.; Strogen, D.; Whitham, A.; and Fanning, M. 2009. Evolution of provenance in the NE Atlantic rift: The Early-Middle Jurassic succession in the Heidrun Field, Halten Terrace, offshore Mid-Norway. Mar. Petrol. Geol. 26:1100-1117. Doi:10.1016/j.marpetgeo.2008.07.006. [721]

Morton, A.C.; Hitchen, K.; Fanning, C.M.; Yaxley, G.; Johnson, H.; and Ritchie, J.D. 2009. Detrital zircon age constraints on the provenance of sandstones on Hatton Bank and Edoras Bank, NE Atlantic. J. Geol. Soc. London. 166:137-146. [810]

Morton, A.C.; Whitham, A.G.; and Fanning, C.M. 2005. Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea: Integration of heavy mineral, mineral chemical and zircon age data. Sediment. Geol. 182:3-28. [460]

Page 206: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

197

Morton, A.C.; Whitham, A.G.; Fanning, C.M.; and Claoué-Long, J.C. 2005. The role of East Greenland as a source of sediment to the Vøring Basin during the Late Cretaceous. In Onshore-offshore relationships on the North Atlantic Margin. Wandas, B. et al. (eds.). Norwegian Petroleum Society Special Publication 12: 83-110. [458]

Moser, D.E.; Bowman, J.R.; Wooden, J.; Valley, J.W.; Mazdab, F.; and Kita, N. 2008. Creation of a continent recorded in zircon zoning. Geology. 36:239-242. [515]

Moura, C.A.V.; Pinheiro, B.L.S.; Nogueira, A.C.R.; Gorayeb, P.S.S.; and Galarza, M.A. 2008. Sedimentary Provenance and palaeoenvironment of the Baixo Araguaia Supergroup: Constraints on the palaeogeographical evolution of the Araguaia Belt and Assembly of West Gondwana. Pankhurst, R.J.; Trouw, R.A.J.; Brito Neves, B.B. and De Wit, M.J. (eds.). West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region. Geological Society, London, Special Publications 294:173-196. [528]

Mueller, P.A.; Burger, H.R.; Wooden, J.L.; Heatherington, A.L.; Mogk, D.W.; D‘Arcy, K. 2004. Age and evolution of the Precambrian crust of the Tobacco Root Mountains, Montana. In Brady, J.B.; Burger, H.R.; Cheney, J.T.; and Harms, T.A. (eds.). Precambrian Geology of the Tobacco Root Mountains, Montana. Geological Society of America Special Paper 377:181-202. [1036]

Mueller, P.A.; Foster, D.A.; Mogk, D.W.; Wooden, J.L.; Kamenov, G.D.; and Vogl, J.J. 2007. Detrital mineral chronology of the Uinta Mountain Group: Implications for the Grenville flood in southwestern Laurentia. Geology. 35:431-434. [180]

Mueller, P.A.; Heatherington, A.L.; Wooden, J.L.; Shuster, R.D.; Nutman, A.P.; Williams, I.S. 1994. Precambrian zircons from the Florida basement: A Gondwanan connection. Geology. 22:119-122. [284]

Page 207: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

198

Mueller, P.A.; Kamenov, G.D.; Heatherington, A.L.; and Richards, J. 2008. Crustal Evolution in the Southern Appalachian Orogen: Evidence from Hf Isotopes in Detrital Zircons. J. Geol. 116: 414-422. [638]

Müeller, S.G. 2005. The tectonic evolution and volcanism of the Lower Wyloo Group, Ashburton Province, with timing implications for giant iron-ore deposits of the Hammersley Province, Western Australia. Unpublished PhD Dissertation, University of Western Australia, 156 pp. [536]

Murgulov, V.; Beyer, E.; Griffin, W.L.; O‘Reilly, S.Y.; Walters, S.G.; and Stephens, D. 2007. Crustal evolution in the Georgetown Inlier, North Queensland, Australia: A detrital zircon grain study. Chem. Geol. 245:198-218. [512]

Murphy, D.C.; Mortensen, J.K.; Piercey, S.J.; Orchard, M.J.; and Gehrels, G.E. 2006. Mid-Paleozoic to early Mesozoic tectonostratigraphic evolution of Yukon-Tanana and Slide Mountain terranes and affiliated overlap assemblages, Finlayson Lake massive sulphide district, southeastern Yukon. In Colpron, M., and Nelson, J.L. eds. Paleozoic Evolution and Metallogy of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera. St. John‘s, Newfoundland. Geological Association of Canada Special Paper 45:75-105. [186]

Murphy, J.B.; Fernandez-Suarez, J.; Keppie, J.D.; and Jeffries, T.A. 2004. Contiguous rather than discrete Palezoic histories for the Avalon and Meguma terranes based on detrital zircon data. Geology. 32:585-588. [391]

Murphy, J.B.; Fernandez-Suarez, J.; and Jeffries, T.A. 2004. Lithogeochemical and Sm-Nd and U-Pb isotope data from the Silurian-Lower Devonian Arisaig Group clastic rocks, Avalon terrane, Nova Scotia: A record of terrane accretion in the Appalachian-Caledonide orogen. Geol. Soc. Am. Bull. 116:1183-1201. [707]

Murphy, J.B.; Fernandez-Suarez, J.; Jeffries, T.A.; and Strachan, R.A. 2004. U-Pb (LA-ICP-MS) dating of detrital zircons from Cambrian clastic rocks in Avalonia: Erosion of a

Page 208: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

199

Neoproterozoic arc along the northern Gondwanan margin. J. Geol. Soc. London. 161:243-254. [28]

Murphy, J.B., and Hamilton, M.A. 2000. Orogenesis and basin development: U-Pb detrital zircon age constraints on evolution of the Late Paleozoic St. Marys Basin, central mainland Nova Scotia. J. Geol. 108:53-71. [229]

Murphy, J.B.; Keppie, J.D.; Nance, R.D.; Miller, B.V.; Dostal, J.; Middleton, M.; Fernandez-Suarez, J.; Jeffries, T.E.; and Storey, C.D. 2006. Geochemistry and U-Pb protolith ages of eclogitic rocks of the Asís Lithodeme, Piaxtla Suite, Acatlán Complex, southern Mexico: tectonothermal activity along the southern margin of the Rheic Ocean. J. Geol. Soc. London 163:683-695. [1046]

Mustard, P.S.; Parrish, R.R.; and McNicoll, V.J. 1995. Provenance of the Upper Cretaceous Nanamimo Group, British Columbia: Evidence from U-Pb analyses of detrital zircons. In Dorobek, S.L. and Ross, G.M. (eds.) Stratigraphic Evolution of Foreland Basins, SEPM Special Publication 52:65-76. [439]

Myrow, P.M.; Hughes, N.C.; Searle, M.P.; Fanning, C.M.; Peng, S.-C.; and Parcha, S.K. 2009. Stratigraphic correlation of Cambrian-Ordovician deposits along the Himalaya: Implications for the age and nature of rocks in the Mount Everest Region. Geol. Soc. Am. Bull. 120:323-332. Doi: 10.1130/B26384.1. [805]

Naha, K.; Srinivasan, R.; Gopalan, K.; Pantulu, G.V.; Subba Rao, M.V.; Vresky, A.B.; and Bogomolov, Y.S. 1993. The nature of the basement in the Archaean Dharwar craton of southern India and the age of the Peninsular Gneiss. Proc. Indian Acad. Sci. 102:547-565. [766]

Naidoo, T. 2007. Provenance of the Neoproterozoic to Early Paleozoic Successions of the Kango Inlier, Saldania Belt, South Africa. Unpublished MS thesis, University of Johannesburg. 273 pp. [969]

Page 209: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

200

Naipauer, M.; Vujovich, G.I.; Cingolani, C.A.; and McClelland, W.C. 2010. Detrital zircon analysis from the Neoproterozoic-Cambrian sedimentary cover (Cuyania terrane), Sierra de Pie de Palo, Argentina: Evidence of a rift and passive margin system? J. South Am. Earth Sci. 29:306-326. doi: 10.1016/j.jsames.2009.10.001. [1060]

Najman, Y.; Bickle, M.; BouDagher-Fadel, M.; Carter, A.; Garzanti, E.; Paul, M.; Wijbrans, J.; Willett, E.; Oliver, G.; Parrish, R.; Akhter, S.H.; Allen, R.; Ando, S.; Chistry, E.; Reisberg, L.; and Vezzoli, G. 2008. The Paleogene record of Himalayan erosion: Bengal Basin, Bangledash. Earth Planet. Sci. Lett. 273: 1-14. [684]

Nance, R.D.; Fernández-Suárez, J.; Keppie, J.D.; Storey, C.; and Jeffries, T.E. 2007. Provenance of the Granjeno Schist, Ciudiad Victoria, Mexico: Detrital zircon U-Pb age constraints and implications for the Paleozoic paleogeography of the Rheic Ocean In. Linnemann, U.; nance, R.D.; Kraft, P.; and Zulauf, G. eds. GSA Special Paper 423: 453-464. [499]

Nascimento, M.d.S.; Góes, A.M.; Macambira, M.J.B.; and Brod, J.A. 2007. Provenance of Albian sandstones in the São Luis-Grajaú Basin (northern Brazil) from evidence of Pb-Pb zircon ages, mineral chemistry of tourmaline and palaeocurrent data. Sediment. Geol. 201:1-42. Doi:10.1016/j.sedgeo.2007.04.005. [373]

Nebel-Jacobsen, Y.; Scherer, E.E.; Münker, C.; and Mezger, K. 2005. Separation of U, Pb, Lu, and Hf from single zircons for combined U-Pb dating and Hf isotope measurements by TIMS and MC-ICPMS. Chem. Geol. 220: 105-120. [559]

Nelson, D.R. 1995. Compilation of SHRIMP U-Pb zircon geochronology data, 1994. Geological Survey of Western Australia Record 1995/3. 251 pp.

Nelson, D.R. 1996. Compilation of SHRIMP U-Pb zircon geochronology data, 1995. Geological Survey of Western Australia Record 1996/5. 175 pp. [205]

Nelson, D.R. 1997. Compilation of SHRIMP U-Pb zircon geochronology data, 1996. Geological Survey of Western Australia Record 1997/2. 196 pp. [206]

Page 210: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

201

Nelson, D.R. 1998. Compilation of SHRIMP U-Pb zircon geochronology data, 1997. Geological Survey of Western Australia Record 1998/2. 249 pp. [207]

Nelson, D.R. 2000 Compilation of SHRIMP U-Pb zircon geochronology data, 1999. Geological Survey of Western Australia Record 2000/2. 258 pp. [208]

Nelson, D.R. 2001 Compilation of SHRIMP U-Pb zircon geochronology data, 2000. Geological Survey of Western Australia Record 2001/2. 212 pp. [209]

Nelson, D.R. 2002 Compilation of SHRIMP U-Pb zircon geochronology data, 2001. Geological Survey of Western Australia Record 2002/2. 291 pp. [210]

Nelson, J., and Gehrels, G.E. 2007. Detrital zircon geochronology and provenance of the southeastern Yukon-Tanana terrane. Can. J. Earth Sci. 44:297-316. [183]

Neubauer, F.; Frisch, W.; and Hansen, B.T. 2002. Early Paleozoic tectonothermal events in basement complexes of the eastern Greywacke Zone (Eastern Alps): Evidence from U-Pb zircon data. Int. J. Earth Sci. 91: 775-786. [672]

Neubauer, F.; Klötzli, U.S.; and Poscheschnik, P. 2001. Cadomian magmatism in the Alps recorded in Late Orodovician sandstones of the Carnic Alps: Preliminary results from zircon Pb/Pb evaporation dating. Schwiez. Mineral. Petrogr. Mitt. 81:175-179. [1022]

Neumann, N.L.; Gibson, G.M.; and Southgate, P.N. 2009. New SHRIMP age constraints on the timing and duration of magmatism and sedimentation in the Mary Kathleen Fold Belt, Mt Isa Inlier, Australia. Aus. J. Earth Sci. 56:965-983. [951]

Page 211: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

202

Neumann, N.L.; Southgate, P.N.; and Gibson, G.M. 2009. Defining unconformities in Proterozoic sedimentary basins using detrital geochronology and basin analysis – An example from the Mount Isa Inlier, Australia. Precambrian Res. 168:149-166. [829]

Neumann, N.L.; Southgate, P.N.; Gibson, G.M.; and McIntyre, A. 2006. New SHRIMP geochronology for the Western Fold Belt of the Mt Isa Inlier: Developing a 1800-1650 Ma event framework. Aus. J. Earth Sci. 53:1023-1039. [161]

Neves, S.P.; Bruguier, O.; da Silva, J.M.R.; Bosch, D.; Alcantara, V.C.; and Lima, C.M. 2009. The age distribution of detrital zircons in metasedimentary sequences in eastern Borborema Province (NE Brazil): Evidence for intracontinental sedimentation and orogenesis? Precambrian Res. 175:187-205. Doi: 10.1016/j.precamres.2009.09.009. [958]

Neves, S.P.; Bruguier, O.; Vauchez, A.; Bosch, D.; da Silva, J.M.R.; and Mariano, G. 2006. Timing of crust formation, deposition of supracrustal sequences, and Transamazonian and Brasiliano metamorphism in the East Pernambuco belt (Borborema Province, NE Brazil): Implications for western Gondwana assembly. Precambrian Res. 149: 197-216. [678]

Nguema Mve, O.P. 2005. Petrology, geochronology and provenance of the Laingsburg and Tanqua Karoo submarine fan systems, Ecca Group, South Africa. Unpublished PhD dissertation, University of Stellenbosch, 259 pp. [540]

Nhleko, N. 2003 The Pongola Supergroupin Swaziland, PhD Dissertation, Rand Afrikaans University, 299 pp. [492]

Nicolayson, K.; Bowring, S.A.; Frey, F.; Weis, D.; Ingle, S.; Pringle, M.S.; Coffin, M.F.; Leg 183 Shipboard Scientific Party. 2001. Provenance of Proterozoic garnet-biotite gneiss recovered from Elan Bank, Kerguelen Plateau, southern Indian Ocean. Geology. 29:235-238. [294]

Page 212: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

203

Nishiya, T.; Watanabe, T.; Yokoyama, K.; Kuramoto, Y. 2003. New isotopic constraints on the age of the Halls Reward Metamorphics, North Queensland, Australia: Delamerian Metamorphic Ages and Grenville Detrital Zircons. Gondwana Res. 6: 241-249. [673]

Noguera, M.I. 2009. Analysis of provenance of Late Cretaceous – Eocene turbidite sequences in northern Venezuela, tectonic implications on the evolution of the Caribbean. Unpublished M.S. thesis. University of Georgia. Athens, GA, 202 pp. [1044]

Nourse, J.A.; Premo, W.R.; Iriondo, A.; and Stahl, E. 2005. Contrasting Proterozoic basement complexes near the truncated margin of Laurentia, northwestern Sonora-Arizona international border region. In Andersen, T.H.; Nourse, J.A.; McKee, J.W.; and Steiner, M.B. (eds.). The Mojave-Sonora megashear hypothesis: Development, assessment, and alternatives. Geological Society of America Special Paper 393:123-182. [734]

Nutman, A.P. 2001. On the scarcity of >3900 Ma detrital zircons in ≥3500 Ma metasediments. Precambrian Res. 105:93-114. [705]

Nutman, A.P.; Bennett, V.C.; Friend, C.R.L.; and Rosing, M.T. 1997. ~3710 and ≥3790 Ma volcanic sequences in the Isua (Greenland) supracrustal belt; structural and Nd isotope implications. Chem. Geol. 141:271-287. [879]

Nutman, A.P.; Chadwick, B.; Ramakrishnan, M.; and Viswanatha, M.N. 1992. SHRIMP U-Pb ages of detrital zircon in Sargur supracrustal rocks in Western Karnataka, Southern India. J. Geol. Soc. India. 39:367-374. [99]

Nutman, A.P.; Christiansen, O.; and Friend, C.R.L. 2007. 2635 Ma amphibolites facies gold mineralization near a terrane boundary (suture?) on Storø, Nuuk region, southern West Greenland. Precambrian Res. 159: 19-32. [660]

Nutman, A.P.; Cordani, U.G.; and Sabaté, P. 1994. SHRIMP U-Pb ages of detrital zircons from the early Proterozoic Contendas-Mirante supracrustal belt, São Francisco Craton, Bahia, Brazil. J. South Am. Earth Sci. 7:109-114. [246]

Page 213: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

204

Nutman, A.P.; Dawes, P.R.; Kalsbeek, F.; and Hamilton, M.A. 2008. Palaeoproterozoic and Archaean gneiss complexes in northern Greenland: Palaeoproterozoic terrane assembly in the High Arctic. Precambrian Res. 161:419-451. [727]

Nutman, A.P.; Friend, C.R.L.; Barker, S.L.L.; and McGregor, V.R. 2004. Inventory and assessment of Palaeoarchaean gneiss terrains and detrital zircons in southern West Greenland. Precambrian Res. 135:281-314. [441]

Nutman, A.P.; Friend, C.R.L.; and Bennett, V.C. 2002. Evidence for 3650-3600 Ma assembly of the northern end of the Itsaq Gneiss Complex, Greenland: Implication for early Archaean tectonics. Tectonics. 21, doi:10.1029/2000TC001203. [878]

Nutman, A.P.; Friend, C.R.L.; and Paxton, S. 2009. Detrital zircon sedimentary provenance ages for the Eoarchaean Isua supracrustal belt southern West Greenland: Juxtaposition of an imbricated ca. 3700 Ma juvenile arc against an older complex with 3940-3800 Ma components. Precambrian Res. 172:212-233. Doi:10.1016/j.precamres.2009.03.019. [870]

Nutman, A.P.; Kalsbeek, F.; and Friend, C.R.L. 2008. The Nagssugtoqidian orogen in south-east Greenland: Evidence for Paleoproterozoic collision and plate assembly. Am. J. Sci. 308: 529-572. [689]

Nutman, A.P.; Kalsbeek, F.; Marker, M.; van Gool, J.A.M.; and Bridgwater, D. 1999. U-Pb zircon ages of Kangâmiut dykes and detrital zircons in metasediments in the Palaeoproterozoic Nagssugtoqidian Orogen (West Greenland): Clues to the pre-collisional history of the orogen. Precambrian Res. 93:87-104. [394]

Nutman, A.P.; McGregor, V.R.; Friend, C.R.L.; Bennett, V.C.; and Kinny, P.D. 1996. The Itsaq Gneiss Complex of southern West Greenland; the world‘s most extensive record of early crustal evolution (3900 – 3600 Ma). Precambrian Res. 78:1-39. [1045]

Page 214: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

205

Oberc-Dziedzic, T.; Klimas, K.; Kryza, R.; and Fanning, C.M. 2003. SHRIMP U-Pb zircon geochronology of the Strezlin gneiss, SW Poland: Evidence for a Neoproterozoic thermal event in the Fore-Sudetic Block, Central European Variscides. Int. J. Earth Sci. 92:701-711. [737]

O‘brien, P.J.; Kröner, A.; Jaeckel, P.; Hegner, E.; Żelaźniewicz, A.; and Kryza, R. 1997. Petrological and isotopic studies on Palaeozoic high-pressure granulites, Góry Sowie Mts, Polish Sudetes. J. Petrol. 38:433-456. [783]

Ohta, Y.; Larionov, A.N.; and Tebenkov, M. 2003. Single-grain zircon dating of the metamorphic and granitic rocks from the Biscayarhalvøya-Holtedahlfonna zone, north-west Spitsbergen. Polar Res. 22: 247-265. [663]

Okamoto, K.; Shinjoe, H.; Katayama, I.; Terada, K.; Sano, Y.; and Johnson, S. 2004. SHRIMP U-Pb zircon dating of quartz-bearing eclogite from the Sanbagawa Belt, south-west Japan: Implications for metamorphic evolution of subducted protolith. Terra Nova. 16:81-89. [310]

Okay, A.I.; Satr, M.; and Shang, C.K. 2008. Ordovician metagranitoid from the Anatolide-Tauride Block, northwest Turkey: Geodynamic implications. Terra Nova. 20:280-288. [768]

Oliver, N.H.S.; Bodorkos, S.; Nemchin, A.A.; Kinny, P.D.; and Watt, G.R. 1999. Relationship between zircon U-Pb SHRIMP ages and leucosome type in migmatites of the Halls Creek Orogen, Western Australia. J. Petrol. 40:1553-1575. [1017]

Ootes, L.; Davis, W.J.; Bleeker, W.; and Jackson, V.A. 2009. Two distinct ages of Neoarchean turbidites in the Western Slave Craton: Further evidence and implications for a possible back-arc model. J. Geol. 117:15-36. [881]

Ootes, L.; Davis, W.J.; and Jackson, V.A. 2006. Two turbidite sequences in the Russell Lake—Mosher Lake area: SHRIMP U-Pb detrital zircon evidence and correlations in the south-

Page 215: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

206

western Slave craton, Northwest Territories. Geological Survey of Canada Current Research 2006-A7. 15 pp. [755]

Ortega-Obregon, C.; Keppie, J.D.; Murphy, J.B.; Lee, J.K.W.; and Ortega-Rivera, A. 2009. Geology and geochronology of Paleozoic rocks in western Acatlán Complex, southern Mexico: Evidence for contiguity across an extruded high-pressure belt and constraints on Paleozoic reconstructions. Geol. Soc. Am. Bull. 121:1678-1694. [945]

Page, R.W.; Jackson, M.J.; and Krassay, A.A. 2000. Constraining sequence Stratigraphy in north Australian basins: SHRIMP U-Pb zircon geochronology between Mt Isa and McArthur River. Aus. J. Earth Sci. 47:431-459. [204]

Page, R.W.; Stevens, B.P.J.; and Gibson, G.M. 2005. Geochronology of the sequence hosting the Broken Hill Pb-Zn-Ag Orebody, Australia. Econ. Geol. 100:633-661. [1042]

Page, R.W., and Sun, S.-S. 1998. Aspects of geochronology and crustal evolution in the Eastern Fold Belt, Mt. Isa Inlier. Aus. J. Earth Sci. 45:343-61. [401]

Palmer, E.F. 2008. Rock, till, and ice: A provenance study of the Byrd Glacier and the central and western Ross Sea, Antarctica. Unpublished MS thesis, Indiana University, 191 pp. [743]

Palmer, S.E.; Kyser, T.K.; and Hiatt, E.E. 2004. Provenance of the Proterozoic Thelon Basin, Nunavut, Canada, from detrital zircon geochronology and detrital quartz oxygen isotopes. Precambrian Res. 129:115-140. [45]

Pankhurst, R.J.; Rapela, C.W.; Fanning, C.M.; and Márquez, M. 2006. Gondwanide continental collision and the origin of Patagonia. Earth Sci. Rev. 76:235-257. [427]

Page 216: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

207

Pankhurst, R.J.; Rapela, C.W.; Loske, W.P.; Márquez, M.; and Fanning, C.M. 2003. Chronological study of the pre-Permian basement rocks of southern Patagonia. J. South Amer. Earth Sci. 16: 27-44. [544]

Park, H.; Barbeau, D.L. Jr.; Richardson, A.; Bachmann-Krug, D.; and Gehrels, G. 2010. Application of Foreland Basin detrital-zircon geochronology to the reconstruction of the Southern and Central Appalachian Orogen. J. Geol. 118:23-44. [1024]

Parrish, R.R., and Hodges, K.V. 1996. Isotopic constraints on the age and provenance of the Lesser and Greater Himalayan sequences, Nepalese Himalaya. Geol. Soc. Am. Bull. 108: 904-911. [398]

Payne, J.L. 2008. Palaeo- to Mesoproterozoic Evolution of the Gawler Craton, Australia: Geochronological, geochemical, and isotopic constraints. Unpublished PhD dissertation. University of Adelaide. 188 pp. [931]

Pease, V., and Scott, R.A. 2009. Crustal affinities in the Arctic Uralides, northern Russia: Significance of detrital zircon ages from Neoproterozoic and Palaeozoic sediments in Novaya Zemlya and Taimyr. J. Geol. Soc. London. 166:517-527. [875]

Pederson, R.B.; and Dunning, G.R. 1993. Provenance of turbiditic cover to the Caledonian Solund-Stavfjord ophiolite from U-Pb single zircon dating. J. Geol. Soc. London 150:673-676. [1107]

Pederson, S.; Andersen, T.; Konnerup-Madsen, J.; and Griffin, W.L. 2009. Recurrent mesoproterozoic continental magmatism in South-Central Norway. Int. J. Earth Sci. 98: 1151-1171. doi: 10.1007/s00531-008-0309-0. [622]

Pedrosa-Soares, A.C.; Cordani, U.G.; and Nutman, A. 2000. Constraining the age of Neoproterozoic glaciation in eastern Brazil: First U-Pb (SHRIMP) data of detrital zircons. Rev. Bras. Geos. 30:58-61. [247]

Page 217: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

208

Pell, S.D. 1994. The Provenance of the Australian Continental Dunefields. Unpub. Ph.D. dissertation, Australian National University, Canberra. [325]

Percival, J.A.; McNicoll, V.; and Bailes, A.H. 2006. Strike-slip juxtaposition of ca. 2.72 Ga juvenile arc and >2.98 Ga continent margin sequences and its implications for Archean terrane accretion, western Superior Province, Canada. Can. J. Earth Sci. 43:895-927. [720]

Pereira. M.F.; Chichorro, M.; Williams, I.S.; and Silva, J.B. 2008. Zircon U-Pb geochronology of paragneisses and biotite granites from the SW Iberian Massif (Portugal): Evidence for a palaeogeographical link between the Ossa-Morena Ediacaran basins and the West African craton. In Ennih, N., and Légeois, J.P. (eds.). The Boundaries of the West African Craton. Geological Society of London Special Publications 297: 385-408. [634]

Pereira, M.F.; Silva, J.B.; Drost, K.; Chichorro, M.; and Apraiz, A. 2010. Relative timing of transcurrent displaments in northern Gondwana: U-Pb laser ablation ICP-MS zircon and monazite geochronology of gneisses and sheared granites from the western Iberian Massif (Portugal). Gondwana Res. 17:461-481. Doi:10.1016/j.gr.2008.08.006. [970]

Perry, S.E. 2006. Thermochronology and provenance of the Yakutat terrane, southern Alaska based on fission-track and U/Pb analysis of detrital zircon. Unpublished MS thesis, University at Albany, State University of New York. 376 pp. [885]

Pertoldová, J.; Týcová, P.; Verner, K.; Košuličová, M.; Pertold, Z.; Košler, J.; Konopásek, J.; and Pudilova, M. 2009. Metamorphic history of skarns, origin of their protolith and implications for genetic interpretation; an example from three units of the Bohemian Massif. J. Geosci. 54:101-134. [962]

Perttunen, V., and Vaasjoki, M. 2001. U-Pb geochronology of the Peräpohja Schist Belt, northwestern Finland. In Vaasjoki, M. ed. Radiometric age determinations from Finnish

Page 218: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

209

Lapland and their bearing on the timing of Precambrian volcano-sedimentary sequences. Geological Society of Finland, Special Paper 33:45-84. [302]

Petersen, N.T.; Smith, P.L.; Mortensen, J.K.; Creaser, R.A.; and Tipper, H.W. 2004. Provenance of Jurassic sedimentary rocks of south-central Quesnellia, British Columbia: Implications for paleogeography. Can. J. Earth Sci. 41:103-125. [61]

Pettersson, Å.; Cornell, D.H.; Moen, H.F.G.; Reddy, S.; and Evans, D. 2007. Ion-probe dating of 1.2 Ga collision and crustal architecture in the Namaqua-Natal Province of southern Africa. Precambrian Res. 158:79-92. [374]

Pettersson, C.H.; Pease, V.; and Frei, D. 2009. U-Pb zircon provenance of metasedimentary basement of the Northwestern Terrane, Svalbard: Implications for the Grenvillian-Sveconorwegian orogeny and development of Rodinia. Precambrian Res. 175:206-220. Doi:10.1016/j.precamres.2009.09.010. [978]

Pettersson, C.H.; Tebenkov, A.M.; Larionov, A.N.; Andresen, A.; and Pease, V. 2009. Timing of migmatization and granite genesis in the Northwestern Terrane of Svalbard, Norway: Implications for regional correlations in the Arctic Caledonides. J. Geol. Soc. London. 166:147-158. [847]

Peucat, J.J.; Mahdjoub, Y.; and Drareni, A. 1996. U-Pb and Rb-Sr geochronological evidence for late Hercynian tectonic and Alpine overthrusting in Kabylian metamorphic basement masifs (northeastern Algeria). Tectonophysics. 258:195-213. [655]

Phillips, E.R; Evans, J.A.; Stone, P.; Horstwood, M.S.A.; Floyd, J.D.; Smith, R.A.; Akhurst, M.C.; and Barron, H.F. 2003. Detrital Avalonian zircons in the Laurentian Southern Uplands terrane, Scotland. Geology. 31:625-628. [26]

Phillips, G. 2006. The tectonic history of the Ruker Province, southern Prince Charles Mountains, East Antarctica: Implications for Gondwana and Rodinia. Unpub. Ph.D. dissertation, University of Melbourne, Victoria. [286]

Page 219: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

210

Pickard, A.L. 2003. SHRIMP U-Pb zircon ages for the Palaeoproterozoic Kuruman Iron Formation, Northern Cape Province, South Africa: evidence for simultaneous BIF deposition on Kaapvaal and Pilbara Cratons. Precambrian Res. 125:275-315. [137]

Pickard, A.L.; Adams, C.J.; and Barley, M.E. 2000. Australian provenance for Upper Permian to Cretaceous rocks forming accretionary complexes on the New Zealand sector of the Gondwanaland margin. Aus. J. Earth Sci. 47:987-1007. [239]

Pidgeon, R.T., and Nemchin, A.A. 2006. High abundance of early Archaean grains and the age distribution of detrital zircons in a sillimanite-bearing quartzites from Mt Narryer, Western Australia. Precambrian Res. 150:201-220. [428]

Piercey, S.J., and Colpron, M. 2009. Composition and provenance of the Snowcap assemblage. Basement to the Yukon-Tanana terrane, northern Cordillera: Implications for Cordilleran crustal growth. Geosphere 5:439-464. [955]

Pinarelli, L.; and Boriani, A. 2007. Tracing metamorphism, magmatism and tectonics in the southern Alps (Italy): Constraints from Rb-Sr and Pb-Pb geochronology, and isotope geochemistry. Per. Mineral. 76:5-24. [735]

Piuzana, D.; Pimentel, M.M.; Fuck, R.A.; and Armstrong, R.A. 2003, SHRIMP U-Pb and Sm-Nd data for the Araxá Group and associated magmatic rocks: Constraints for the age of sedimentation and geodynamic context of the southern Brasília Belt, central Brazil. Precambrian Res. 125:139-160. [225]

Pollock, J.C. 2007. The Neoproterozoic-Early Paleozoic tectonic evolution of the Peri-Gondwanan margin of the Appalachian Orogen: An integrated geochronological, geochemical and isotopic study from North Carolina and Newfoundland. Unpublished PdD dissertation. North Carolina State University. Raleigh. 194 pp. [635]

Page 220: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

211

Pollock, J.C.; Hibbard, J.P.; and Sylvester, P.J. 2009. Early Ordovician rifting of Avalonia and birth of the Rheic Ocean: U-Pb detrital zircon constraints from Newfoundland. J. Geol. Soc. London. 166:501-515. [874]

Pollock, J.C.; Wilton, D.H.C.; van Staal, C.R.; and Morrissey, K.D. 2007. U-Pb detrital zircon geochronological constraints on the Early Silurian collision of Ganderia and Laurentia along the Dog Bay Line: The terminal Iapetan suture in the Newfoundland Appalachians. Am. J. Sci. 307:399-433. [249]

Pollock, J.C.; Wilton, D.H.C.; van Staal, C.R.; and Tubrett, M.N. 2002. Laser ablation ICP-MS geochronology and provenance of detrital zircons from the Rogerson Lake Conglomerate, Botwood Belt, Newfoundland. Current Research, Newfoundland Department of Mines and Energy, Geological Survey Report 02-1. pp. 169-183. [279]

Poole, F.G.; Gehrels, G.E.; and Stewart, J.H. 2008. Significance of detrital zircons in Upper Devonian ocean-basin strata of the Sonora allochthon and Lower Permian synorogenic strata of the Mina México foredeep, central Sonora, México. InBlodgett, R.B. and Stanley, G.D. Jr. (eds.). The Terrane Puzzle: New Perspectives on Paleontology and Stratigraphy from the North American Cordillera. Geological Society of America Special Paper 442: 121-131. [723]

Pouclet, A.; Ouazzani, H.; and Fekkak, A. 2008. The Cambrian volcano-sedimentary formations of the westernmost High Atlas (Morocco): Their place in the geodynamic evolution of the West African Palaeo-Gondwana northern margin. In Ennih, N., and Légeois, J.P. (eds.). The Boundaries of the West African Craton. Geological Society of London Special Publications 297: 303-327. [633]

Poujol, M.; Hirner, A.J.; Armstrong, R.A.; and Anhaeusser, C.R. 2008. U-Pb SHRIMP data for the Madibe greenstone belt: Implications for crustal growth on the western margin of the Kaapvaal Craton, South Africa. S. Afr. J. Geol. 111:67-78. [598]

Page 221: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

212

Poujol, M.; Robb, L.J.; Respaut, J.P. 1999. U-Pb and Pb-Pb isotopic studies relating to the origin of gold mineralization in the Evander Goldfield, Witwatersrand Basin, South Africa. Precambrian Res. 95:167-185. [107]

Prokopiev, A.V.; Toro, J.; Miller, E.L.; and Gehrels, G.E. 2008. The paleo-Lena River—200 m.y. of transcontinental zircon transport in Siberia. Geology 36:669-702. [729]

Propach, G.; Baumann, A.; Schulz-Schmalschläger, M.; and Grauert, B. 2000. Zircon and monazite U-Pb ages of Variscan granitoid rocks and gneisses in the moldanubian zone of eastern Bavaria, Germany. N.Jb.Geol.Paläont.Mh. 6:345-377. [1030]

Pullen, A.; Kapp, P.; Gehrels, G.E.; DeCelles, P.G.; Brown, E.H.; Gabijanic, J.M.; and Ding, L. 2008. Gangdese retroarc thrust belt and foreland basin deposits in the Damxung area, southern Tibet. J. Asian Earth Sci. 33:323-336. doi: 10.1016/j.seaes.2008.01.005. [517]

Pullen, A.; Kapp, P.; Gehrels, G.E.; Vervoort, J.d.; and Ding, L. 2008. Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean. Geology. 36: 351-354. [558]

Rahl, J.M.; Reiners, P.W.; Campbell, I.H.; Nicolescu, S.; and Allen, C.M. 2003. Combined single-grain (U-Th)/He andU/Pb dating of detrital zircons from the Navajo Sandstone, Utah. Geology 31:761-764. [23]

Rainaud, C.; Master, S.; Armstrong, R.A.; and Robb, L.J. 2003. A cryptic mesoarchaean terrane in the basement to the Central African Copperbelt. J. Geol. Soc. London. 160:11-14. [367]

Rainbird, R.H., and Davis, W.J. 2007. U-Pb detrital zircon geochronology and provenance of the late Paleoproterozoic Dubawnt Supergroup: Linking sedimentation with tectonic reworking of the western Churchill Province, Canada. Geol. Soc. Am. Bul. 119:314-328. [165]

Page 222: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

213

Rainbird, R.H.; Davis, W.J.; Aspler, L.B.; Chiarenzelli, J.R.; and Ryan, J.J. 2002. SHRIMP U-Pb detrital zircon geochronology of enigmatic Neoarchean—Paleoproterozoic sedimentary rocks of the central western Churchill Province, Nunavat. Geological Survey of Canada Current Research 2002-F5. 8 pp. [748]

Rainbird, R.H.; Heaman, L.M.; and Young, G. 1992. Sampling Laurentia: Detrital zircon geochronology offers evidence for an extensive Neoproterozoic river system originating from the Grenville orogen. Geology. 20:351-354. [35]

Rainbird, R.H.; McNicoll, V.J.; Thériault, R.J.; Heaman, L.M.; Abbott, J.G.; Long, D.G.F.; and Thorkelson, D.J. 1997. Pan-continental river system draining Grenville Orogen recorded by U-Pb and Sm-Nd geochronology of Neoproterozoic quartzarenites and mudrocks, Northwestern Canada. J. Geol. 105:1-17. [336]

Rainbird, R.H.; Stern, R.A.; Khudoley, A.K.; Kropachev, A.P.; Leaman, L.M.; and Sukhorukov, V.I. 1998. U-Pb geochronology of Riphean sandstone and gabbro from southeast Siberia and its bearing on the Laurentia—Siberia connection. Earth Planet. Sci. Lett. 164:409-420. [108]

Rainbird, R.H.; Villeneuve, M.E.; Cook, D.G.; and MacLean, B.C. 1996. Detrital zircon ages from two wells in the Northwest Territories: Implications for the correlation and provenance of Proterozoic subsurface data. In Current Research 1996-B. Geological Survey of Canada: 29-38. [377]

Raith, J.G.; Cornell, D.H.; Frimmel, H.E.; De Beer, C.H. 2003. New insights into the Geology of the Namaqua Tectonic Province, South Africa, from Ion Probe Dating of Detrital and Metamorphic Zircon. J. Geol. 111:347-366. [451]

Ramokate, L.V.; Mapeo, R.B.M.; Corfu, F.; and Kampunzu, A.B. 2000. Proterozoic geology and regional correlation of the Ghanzi-Makunda area, western Botswana. J. Afr. Earth Sci. 30:453-466. [1018]

Page 223: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

214

Ramakrishnan, M.; Venkata Dasu, S.P.; and Kröner, A. 1994. Middle Archaean Age of Sargur Group by single grain zircon dating and geochemical evidence for the clastic origin of the metaquartzite from J.C. Pura Greenstone Belt, Karnataka. J. Geol. Soc. India 44:605-616. [1041]

Rapela, C.W.; Pankhurst, R.J.; Casquet, C.; Fanning, C.M.; Baldo, E.G.; González-Casado, J.M.; Galindo, C.; and Dahlquist, J. 2007. The Rio de la Plata craton and the assembly of SW Gondwana. Earth-Sci. Rev. 83:49-82. [314]

Räsänen, J., and Huhma, H. 2001. U-Pb dating in the Sodankylä Schist area, Central Finnish Lapland. In Vaasjoki, M. ed. Radiometric age determinations from Finnish Lapland and their bearing on the timing of Precambrian volcano-sedimentary sequences. Geological Society of Finland, Special Paper 33:153-188. [301]

Rasmussen, B.; Bengston, S.; Fletcher, I.R.; and McNaughton, N.J. 2002. Discoidal impressions and trace-like fossils more than 1200 million years old. Science, 296:1112-1115. [201]

Rastas, P.; Huhma, H.; Hanski, E.; Lehtonen, M.I.; Härkönen, I.; Kortelainen, V.; Mänttäri, I.; and Paakkola, J. 2001. U-Pb isotopic studies on the Kittilä Greenstone Area, central Lapland, Finland. In Vaasjoki, M. ed. Radiometric age determinations from Finnish Lapland and their bearing on the timing of Precambrian volcano-sedimentary sequences. Geological Society of Finland, Special Paper 33:91-141. [303]

Ratschbacher, L.; Franz, L.; Min, M.; Bachmann, R.; Martens, U.; Stanek, K.; Stübner, K.; Nelson, B.K.; Hermann, U.; Weber, B.; López-Martínez, M.; Jonckhere, R.; Sperner, B.; Tichomirowa, M.; McWilliams, M.; Gordon, M.; Meschede, M.; and Bock, P. 2009. The North American—Caribbean Plate Boundar in Mexico—Guatemala—Honduras. In James, K.H.; Lorente, M.A.; and Pindell, J.L. (eds.) The Origin and Evolution of the Caribbean Plate, Geological Society London Special Publication 328:219-293. [1084]

Page 224: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

215

Rayner, N., and Corrigan, D. 2004. Uranium-lead geochronological results from the Churchill River.O.; —Southern Indian Lake transect, northern Manitoba. Geological Survey of Canada Current Research 2004-F1. 14 pp. [752]

Rayner, N.M.; Maxeiner, R.O.; and Creaser, R.A. 2009. New U-Pb and Sm-Nd results from the Pelican Narrows Area: 1865 to 1857 Ma Successor arc plutonism, and 1837 Ma Missi Group sedimentation. Saskatchewan Geological Survey Summary of Investigations, 2: 1-15. [1078]

Rayner, N., and Percival, J.A. 2007. Uranium-lead geochronology of basement units in the Wuskwatin-Tullibee lakes area, northeastern Kisseynew Domain, Manitoba (NTS 63O). In Report of Activities 2007, Manitoba Science, Technology, Energy and Mines, Manitoba Geological Survey: 82-90. [745]

Rayner, N.; Scott, D.J.; Wodicka, N.; and Kassam, A. 2008. New Geochronological Constraints from Mill, Salisbury, and Nottingham Islands, Nunavut. Current Research 2008-22. [803]

Rayner, N.M.; Stern, R.A.; and Rainbird, R.H. 2003. SHRIMP U-Pb detrital zircon geochronology of Athabasca Group sandstones, northern Saskatchewan and Alberta. Geological Survey of Canada Current Research 2003-F2. 20 pp. [751]

Rayner, N.; Zwanzig, H.V.; and Percival, J.A. 2006. Detrital zircon provenance of the Pipe Formation, Ospwagan Group, Thompson Nickel Belt, Manitoba, NTS 63O8. In Report of Activities 2006, Manitoba Science, Technology, Energy and Mines, Manitoba Geological Survey: 116-124 pp. [267]

Reid, A.J., and Hou, B. 2006. Source of heavy minerals in the Eucla Basin palaeobeach placer province, South Australia: age data from detrital zircons. MESA J. 42:10-14. [273]

Reid, A.J.; Korsch, R.J.; Hou, B.; and Black, L.P. 2009. Sources of sediment in the Eocene Garford paleovalley, South Australia, from detrital zircon geochronology. Aus. J. Earth Sci. 56:S125-S137. [932]

Page 225: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

216

Reimann, C.R.; Bahlburg, H.; Kooijman, E.; Berndt, J.; Gerdes, A.; Carlotto, V.; López, S. 2010(in press). Geodynamic evolution of the early Paleozoic Western Gondwana margin 14°-17°S reflected by the detritus of the Devonian and Ordovician basins of southern Peru and northern Bolivia. Gondwana Res. Doi: 10.1016/j.gr.2010.02.002. [1106]

Reiners, P.W.; Campbell, I.H.; Nicolescu, S.; Allen, C.M.; Hourigan, J.K.; Garver, J.L.; Mattinson, J.M.; and Cowan, D.S. 2005. (U-Th)/(He-Pb) Double dating of detrital zircons. Amer. J. Sci. 305:259-311. [506]

Richards, A.; Argles, T.; Harris, N.; Parrish, R.; Ahmad, T.; Darbyshire, F.; and Draganits, E. 2005. Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth Planet. Sci. Lett. 236:773-796. [321]

Richards, A.; Parrish, R.; Harris, N.; Argles, T.; and Zhang, L. 2006. Correlation of lithotectonic units across the eastern Himalaya, Bhutan. Geology 34:341-344. [1019]

Rieu, R.; Allen, P.A.; Cozzi, A.; Kosler, J.; and Bussy, F. 2007. A composite Stratigraphy for the Neoproterozoic Huqf Supergroup of Oman: Integrating new litho-, chemo- and chronostratigraphic data of the Mirbat area, southern Oman. J. Geol. Soc. London. 164:997-1009. [421]

Riggs, N.R.; Ash, S.R.; Barth, A.P.; Gehrels, G.E.; Wooden, J.L. 2003. Isotopic age of the Black Forest Bed, Petrified Forest Member, Chinle Formation, Arizona: An example of dating a continental sandstone. Geol. Soc. Am. Bul. 115:1315-1323. [55]

Riggs, N.R.; Lehman, T.M.; Gehrels, G.E.; and Dickinson, W.R. 1996. Detrital zircon link between headwaters and terminus of the Upper Triassic Chinle-Dockum paleoriver system. Science. 273:97-100. [191]

Page 226: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

217

Riley, B.C.D.; Snyder, W.S.; and Gehrels, G.E. 2000. Detrital zircon geochronology of the Golconda allochton, Nevada. In Soreghan., M.J. and Gehrels, G.E., eds. Paleozoic and Triassic paleogeography and tectonics of western Nevada and northern California. Boulder, Colorado. Geological Society of America Special Paper 347:65-75. [143]

Rino, S.; Komiya, T.; Windley, B.F.; Katayama, I.; Motoki, A.; and Hirata, T. 2004. Major episodic increases of continental crustal growth determined from zircon ages of river sands: implications for mantle overturns in the Early Precambrian. Phy. Earth Planet. Int. 146:369-394. [1072]

Rino, S.; Kon, Y.; Sato, W.; Maruyama, S.; Santosh, M.; and Zhao, D. 2008. The Grenvillian and pan-African orogens: World‘s largest orogenies through geologic time, and their implications on the origin of superplume. Gondwana Res. 14:51-72. [600]

Roback, R.C., and Walker, N.W. 1995. Provenance, detrital zircon U-Pb geochronometry, and tectonic significance of Permian to Lower Triassic sandstone in southeastern Quesnellia, British Columbia and Washington. Geol. Soc. Am. Bul. 107:665-675. [19]

Robb, L.J.; Davis, D.W.; and Kamo, S.L. 1990. U-Pb ages on single detrital zircon grains from the Witwatersrand Basin, South Africa: Constraints on the age of sedimentation and the evolution of granites adjacent to the basin. J. Geol. 98:311-328. [332]

Rodrigues, J.B. 2008. Proveniência de sedimentos dos grupos Canastra, Ibiá, Vazante e Bambuí – Um estudo de zircões detríticos e Idades Modelo Sm-Nd. Unpublished PhD dissertation. Universidade de Brasilia. 128 pp. [899]

Røhr, T.S.; Andersen, T.; and Dypvik, H. 2008. Provenance of Lower Cretaceous sediments in the Wandel Sea Basin, North Greenland. J. Geol. Soc. London. 165:755-767. [583]

Rojas-Agramonte, Y.; Kröner, A.; Pindell, J.; García-Casco, A.; García-Delgado, D.; Liu, D.; and Wang, Y. 2008. Detrital zircon geochronology of Jurassic sandstones of western

Page 227: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

218

Cuba (an Cayetano Formation): Implications for the Jurassic paleogeography of the NW proto-Caribbean. Am. J. Sci. 308:639-656. [686]

Romans, B.W.; Fildani, A.; Graham, S.A.; Hubbard, S.M.; and Covault, J.A. 2009(in press). Importance of predecessor basin history on the sedimentary fill of a retroarc foreland basin: Provenance analysis of the Cretaceous Magallanes basin, Chile (50-52°S). Basin Res. Doi:10.1111/j.1365.2117.2009.00443.x. [977]

Rosa, D.R.N.; Finch, A.A.; Andersen, T.; and Inverno, C.M.C. 2009. U-Pb geochronology and Hf isotope ratios of magmatic zircons from the Iberian Pyrite Belt. Miner. Petrol. 95: 47-69. Doi:10.1007/s00710-008-0022-5. [789]

Rosing, M.T.; Nutman, A.P.; and Løfqvist, L. 2001. A new fragment of the early earth crust: the Aasivik terrane of West Greenland. Precambrian Res. 105: 115-128. [697]

Ross, G.M., and Bowring, S.A. 1990. Detrital zircon geochronology of the Windermere Supergroup and the tectonic assembly of the southern Canadian Cordillera. J. Geol. 98:879-893. [138]

Ross, G.M.; Gehrles, G.E.; and Patchett, P.J. 1997. Provenance of Triassic strata in the Cordilleran miogeocline, western Canada. Bull. Can. Petrol. Geol. 45:461-473. [456]

Ross, G.M., and Harms, T.A. 1998. Detrital zircon geochronology of sequence ‗C‘ grits, Dorsey Terrane (Thirtymile Range, Southern Yukon): Provenance and stratigraphic correlation. In Radiogenic Age and Isotopic Studies: Report 11. Geological Survey of Canada, Current Research 1998-F: 107-115. [412]

Ross, G.M.; McNicoll, V.J.; Geldsetzer, H.H.J.; Parrish, R.R.; Carr, S.D.; and Kinsman, A. 1993. Detrital zircon geochronology of Siluro-Devonian sandstones, Rocky Mountains, northeastern British Columbia. B. Can. Petrol. Geol. 41:349-357. [81]

Page 228: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

219

Ross, G.M., and Parrish, R.R. 1991: Detrital zircon geochronology of metasedimentary rocks in the southern Omineca Belt, Canadian Cordillera. Can. J. Earth Sci. 28:1254-1270. [90]

Ross, G.M.; Parrish, R.R.; and Dudas, F.Ö. 1991. Provenance of the Bonner Formation (Belt Supergroup), Montana: Insights from U-Pb and Sm-Nd analyses of detrital minerals. Geology. 19:340-343. [112]

Ross, G.M.; Parrish, R.R.; and Winston, D. 1992. Provenance and U-Pb geochronology of the Mesoproterozoic Belt Supergroup (northwestern United States): Implications for age of deposition and pre-Panthalassa plate reconstructions. Earth Planet. Sci. Lett. 113:57-76. [335]

Ross, G.M.; Patchet, P.J.; Hamilton, M.; Heaman, L.; DeCelles, P.G.; Rosenberg, E.; and Giovanni, M.K. 2005. Evolution of the Cordilleran orogen (southwestern Alberta, Canada) inferred from detrital mineral geochronology, geochemistry and Nd isotopes in the foreland basin. Geol. Soc. Am. Bul. 117: 747-763. [34]

Ross, G.M., and Villeneuve, M. 2003. Provenance of the Mesoproterozoic (1.45 Ga) Belt basin (western North America): Another piece in the pre-Rodinia paleogeographic puzzle. Geol. Soc. Am. Bul. 115:1191-1217. [52]

Ross, G.M.; Villeneuve, M.; and Theriault, R.J. 2001. Isotopic provenance of the lower Muskwa assemblage (Mesoproterozoic, Rocky Mountains, British Columbia): New clues to correlation and source areas. Precambrian Res. 111:57-77. [74]

Rossi, P.; Cocherie, A.; Fanning, C.M.; and Deloule, É. 2006. Variscan to eo-Alpine events recorded in European lower-crust zircons sampled from the French Massif Central and Corsica, France. Lithos. 87:235-260. [422]

Rossi, P.; Oggiano, G.; and Cocherie, A. 2009. A restored section of the ―southern Variscan realm‖ across the Corsica-Sardinia microcontinent. C.R. Geo. 341: 224-238. Doi: 10.1016/j.crte.2008.12.055. [828]

Page 229: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

220

Rowell, A.J.; van Schmus, W.R.; Storey, B.C.; Fetter, A.H.; and Evans, K.R. 2001. Latest Neoproterozoic to Mid-Cambrian age for the main deformation phases of the Transantarctic Mountains: New stratigraphic and isotopic constraints from the Pensacola Mountains, Antarctica. J. Geol. Soc. London. 158:295-308. [241]

Roy, A.B.; Kröner, A.; and Laul, V. 2001. Detrital zircons constraining basement age in a late Archaean greenstone belt of south-eastern Rajasthan, India. Curr. Sci. India. 81:407-410. [368]

Rubatto, D.; Hermann, J.; Berger, A.; and Engi, M. 2009. Protracted fluid-induced melting during Barrovian metamorphism in the Central Alps. Contrib. Mineral. Petrol. 158:703-722. Doi: 10.1007/s00410-009-0406-5. [876]

Rubatto, D.; Gebauer, D.; and Fanning, C.M. 1998. Jurassic formation and Eocene subduction of the Zermatt-Saas-Fee ophiolites: Implications for the geodynamic evolution of the Central and Western Alps. Contrib. Mineral. Petrol. 132:269-287. [388]

Rubatto, D.; Williams, I.S.; and Buick, I.S. 2001. Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contrib. Mineral. Petrol. 140:458-468. [418]

Rybczynski, D.J. 2009. Correlation, Paleogeography, and Provenance of the Neoproterozoic Eastern Uinta Mountain Group, Goslin Mountain Area, Northeastern Utah. Unpublished MS thesis. Utah State University. 212 pp. [927]

Sager-Kinsman, E.A., and Parrish, R.R. 1993. Geochronology of detrital zircons from the Elzevir and Frontenac terranes, Central Metasedimentary Belt, Grenville Province, Ontario. Can. J. Earth Sci. 30:465-473. [706]

Page 230: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

221

Sakashima, T.; Terada, K.; Takeshita, T.; and Sano, Y. 2003. Large-scale displacement along the median tectonic line, Japan: Evidence from SHRIMP zircon U-Pb dating of granites and gneisses from the South Kitakami and paleo-Ryoke belts. J. Asian Earth Sci. 21: 1019-1039. [555]

Saleeby, J.B. 2000. Geochronologic investigations along the Alexander-Taku terrane boundary, southern Revillagigedo Island to Cape Fox areas, southeast Alaska. In Stowell, H.H., and McClelland, W.C. (eds.). Tectonics of the Coast Mountains, Southeastern Alaska and British Columbia. Geological Society of America Special Paper 343: 107-143. [775]

Samson, S.D.; D‘Lemos, R.S.; Blichert-Toft, J.; and Vervoort, J. 2003. U-Pb geochronology and Hf-Nd isotope compositions of the oldest Neoproterozoic crust within the Cadomian orogen: New evidence for a unique juvenile terrane. Earth Planet. Sci. Lett. 208:165-180. [1020]

Samson, S.D.; D‘Lemos, R.S., Miller, B.V.; and Hamilton, M.A. 2005. Neoproterozoic palaeogeography of the Cadomia and Avalon terranes: Constraints from detrital zircon U-Pb ages. J. Geol. Soc. London. 162: 65-71. [20]

Sánchez-Zavala, J.L.; Ortega-Gutiérrez, F.; Duncan Keppie, J.; Jenner, G.A.; Belousova, E.; and Maciás-Romo, C. 2004. Ordovician and Mesoproterozoic zircons from the Tecomate Formation and Esperanza Granitoids, Acatlán Complex, Southern Mexico: Local Provenance in the Acatlán and Oaxacan Complexes. Int. Geol. Rev. 46:1005-1021. [494]

Sano, Y.; Hidaka, H.; Terada, K.; Shimizu, H.; and Suzuki, M. 2000. Ion microprobe U-Pb zircon geochronology of the Hida gneiss: Finding of the oldest minerals in Japan. Geochem. J. 34:135-153. [234]

Santos, J.O.S.; Hartmann, L.A.; Gaudette, H.E.; Groves, D.I.; McNaughton, N.J.; and Fletcher, I.R. 2000. A new understanding of the Provinces of the Amazon Craton based on integration of field mapping and U-Pb and Sm-Nd geochronology. Gondwana Res. 3:453-488. [179]

Page 231: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

222

Santos, J.O.S.; Hartmann, L.A.; McNaughton, N.J.; Easton, R.M.; Rea, R.G.; and Potter, P.E. 2002. Sensitive high resolution ion microprobe (SHRIMP) detrital zircon geochronology provides new evidence for a hidden Neoproterozoic foreland basin to the Grenville Orogen in the eastern Midwest, U.S.A. Can. J. Earth Sci. 39:1505-1515. [230]

Santos, J.O.S.; Potter, P.E.; Reis, N.J.; Hartmann, L.A.; Fletcher, I.R.; and McNaughton, N.J. 2003. Age, source and regional Stratigraphy of the Roraima Supergroup and Roraima-like outliers in northern South America based on U-Pb geochronology. Geol. Soc. Am. Bul. 115:331-348. [304]

Santos, J.O.S.; Rizzotto, G.J.; Potter, P.E.; McNaughton, N.J.; Matos, R.S.; Hartmann, L.A.; Chemale, F. Jr.; and Quadros, M.E.S. 2008. Age and autochthonous evolution of the Sunsás Orogen in West Amazon Craton base don mapping and U-Pb geochronology. Precambrian Res. 165:120-152. Doi: 10.1016/j.precamres.2008.06.009. [607]

Santos, R.V.; Souza, P.A.; de Alvarenga, C.J.S.; Dantas, E.L.; Pimentel, M.M.; de Oliveira, C.G.; and de Araujo, L.M. 2006. SHRIMP U-Pb zircon dating and palynology of bentonite layers from the Permian Irati Formation, Parana Basin, Brazil. Gondwana Res. 9:456-463. [132]

Santosh, M.; Collins, A.S.; Morimoto, T.; and Yokoyama, K. 2005. Depositional constraints and age of metamorphism in southern India: U-Pb chemical (EMPA) and isotopic (SIMS) ages from the Trivandrum Block. Geol. Mag. 142:255-268. [343]

Santosh, M.; Morimoto, T.; Tsutsumi, Y. 2006. Geochronology of the khondalite belt of Trivandrum Block, southern India: Electron probe ages and implications for Gondwana tectonics. Gondwana Res. 9:261-278. [999]

Satkoski, A.M.; Barr, S.M.; and Samson, S.D. 2010. Provenance of Late Neoproterozoic and Cambrian Sediments in Avalonia: Constraints from detrital zircon ages and Sm-Nd isotopic compositions in Southern New Brunswick, Canada. J.Geol. 118:187-200. [1074]

Page 232: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

223

Savage, J.E. 2005. Provenance Analysis of the Sperm Bluff Formation, southern Victoria Land, Antarctica. Unpublished MS thesis, University of Canterbury, Canterbury NZ, 206 pp. [585]

Saylor, J.E. 2008. The Late Miocene through Modern Evolution of the Zhada Basin, South-Western Tibet. Unpublished PhD dissertation. University of Arizona. 306 pp. [934]

Schäfer, H.-J.; Gebauer, D.; Nägler, T.F.; and Eguiluz, L. 1993. Conventional and ion-microprobe U-Pb dating of detrital zircons of the Tentudia Group (Serie Negra, SW Spain): Implications for zircon systematics, stratigraphy, tectonics and the Precambrian/Cambrian boundary. Contrib. Minerl. Petrol. 113:289-299. [223]

Schaltegger, U. 1993. The evolution of the polymetamorphic basement in the Central Alps unraveled by precise U-Pb zircon dating. Contrib. Mineral. Petrol. 113: 466-478. [405]

Schaltegger, U. 1997. The age of an Upper Carboniferous/Lower Permian sedimentary basin and its hinterland as constrained by U-Pb dating of volcanic and detrital zircons (Northern Switzerland). Schweiz. Mineral. Petrogr. Mitt. 77: 101-111. [650]

Schärer, U., and Allegre, C.J. 1982. Investigation of the Archaean crust by single-grain dating of detrital zircon: A greywacke of the Slave Province, Canada. Can. J. Earth Sci. 19:1910-1918. [83]

Schärer, U., and Allegre, C.J. 1985. Determination of the age of the Australian continent by single-grain zircon analysis of Mt. Narryer metaquartzite. Nature. 315:52-55. [198]

Scherer, H.H., and Ernst, W.G. 2008. North Fork Terrane, Klamath Mountains, California: Geologic, geochemical, and geochronologic evidence for an early Mesozoic forearc. In Wright, J.E., and Shervais, J.W. (eds.). Ophiolites, Arcs, and Batholiths: A tribute to Cliff Hopson. Geological Society of America Special Publication 438: 289-309. [609]

Page 233: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

224

Scherer, H.H.; Ernst, W.G.; and Hanson, R.B. 2008. Geologic implications of new zircon U-Pb ages from the White Mountain Peak Metavolcanic Complex, eastern California. Tectonics. 27: TC2002, doi: 10.1029/2007TC002141. [518]

Schiøtte, L.; Compston, W.; and Bridgwater, D. 1988. Late Archean ages for the deposition of clastic sediments belonging to the Malene supracrustals, southern West Greenland: Evidence from an ion probe U-Pb zircon study. Earth Planet. Sci. Lett. 87:45-58. [275]

Schiøtte, L.; Nutman, A.P.; and Bridgwater, D. 1992. U-Pb ages of single zircons within ―Upernavik‖ metasedimentary rocks and regional implications for the tectonic evolution of the Archaean Nain Province, Labrador. Can. J. Earth Sci. 29:260-276. [1032]

Schmitt, R.d.S.; Trouw, R.A.J.; van Schmus, W.R.; and Pimentel, M.M. 2004. Late amalgamation in the central part of West Gondwana: New geochronological data and the characterization of a Cambrian collisional orogeny in the Ribeira Belt (SE Brazil). Precambrian Res. 133:29-61. [371]

Schneiderhan, E.A. 2007. Neoarchaean clastic rocks on the Kaapvaal Craton – Provenance analyses and geotectonic implications. Unpublished Ph.D. Univeristy of Johannesburg. 451 pp. [1073]

Schott, R.C.; Johnson, C.M.; and O‘Neil, J.R. 2004. Late Cretaceous tectonic history of the Sierra-Salinia-Mojave arc as recorded in conglomerates of the Upper Cretaceous and Paleocene Gualala Formation, northern California. J. Geophys. Res., 109: B02204, doi: 10.1029/2003JB002845 [627]

Schultz, M.E.J.; Chacko, T.; Heaman, L.M.; Sandeman, H.A.; Simonetti, A.; and Creaser, R.A. 2007. Queen Maud block: A newly recognized Paleoproterozoic (2.4-2.5 Ga) terrane in northwest Laurentia. Geology. 35:707-710. [349]

Page 234: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

225

Schwartz, J.J., and Gromet, L.P. 2004. Provenance of a late Proterozoic—early Cambrian basin, Sierres de Córdoba, Argentina. Precambrian Res. 129:1-21.[502]

Scott, D.J. 1999. U-Pb geochronology of the eastern Hall Peninsula, southern Baffin Island, Canada: a northern link between the Archean of West Greenland and the Paleoproterozoic Torngat Orogen of northern Labrador. Precambrian Res. 93: 5-26. [695]

Scott, D.J., and Gauthier, G. 1996. Comparison of TIMS (U-Pb) and laser ablation microprobe ICP-MS (Pb) techniques for age determination of detrital zircons from Paleoproterozoic metasedimentary rocks from northeastern Laurentia, Canada, with tectonic implications. Chem. Geol. 131:127-142. [353]

Scott, J.M.; Palin, J.M.; Cooper, A.F.; Fagereng, Å.; and King, R.P. 2009. Polymetamorphism, zircon growth and retention or early assemblages through the dynamic evolution of a continental arc in Fiordland, New Zealand. J. Metamorphic. Geol. 27:281-294. [871]

Scrimgeour, I.; Smith, J.B.; and Raith, J.G. 2001. Palaeoproterozoic high-T, low-P metamorphism and dehydration melting in metapelites from the Mopunga Range, Arunta Inlier, central Australia. J. Metamorph. Geol. 19: 739-757. [690]

Selverstone, J.; Hodgins, M.; Aleinikoff, J.N.; and Fanning, C.M. 2000. Mesoproterozoic reactivation of a Paleoproterozoic transcurrent boundary in the northern Colorado Front Range: Implications for ~1.7- and 1.4-Ga tectonism. Rocky Mountain Geology. 35:139-162. [283]

Seranne, M.; Bruguier, O.; and Moussavou, M. 2008. U-Pb single zircon grain dating of present fluvial and Cenozoic Aeolian sediments from Gabon: Consequences on sediment provenance, reworking, and erosion processes on the equatorial West African margin. Bull. Soc. Geol. Fr. 179:29-40. [514]

Page 235: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

226

Sharrah, K.L. 2006. Comparative study of the sedimentology and provenance of the Atoka Formation in the Frontal Ouachita Thrust Belt, Oklahoma. Unpublished PhD dissertation. The University of Tulsa. 252 pp. [872]

Sheedy, V. 2003. Surficial Geology and Sediment Provenance: A question of stream capture of the Big Lo River, central Custer County, Idaho. Unpublished MS Thesis, Idaho State University, 140 pp. [979]

Sheppard, S.; Occhipinti, S.A.; and Nelson, D.R. 2005. Intracontinental reworking in the Capricorn orogen, Western Australia: The 1680-1620 Ma Mangaroon Orogeny. Aus. J. Earth Sci. 52:443-460. [202]

Shi, G.; Liu, D.; Zhang, F.; Jian, P.; Miao, L.; Shi, Y.; and Tao, H. 2003. SHRIMP U-Pb zircon geochronology and its implications on the Xilin Gol Complex, Inner Mongolia, China. Chinese Science Bulletin. 48: 2742-2748. [547]

Shibata, T.; Orihashi, Y.; Kimura, G.; and Hashimato, Y. 2008. Underplating of méange evidenced by the depositional ages: U-Pb dating of zzircons from the Shimanto accretionary complex, southwest Japan. Island Arc.17:376-393. [656]

Shiraishi, K.; Dunkley, D.J.; Hokada, T.; Fanning, C.M.; Kagami, H.; and Hamamoto, T. 2009. Geochronological constraints on the Late Proterozoic to Cambrian crustal evolution of eastern Dronning Maud Land, East Antarctica: A synthesis of SHRIMP U-Pb age and Nd model age data. In Satish-Kumar, M.; Motoyoshi, Y.; Osanai, Y.; Hiroi, Y.; and Shiraishi, K. (eds.). Geodynamic Evolution of East Antarctica: A Key to the East-West Gondwana Connection. Geol. Soc. London Special Publication 308: 21-67. [797]

Si, J.; Li, H.; Pei, J.; and Pan, J. 2009. Uplift of Northwest Margin of Tibetan Plateau: Indicated by Zircon LA ICP-MS U-Pb dating of conglomerate from Mazartagh, Tarim Basin. J. Earth Sci. 20:401-416. [942]

Page 236: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

227

Sircombe, K.N. 1999. Tracing provenance through the isotope ages of littoral and sedimentary detrital zircon, eastern Australia. Sediment. Geol. 124:47-67. [182]

Sircombe, K.N.; Bleeker, W.; and Stern, R.A. 2001. Detrital zircon geochronology and grain-size analysis of a ~2800 Ma Mesoarchean proto-cratonic cover succession, Slave Province, Canada. Earth Planet. Sci. Lett. 189:207-220. [216]

Sircombe, K.N.; Cassidy, K.F.; and Champion, D.C. 2007. Compilation of SHRIMP U-Pb geochronological data, Yilgarn Craton, Western Australia, 2004-2006. Geoscience Australia. Report 2007/01. [378]

Sircombe, K.N., and Freeman, M.J. 1999. Provenance of detrital zircons on the Western Australia coastline—Implications for the geologic history of the Perth basin and denudation of the Yilgarn craton. Geology. 27:879-882. [214]

Sircombe, K.N., and Hazelton, M.L. 2004. Comparison of detrital zircon age distributions by kernel functional estimation. Sediment. Geol. 171:91-111. [947]

Sircombe, K.N., and McQueen, K.G. 2000. Zircon dating of Devonian-Carboniferous rocks from the Bombala area, New South Wales. Aus. J. Earth Sci. 47:1041-1051. [312]

Skiöld, T., and Rutland, R.W.R. 2006. Successive ~1.94 Ga plutonism and ~1.92 Ga deformation and metamorphism south of the Skellefte district, northern Sweden: Substantiation of the marginal basin accretion hypothesis of Svecofennian evolution. Precambrian Res. 148:181-204. [677]

Sláma, J.; Dunkley, D.J.; Kachlík, V.; and Kusiak M.A. 2008. Transition from island-arc to passive setting on the continental margin of Gondwana: U-Pb zircon dating of Neoproterozoic metaconglomerates from the SE margin of the Teplá-Barrandian Unit, Bohemian massif. Tectonophysics. 461:44-59. Doi:10.1016/j.tecto.2008.03.005. [523]

Page 237: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

228

Smith, M., and Gehrels, G.E. 1991. Detrital zircon geochronology of Upper Proterozoic to Lower Proterozoic continental margin strata of the Kootenay Arc: Implications for the early Paleozoic tectonic development of the eastern Canadian Cordillera. Can. J. Earth Sci. 28:1271-1284. [88]

Smith, M., and Gehrels, G.E. 1994. Detrital zircon geochronology and the provenance of the Harmony and Valmy Formations, Roberts Mountains allochthon, Nevada. Geol. Soc. Am. Bul. 106: 968-979. [32]

Smyth, H.R.; Hamilton, P.J.; Hall, R.; and Kinny, P.D. 2007. The deep crust beneath island arcs: Inherited zircons reveal a Gondwana continental fragment beneath East Java, Indonesia. Earth Planet. Sci. Lett. 258:269-282. [213]

Snow, C.A., and Ernst, W.G. 2008. Detrital zircon constraints on sediment distribution and provenance of the Mariposa Formation, central Sierra Nevada foothills, California. In Wright, J.E., and Shervais, J.W. (eds.). Ophiolites, Arcs, and Batholiths: A tribute to Cliff Hopson. Geological Society of America Special Publication 438: 311-330. [610]

Snow, C.A.; Wakabayashi, J.; Ernst, W.G.; and Wooden, J.L. 2009. Detrital zircon evidence for progressive underthrusting in Franciscan metagraywackes, west-central California. Geol. Soc. Am. Bull. 122:282-291. [1021]

Söderlund, U., and Rodhe, A. 1998. Constraints on syn-intrusive ca. 1.8 Ga conglomerate deposits associated with the Småland-Värmland Belt, SE Sweden: Pb-Pb zircon evaporation dating of the Malmbäck conglomerate. GFF. 120:69-74. [577]

Söllner, F.; Loske, W.; and Miller, H. 1994. Subdivision of the KTB-series (Germany) according to variations in provenance and thermal history of zircons in paragneisses – evidence from U-Pb zircon dating. N. Jb. Miner. Mh. 1994(8): 337-357. [1027]

Page 238: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

229

Söllner, F.; Nelson, D.R.; and Miller, H. 1997. Provenance, deposition and age of gneiss units from the KTB drill hole (Germany): Evidence from SHRIMP and conventional U-Pb zircon age determinations. Geol. Rundsch. 86, Suppl.: S235-S250. [397]

Söllner, F., and Trouw, R.A.J. 1997. The Andrelândia depositional cycle (Minas Gerais/Brazil), a post-Tranzamazonic sequence south of the São Francisco Craton: Evidence from U-Pb dating on zircons of a metasediment. J. South Am. Earth Sci. 10:21-28. [255]

Soreghan, G.S.; Moses, A.M.; Soreghan, M.J.; Hamilton, A.; Fanning, C.M.; and Link, P.K. 2007. Palaeoclimatic inferences from upper Palaeozoic siltstone of the Earp Formation and equivalents, Arizona-New Mexico (USA). Sedimentology. 54:701-719. [324]

Soreghan, M.J.; Soreghan, G.S.; and Hamilton, M.A. 2002. Paleowinds inferred from detrital-zircon geochronology of upper Paleozoic loessite, western equatorial Pangea. Geology. 30:695-698. [18]

Soreghan, M.J.; Soreghan, G.S.; and Hamilton, M.A. 2008a. Origin and significance of loess in late Paleozoic western Pangaea: A record of tropical cold. Paleogeog. Palaeoclim. Palaeoeco. 268:234-259. Doi:10.1016/j.palaeo.2008.03.050. [722]

Soreghan, M.J.; Soreghan, G.S.; and Hamilton, M.A. 2008b.Glacial-Interglacial shifts in atmospheric circulation of western tropical Pangaea. Paleogeog. Palaeoclim. Palaeoeco. 268:260-272. Doi: 10.1016/j.palaeo.2008.03.051. [732]

Soumaila, A.; Henry, P.; Gabbra, Z.; and Rossi, M. 2008. REE patterns, Nd-Sm, and U-Pb ages of the metamorphic rocks of the Diagorou-Darbani greenstone belt (Liptako, SW Niger): Implications for Birimian (Paleoproterozoic) crustal genesis. In Ennih, N., and Légeois, J.P. (eds.). The Boundaries of the West African Craton. Geological Society of London Special Publications 297: 19-32. [632]

Page 239: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

230

Sousa, D.J.L.; Varajão, A.F.D.C.; Yvon, J.; Scheller, T.; Moura, C.A.V. 2007. Ages and possible provenance of the sediments of the Capim River kaolin, northern Brazil. J. South Am. Earth Sci. 24:25-33. [177]

Spurlin, M.S.; Gehrels, G.E.; and Harwood, D.S.. 2000. Detrital zircon geochronology of upper Paleozoic and lower Mesozoic strata of the northern Sierra terrane, northeastern California. In Soreghan., M.J. and Gehrels, G.E., eds. Paleozoic and Triassic paleogeography and tectonics of western Nevada and northern California. Boulder, Colorado. Geological Society of America Special Paper 347:89-98. [145]

Squire, R.J.; Campbell, I.H.; Allen, C.M.; and Wilson, C.J.L. 2006. Did the transgondwanan Supermountain trigger the explosive radiation of animals on Earth? Earth Planet. Sci. Lett. 250:116-133. [574]

Standley, C.E., and Harris, R. 2009. Tectonic evolution of Forearc Nappes of the Activa Banda Arc-continent collision, origin, age, metamorphic history and structure of the Lolotoi Complex, East Timor. Tectonophysics, 479:66-94. doi: 10.1016/j.tecto.2009.01.034. [801]

Steenken, A.; Siegesmund, S.; López de Luchi, M.G.; Frei, R.; and Wemmer, K. 2006. Neoproterozoic to Early Palaeozoic events in the Sierra de San Luis: Implications for the Famatinian geodynamics in the Eastern Sierras Pampeanas (Argentina). J. Geol. Soc. London. 163:965-982. [1070]

Steltenpohl, M.G.; Mueller, P.M.; Heatherington, A.L.; Hanley, T.B.; and Wooden, J.L. 2008. Gondwanan/peri-Gondwanan origin for the Uchee terrane, Alabama and Georgia: Carolina zone or Suwannee terrane (?) and its suture with Grenvillian basement of the Pine Mountain window. Geosphere. 4:131-144. [496]

Stevens, B.P.J.; Page, R.W.; and Crooks, A. 2008. Geochronology of Willyama Supergroup metavolcanics, metasediments and contemporaneous intrusions, Broken Hill, Australia. Aus. J. Earth Sci. 55:301-330. [524]

Page 240: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

231

Stewart, J.H.; Gehrels, G.E.; Barth, A.P.; Link, P.K.; Christie-Blick, N.; and Wruckle, C.T. 2001. Detrital zircon provenance of Mesoproterozoic to Cambrian arenites in the western United States and northwestern Mexico. Geol. Soc. Am. Bul. 113:1343-1356. [13]

Stewart, R.J.; Hallet, B.; Zeitler, P.K.; Malloy, M.A.; Allen, C.M.; and Trippett, D. 2008. Brahmaputra sediment flux dominated by highly localized rapid erosion from the easternmost Himalaya. Geology. 36:711-714. [730]

Strachan, R.A.; Collins, A.S.; Buchan, C.; Nance, R.D.; Murphy, J.B.; and D‘Lemos, R.S. 2007. Terrane analysis along a Neoproterozoic active margin of Gondwana: Insights from U-Pb zircon geochronology. J. Geol. Soc. London. 164:57-60. [366]

Strachan, R.A.; Nutman, A.P.; and Friderichsen, J.D. 1995. SHRIMP U-Pb geochronology and metamorphic history of the Smallefjord sequence, NE Greenland Caledonides. J. Geol. Soc. London. 152:779-784. [389]

Strnad, L., and Mihaljevič, M. 2005. Sedimentary provenance of Mid-Devonian clastic sediments in the Teplá-Barrandian Unit (Bohemian Massif): U-Pb and Pb-Pb geochronology of detrital zircons by laser ablation ICP-MS. Mineral. Petrol. 84:47-68. [419]

Stroup, C.N. 2008. Provenance of Cenozoic continental sandstones in southwest Montana: Evidence from detrital zircon. Unpublished MS thesis. Idaho State University. 120 pp. [869]

Sultan, L.; Claesson, S.; and Plink-Björklund, P. 2005. Proterozoic and Archean ages of detrital zircon from the Palaeoproterozoic Västervik Basin, SE Sweden: Implications for provenance and timing of deposition. GFF. 127:17-24. [271]

Page 241: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

232

Sun, M.; Chen, N.; Zhao, G.; Wilde, S.A.; Ye, K.; Guo, J.; Chen, Y.; and Yuan, C. 2008b. U-Pb zircon and Sm-Nd isotopic study of the Huangtuling Granulite, Dabie-Sulu Belt, China: Implication for the Paleoproterozoic tectonic history of the Yangtze craton. Am. J. Sci. 308: 469-483. [688]

Sun, M.; Yuan, C.; Xiao, W.; Long, X.; Xiaoping, X.; Zhao, G.; Lin, S.; Wu, F.; Kröner, A. 2008a. Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: Progressive accretionary history in early to middle Palaeozoic. Chem. Geol. 247:352-383. Doi: 10.1016/j.chemgeo.2007.10.026. [453]

Sun, W.-H.; Zhou, M.-F.; Gao, J.-F.; Yang, Y.-H.; Zhao, X.-F.; and Zhao, J.-H. 2009. Detrital zircon U-Pb geochronological and Lu-Hf isotopic constraints on the Precambrian and crustal evolution of the western Yangtze Block, SW China. Precambrian Res. 172:99-126. Doi: 10.1016/j.precamres.2009.03.010. [843]

Sun, W.-H.; Zhou, M.-F.; Yan, D.-P.; Li, J.-W.; Ma, Y. 2008. Provenance and tectonic setting of the Neoproterozoic Yanbian Group, western Yangtze Block (SW China). Precambrian Res. 167:213-236. Doi: 10.1016/j.precamres.2008.08.001. [682]

Sunal, G.; Satir, M.; Natal‘in, B.A.; and Toraman, E. 2008. Paleotectonic position of the Strandja massif and surrounding continental blocks based on zircon Pb-Pb age studies. Int. Geol. Rev. 50: 519-545. [624]

Surpless, K.D., and Augsburger, G.A. 2009. Provenance of the Pythian Cave Conglomerate, northern California: Implications for mid-Cretaceous paleogeography of the U.S. Cordillera. Cret. Res. 30:1181-1192. Doi: 10.1016/j.cretres.2009.05.006. [898]

Surpless, K.D.; Graham, S.A.; Covault, J.A.; and Wooden, J.L., 2006. Does the Great Valley Group contain Jurassic strata? Reevaluation of the age and early evolution of a classic forearc basin, Geology. 34:21-24. [468]

Page 242: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

233

Sutherland, E.L. and Meffre, S. 2009. Zircon megacryst ages and chemistry, from a placer, Dunedin volcanic area, eastern Otago, New Zealand. New Zealand J. Geol. Geophys. 52:185-194. [959]

Swain, G.; Woodhouse, A.; Hand, M.; Barovich, K.; Schwarz, M.; and Fanning, C.M. 2005. Provenance and tectonic development of the Late Archean Gawler Craton, Australia: U-Pb zircon, geochemical and Sm-Nd implications. Precambrian Res. 141:106-136. [998]

Talavera-Mendoza, O.; Ruiz, J.; Gehrels, G.E.; Valencia, V.A.; and Centeno-García, E. 2007, Detrital zircon U/Pb geochronology of southern Guerrero and western Mixteca arc successions (southern Mexico): New insights for the tectonic evolution of southwestern North America during the late Mesozoic. Geol. Soc. Am. Bull. 119:1052-1065. [469]

Tang, J.E. 2006. Provenance of quartz-rich sandstones deposited adjacent to the Tertiary Java Arc, Indonesia. Unpublished MS thesis. University of Wisconsin Madison. Pp. 71. [985]

Tchakounté, J.N.; Toteu, S.F.; Van Schmus, W.R.; Penaye, J.; Deloule, É; Ondoua, J.M.; Houketchang, M.B.; Ganwa, A.A.; and White, W.M. 2007. Evidence of ca. 1.6-Ga detrital zircon in the Bafia Group (Cameroon): Implications for the chronostratigraphy of the Pan-African Belt north of the Congo Craton. C.R. Geosci. 339:132-142. [535]

Thackrey, S.; Walkden, G.; Indares, A.; Horstwood, M.; Kelley, S.; and Parrish, R. 2009. The use of heavy mineral correlation for determining the source of impact ejecta: A Manicouagan distal ejecta case study. Earth Planet. Sci. Lett. 285:163-172. Doi: 10.1016/j.epsl.2009.06.010. [917]

Thomas, R.J.; Cornell, D.H.; and Armstrong, R.A. 1999. Provenance age and metamorphic history of the Quha Formation, Natal Metamorphic Province: A U-Th-Pb zircon SHRIMP study. S. Afr. J. Geol. 102:83-88. [644]

Thomas, R.J.; De Waele, T.B.; Schofield, D.I.; Goodenough, K.M.; Horstwood, M.; Tucker, R.; Bauer, W.; Annells, R.; Howard, K.; Walsh, G.; Rabarimanana, M.; Rafahatelo, J.M.;

Page 243: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

234

Ralison, A.V.; and Randriamananjara. T. 2009. Geological Evolution of the Neoproterozoic Bemarivo Belt, northern Madagascar. Precambrian Res. 172:279-300. Doi:10.1016/j.precamres.2009.04.008. [888]

Thomas, R.J.; Jacobs, J.; Horstwood, M.S.A.; Ueda, K.; Bingen, B.; and Matola, R. 2010. The Mecubúri and Alto Benfica Groups, NE Mozambique: Aids to unraveling ca. 1 and 0.5 Ga events in the East African Orogen. Precambrian Res. 178:72-90. Doi: 10.1016/j.precamres.2010.01.010. [1101]

Thomas, W.A.; Astini, R.A.; Mueller, P.A.; Gehrels, G.E.; and Wooden, J.L. 2004. Tranfer of the Argentine Precordillera from Laurentia: Constraints from detrital-zircon geochronology. Geology. 32:965-968. [70]

Thomas, W.A.; Becker, T.P.; Samson, S.D.; and Hamilton, M.A. 2004. Detrital zircon evidence of a recycled orogenic foreland provienance for Alleghanian clastic-wedge sandstones. J.Geol. 112:23-37. [1047]

Thompson, M.D., and Bowring, S.A. 2000. Age of the Squantum ―Tillite‖: Boston Basin, Massachusetts: U-Pb zircon constraints on terminal Neoproterozoic glaciation. Am. J. Sci. 300:630-655. [277]

Thorkelson, D.J.; Abbott, J.G.; Mortensen, J.K.; Creaser, R.A.; Villeneuve, M.E.; McNicoll, V.J.; and Layer, P.W. 2005. Early and Middle Proterozoic evolution of Yukon, Canada. Can. J. Earth Sci. 42:1045-1071. [747]

Thrane, K., and Connolley, J.N. 2006. Zircon geochronology from the Kangaatsiaq-Qasigiannguit region, the northern part of the 1.9-1.9 Ga Nagssugtoqidian orogen, West Greenland. Geol. Surv. Denmark Greenland Bull. 11:87-99. [293]

Tichomirowa, M.; Berger, H.-J.; Koch, E.A.; Belyatski, B.V.; Götze, J.; Kempe, U.; Nasdala, L.; and Schaltegger, U. 2001. Zircon ages of high-grade gneisses in the Eastern Erzgebirge

Page 244: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

235

(Central European Variscides) – constraints on origin of the rocks and Precambrian to Ordovician magmatic events in the Variscan foldbelt. Lithos. 56:303-332. [568]

Timmons, J.M.; Karlstrom, K.E.; Heizler, M.T.; Bowring, S.A.; Gehrels, G.E.; and Crossey, L.J. 2005. Tectonic inferences from the ca. 1255-1100 Ma Unkar Group and Nankoweap Formation, Grand Canyon: Intracratonic deformation and basin formation during protracted Grenville orogenesis. Geol. Soc. Am. Bul. 117:1573-1595. [47]

Toteu, S.F.; Penaye, J.; Deloule, E.; Van Schmus, W.R.; and Tchameni, R. 2006. Diachronous evolution of volcano-sedimentary basins north of the Congo craton: Insights from U-Pb ion microprobe dating of zircons from the Poli, Lom and Yaoundé Groups I(Cameroon). J. Afr. Earth Sci. 44:428-442. [532]

Tran, H.T.; Ansdell, K.M.; Bethune, K.M.; Ashton, K.; and Hamilton, M.A. 2008. Provenance and tectonic setting of Paleoproterozoic metasedimentary rocks along the eastern margin of Hearne craton: Constraints from SHRIMP geochronology, Wollaston Group, Saskatchewan, Canada. Precambrian Res. 167:171-185. Doi: 10.1016/j.precamres.2008.08.003. [681]

Trendall, A.F.; Basei, M.A.S.; de Laeter, J.R.; and Nelson, D.R. 1998. SHRIMP zircon U-Pb constraints on the age of the Carajás Formation, Grão Pará Group, Amazon Craton. J. South Am. Earth Sci. 11:265-277. [244]

Trendall, A.F.; Compston, W.; Nelson, D.R.; De Laeter, J.R.; and Bennett, V.C. 2004. SHRIMP zircon ages constraining the depositional chronology of the Hamersley Group, Western Australia. Aus. J. Earth Sci. 51:621-644. [163]

Trendall, A.F.; de Laeter, J.R.; Nelson, D.R.; and Mukhopadhyay, D. 1997. A precise zircon U-Pb age for the base of the BIF of the Mulaingiri Gormation (Bababudan Group, Dharwar Supergroup) of the Karnataka craton. J. Geol. Soc. India. 50:161-170. [710]

Page 245: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

236

Trendall, A.F.; Nelson, D.R.; De Laeter, J.R.; and Hassler, S.W. 1998. Precise zircon U-Pb ages from the Marra Mamba Iron Formation and Wittenoom Formation, Hamersly Group, Western Australia. Aus. J. Earth Sci. 45:137-142. [211]

Tsutsumi, Y.; Miyashita, A.; Terada, K.; and Hidaka, H. 2009. SHRIMP U-Pb dating of detrital zircons from the Sanbagawa Belt, Kanto Mountains, Japan: Need to revise the framework of the belt. J. Mineral. Petrol. Sci. 104:12-24. [836]

Tsutsumi, Y.; Yokoyama, K.; Horie, K.; Terada, K.; and Hidaka, H. 2006. SHRIMP U-Pb dating of detrital zircons in paragneiss from Oki-Dogo Island, western Japan. J. Miner. Petrol. Sci. 101:289-298. [278]

Tsutsumi, Y.; Yokoyama, K.; Terada, K.; and Sano, Y. 2000. SHRIMP U-Pb dating of zircons in the sedimentary rocks from the Akiyoshi and Suo zones, Southwest Japan. J. Miner. Petrol. Sci. 95:216-227. [113]

Tucker, R.D.; Dallmeyer, R.D.; and Strachan, R.A. 1993. Age and tectothermal record of Laurentian basement, Caledonides of NE Greenland. J. Geol. Soc. London. 150: 371-379. [557]

Tuisku, P., and Huhma, H. 2007. Evolution of migmatitic granulite complexes: Implications from Lapland Granulite Belt, Part II: Isotopic dating. Bull. Geol. Soc. Fin. 78: 143-175. [631]

Tung, K.; Yang, H.; DunYi, L.; Zhang, J.;Tseng, C.; and Wan, Y. 2007. SHRIMP U-Pb geochronology of the detrital zircons from the Longshoushan Group and its tectonic significance. Chinese Sci. Bull. 52:1414-1425. [516]

Tung, K.; Yang, H.-J.; Yang, H.-Y.; Liu, D.; Zhang, J.X.; Wan, Y.; and Tseng, C.-Y. 2007. SHRIMP U-Pb geochronology of the zircons from the Precambrian basement of the Qilian Block and its geological significances. Chinese Sci. Bull. 52:2687-2701. [781]

Page 246: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

237

Turkina, O.M.; Urmantseva, L.N.; Berezhnaya, N.G.; and Presnyakov, S.L. 2010. Paleoproterozoic age of the protoliths of metaterrigenous rocks in the east of the irkut granulite-gneiss block (Sharyzhalgai Salient, Siberian Craton). Strat. Geol. Corr. 18:16-30. [1103]

Tyler, I.M.; Page, R.W.; and Griffin, T.J. 1999. Depositional age and provenance of the Marboo Formation from SHRIMP U-Pb zircon geochronology: Implications for the early Palaeoproterozoic tectonic evolution of the Kimberley region, Western Australia. Precambrian Res. 95:225-243. [237]

Tyszka, R.; Kryza, R.; Zalasiwwicz, J.A.; and Larionov, A.N. 2008, Multiple Archaean to early Paleozoic events of the northern Gondwana margin witnessed by detrital zircons from the Radzimowice Slates, Kaczawa Complex (Central European Variscides), Geol. Mag. 145:85-93. Doi:10.1017/S0016756807003962. [472]

Ugidos, J.M.; Billström, K.; Valladares, M.I.; and Barba, P. 2003. Geochemistry of the Upper Neoproterozoic and Lower Cambrian siliciclastic rocks and U-Pb dating on detrital zircons in the Central Iberian Zone, Spain. Int. J. Earth Sci. 92:661-676. [115]

Uher, P., and Pushkarev, Y. 1994. Granitic pebbles of the Cretaceous Flysch of the Pieniny Klippen Belt, Western Carpathians: U/Pb zircon ages. Geol. Carpathica. 45: 375-378. [908]

Upadhyay, D.; Gerdes, A.; and Raith, M.M. 2009. Unraveling sedimentary provenance and tectonothermal history of high-temperature metapelites, using zircon and monazite chemistry: A case study from the Eastern Ghats Belt, India. J.Geol. 117:665-683. [956]

Ustaömer, P.A.; Ustaömer, T.; Gerdes, A.; and Zulauf, G. 2009(in press). Detrital zircon ages from a Lower Ordovician quartzite of the Istanbul exotic terrane (NW Turkey): Evidence for Amazonian affinity. Int. J. Earth Sci. doi: 10.1007/s00531-009-0498-1. [1057]

Page 247: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

238

Usuki, T.; Kaiden, H.; Misawa, K.; and Shiraishi, K. 2006. Sensitive high-resolution ion microprobe U-Pb ages of the Latest Olifocene-Early Miocene rift-related Hidaka high-temperature metamorphism in Hokkaido, northern Japan. Island Arc. 15:303-516. [370]

Usuki, T.; Lan, C.-Y.; Yui, T.-F.; Iizuka, Y.; Vu, V.T.; Tran, T.A.; Okamoto, K.; Wooden, J.L.; and Liou, J.G. 2009. Early Paleozoic medium-pressure metamorphism in central Vietnam: Evidence from SHRIMP U-Pb zircon ages. Geosci. J. 13:245-256. [981]

Valeriano, C.M.; Machado, N.; Simonetti, A.; Valladares, C.S.; Seer, H.J.; Sergio, L.; and Simões, A. 2004. U-Pb geochronology of the southern Brasila belt (SE-Brazil): Sedimentary provenance, Neoproterozoic orogeny and assembly of West Gondwana. Precambrian Res. 130:27-55.[129]

Valladares, C.S.; Machado, N.; Heilbron, M.; and Gauthier, G. 2004. Ages of detrital zircon from siliciclastic successions south of the São Francisco Craton, Brazil: Implications for the evolution of Proterozoic basins. Gondwana Res. 7:913-921. [46]

Vallini, D.A.; Cannon, W.F.; and Schulz, K.J. 2006. Age constraints for Paleoproterozoic glaciation in the Lake Superior Region: Detrital zircon and hydrothermal xenotime ages for the Chocolay Group, Marquette Range Supergroup. Can. J. Earth Sci. 43:571-591. [63]

Valverde-Vaquero, P.; Dörr, W.; Belka, Z.; Franke, W.; Wiszniewska, J.; Schastok, J. 2000. U-Pb single-grain dating of detrital zircon in the Cambrian of central Poland: Implications for Gondwana versus Baltica provenance studies. Earth Planet. Sci. Lett. 184:225-240. [103]

Van Breemen, O., and Aspler, L.B. 1994. Detrital zircon ages from Nonacho Basin, western Rae Province, Northwest Territories. Geological Survey of Canada Current Research. 1994-F:49-59. [440]

Page 248: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

239

Van Breemen, O., and Corriveau, L. 2005. U-Pb age constraints on arenaceous and volcanic rocks of the Wakeham Group, eastern Grenville Province. Can. J. Earth Sci. 42:1677-1697. [676]

Van Breemen, O.; Heather, K.B.; and Ayer, J.A. 2006. U-Pb geochronology of the Neoarchean Swayze sector of the southern Abitibi greenstone belt. Geological Survey of Canada Current Research 2006-F1, 32 pp. [754]

Van Hattum, M.W.A.; Hall, R.; Pickard, A.L.; Nichols, G.J. 2006. Southeast Asia sediments not from Asia: Provenance and geochronology of north Borneo sandstones. Geology. 34:589-592. [54]

Van Hoang, L.; Wu, F.-Y.; Clift, P.D.; Wysocka, A.; and Swierczewska, A. 2009. Evaluating the evolution of the Red River system based on in situ U-Pb dating and Hf isotope analysis of zircons. Geochem. Geophys. Geosys. 10, doi: 10.1029/2009GC002819. [1079]

Van Niekerk, H.S. 2006. The origin of the Kheis Terrane and its relationship with the Archean Kaapvaal Craton and the Grenvillian Namaqua Province in southern Africa. Unpub. Ph.D. dissertation, University of Johannesburg, Johannesburg. [316]

Van Schmus, W.R.; de Brito Neves, B.B.; Williams, I.S.; Hackspacher, P.C.; Fetter, A.H.; Dantas, E.L.; and Babinski, M. 2003. The Seridó Group of NE Brazil, a late Neoproterozoic pre- to syn-collisional basin in West Gondwana: Insights from SHRIMP U-Pb detrital zircon ages and Sm-Nd crustal residence (TDM) ages. Precambrian Res. 127: 287-327. [305]

Van Staden, A.; Zimmermann, U.; Chemale, F. Jr.; Gutzmer, J.; Germs, G.J.B. 2010. Correlation of Ordovician diamictites from Argentina and South Africa using detrital zircon dating. J. Geol. Soc. London. 167:217-220. [1061}

Page 249: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

240

Van Wyck, N., and Norman, M. 2004. Detrital zircon ages from Early Proterozoic quartzites, Wisconsin, support rapid weathering and deposition of mature quartz arenites. J. Geol. 112:305-315. [11]

Van Wyck, N., and Williams, I.S. 2002. Age and provenance of basement metasediments from the Kubor and Bena Bena Blocks, central Highlands, Papua New Guinea: Constraints on the tectonic evolution of the northern Australian cratonic margin. Aust. J. Earth Sci. 49:565-577. [152]

Vavra, G.; Gebauer, D.; Schmid, R.; and Compston, W. 1996. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): An ion microprobe (SHRIMP) study. Contrib. Mineral. Petrol. 122:337-358. [406]

Veevers, J.J., and Saeed, A. 2007. Central Antarctic provenance of Permian sandstones in Dronning Maud Land and the Karoo Basin: Integration of U-Pb and TDM ages and host-rock affinity from detrital zircons. Sediment. Geol. 202:653-676. Doi:10.1016/j.sedgeo.2007.07.011. [376]

Veevers, J.J., and Saeed, A. 2008. Gamburtsev Subglacial Mountains provenance of Permian- Triassic sandstones in the Prince Charles Mountains and offshore Prydz Bay: Integrated SU-Pb and TDM ages and host-rock affinity from detrital zircons. Gondwana Res. 14:316-342. Doi:10.1016/j.gr.2007.12.007. [561]

Veevers, J.J., and Saeed, A. 2009. Permian-Jurassic Mahanadi and Pranhita-Godavari Rifts of Gondwana India: Provenance from regional paleoslope and U-Pb/Hf analysis of detrital zircons. Gondwana Res. 16:633-654. Doi:10.1016/j.gr.2009.05.013. [914]

Veevers, J.J.; Saeed, A.; Belousova, E.A.; and Griffin, W.L., 2005. U-Pb ages and source composition by Hf-isotope and trace-element analysis of detrital zircons in Permian sandstone and modern sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgarn Craton. Earth-Sci. Rev. 68:245-279. [313]

Page 250: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

241

Veevers, J.J.; Saeed, A.; and O‘Brien, P.E. 2008. Provenance of the Gamburtsev Subglacial Mountains from U-Pb and Hf analysis of detrital zircons in Cretaceous to Quaternary sediments in Prydz Bay and beneath Amery Ice Shelf. Sed. Geol. 211:12-32. [794]

Veevers, J.J.; Saeed, A.; Pearson, N.; Belousova, E.; and Kinny, P.D. 2008. Zircons and clay from morainal Permian siltstone at Mt Rymill (73 S, 66 E), Prince Charles Moutains, Antarctica, reflect the ancestral Gamburtsev Subglacial Mountains-Vostok Subglacial Highlands Complex. Gondwana Res. 14: 343-354. Doi: 10.1016/j.gr.2007.12.006. [560]

Vega-Granilla, R.; Salgado-Souto, S.; Herrera-Urbina, S.; Valencia, V.; Ruiz, J.; Meza-Figueroa, D.; Talavera-Mendoza, O. 2008. U-Pb detrital zircon data of the Rio Fuerte Formation (NW Mexico): Its peri-Gondwanan provenance and exotic nature in relation to southwestern North America. J. South Am. Earth Sci. 26:343-354. doi:10.1016/j.sames.2008.08.011. [761]

Veiga-Pires, C.; Moura, D.; Rodrigues, B.; Machado, N.; Campo, L.; and Simonetti, A. 2007. Provenance of Quaternary sands in the Algarve (Portugal) revealed by U-Pb ages of detrital zircon. In Nichols, G.; Williams, E.; and Paola, C. Sedimentary Processes, Environments and Basins: a Tribute to Peter Friend. Special Publication 38 of the International Association of Sedimentologists. 327-340. Blackwell Publishing, London. [593]

Venegas-Rodriguez, G.; Barboza-Gudino, J.R.; and Lopez-Doncel, R.A. 2009. Geochronology of detritic zircons in Lower Jurassic beds of the Sierra de Catorce and El Alamito areas, San Luis Potosi State. Rev. Mex. Cien. Geol. 26:466-481. [966]

Villeneuve, M.E.; Butterfield, N.J.; Cook, D.G.; MacLean, B.C.; and Rainbird, R.H. 1998. Age of the Cap Mountain (Northwest Territories) Proterozoic section, sequence B, based on detrital zircon ages. In Current Research, Geological Survey of Canada. 1998-F:117-127. [413]

Page 251: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

242

Visona, D.; Fioretti, A.M.; Poli, M.E.; Zanferrari, A.; and Fanning, M. 2007. U-Pb zircon dating of andesite from the Dolomite area (NE Italy): geochronological evidence for the early onset of Permian volcanism in the eastern part of the southern Alps. Swiss. J. Geosci. 100:313-324. [762]

Vorhies, S. 2006. Provenance and tectonic setting of the Paleoproterozoic Denham Formation in east-central Minnesota. Unpublished BA Honors Thesis. Smith College. 59 pp. [944]

Wade, B.P.; Hand, M.; Maidment, D.W.; Close, D.F.; and Scrimgeour, I.R. 2008. Origin of metasedimentary and igneous rocks from the Entia Dome, eastern Arunta region, central Australia: a U-Pb LA-ICPMS, SHRIMP and Sm-Nd isotope study. Aus. J. Earth Sci. 55: 703-719. [685]

Waldron, J.W.F.; Floyd, J.D.; Simonetti,A.; and Heaman, L.M. 2008. Ancient Laurentian detrital zircon in the closing Iapetus Ocean, Southern Uplands terrane, Scotland. Geology. 36:527-530. [592]

Waldron, J.W.F.; White, C.E.; Barr, S.M.; Simonetti, A.; and Heaman, L. 2009. Provenance of the Meguma terrane, Nova Scotia: Rifted Margin of early Paleozoic Gondwana. Can. J. Earth Sci. 46:1-8. [855]

Wallin, E.T. 1990. Provenance of selected lower Paleozoic siliciclastic rocks in the Roberts Mountains allochthon, Nevada. In Harwood, D.S., and Miller, M.M. (eds.). Paleozoic and early Mesozoic paleogeographic relations; Sierra Nevada, Klamath Mountains, and related terranes. Boulder, Colorado. Geological Society of America Special Paper 255: 17-32. [739]

Wallin, E.T.; Noto, R.C..; and Gehrels, G.E.. 2000. Provenance of the Antelope Mountain Quartzite, Yreka terrane, California: Evidence for large-scale Paleozoic sinistral displacement along the North American Cordilleran margin and implications for the mid-Paleozoic fringing-arc model. In Soreghan., M.J. and Gehrels, G.E., eds. Paleozoic and Triassic paleogeography and tectonics of western Nevada and northern California. Boulder, Colorado. Geological Society of America Special Paper 347:119-131. [148]

Page 252: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

243

Walsh, E.O.; Hacker, B.R.; Gans, P.B.; Grove, M.; and Gehrels, G.E. 2007. Protolith ages and exhumation histories of (ultra)high-pressure rocks across the Western Gneiss Region, Norway. Geol. Soc. Am. Bull. 119:289-301. Doi: 10.1130/B25817.1 [612]

Walsh, G.J.; Aleinikoff, J.N.; and Wintsch, R.P. 2007. Origin of the Lyme dome and implications for the timing of multiple-alleghanian deformational and intrusive events in southern Connecticut. Am. J. Sci. 307: 168-215. [620]

Wan, Y.; Dong, C.; Wang, W.; Xie, H.; and Liu, D. 2010. Archean basement and a Paleoproterozoic collision orogen in the Huoqiu area at the southeastern margin of North China Craton: Evidence from Sensitive High Resolution Ion Micro-Probe U-Pb Zircon Geochronology. Acta Geol. Sinica 84:91-104. [1071]

Wan, Y.; Liu, D.; Dong, C.; Xu, Z.; Wang, Z.; Wilde, S.A.; Yang, Y.; Liu, Z.; and Zhou, H. 2009. The Precambrian Khondalite Belt in the Daqinghan area, North China Craton: Evidence for multiple metamorphic events in the Paleoproterozoic era. Geological Society, London Special Publication 323: 73-97. [1059]

Wan, Y.; Liu, D.; Wang, S.; Zhao, X.; Dong, C.; Zhou, H.; Yin, X.; Yang, C.; and Gao. L. 2009. Early Precambrian crustal evolution in the Dengfeng area, Henan Province (eastern China): Constraints from geochemistry and SHRIMP U-Pb zircon dating. Acta Geol. Sin. 83:982-999. [1094]

Wan, Y.; Liu, D.; Wilde, S.A.; Cao, J.; Chen, B.; Dong, C.; Song, B.; and Du, L. 2009. Evolution of the Yunkai Terrane, South China: Evidence from SHRIMP zircon U-Pb dating, geochemistry and Nd isotope. J. Asian Earth Sci. 37:140-153. doi: 10.1016/j.jseaes.2009.08.002. [939]

Wan, Y.; Liu, D.; Xu, M.; Zhuang, J.; Song, B.; Shi, Y.; and Du, L. 2007. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in

Page 253: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

244

Northwestern Fujian, Cathaysia Block, China: Tectonic implications and the need to redefine lithostratigraphic units. Gondwana Res. 12:166-183. [997]

Wan, Y.; Song, B.; and Liu, D. 2002. Zircon SHRIMP age of Mesoarchaean meta-argillo-arenaceous rock in the Anshan area and its geological significance. Science in China (Series B). 45:121-129. [778]

Wan, Y.; Song, B.; Liu, D.; Wilde, S.A.; Wu, J.; Shi, Y.; Yin, X.; and Zhou, H. 2006. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Res. 149:249-271. [996]

Wandres, A.M.; Bradshaw, J.D.; and Ireland, T. 2005. The Paleozoic-Mesozoic recycling of the Rakaia Terrane, South Island, New Zealand: Sandstone clast and sandstone petrology, geochemistry and geochronology. New Zeal. J. Geol. Geop. 48:229-245. [62]

Wang, C.; Campbell, I.H.; Allen, C.M.; Williams, I.S.; and Eggins, S.M. 2009. Rate of growth of the preserved North American continental crust: Evidence from Hf and O isotopes in Mississippi detrital zircons. Geochem. Et Cosmochim. Acta. 73:712-728. [811]

Wang, C.; Cui, W.; Kröner, A.; and Nemchin, A.A. 2000. Zircon isotopic ages from magnetite quartzites of the Jianping metamorphic complex, western Liaoning Province. China. Sci. Bull. 45:547-551. [779]

Wang, L.-J.; Griffin, W.L.; Yu, J.-H.; and O‘Reilly, S.Y. 2010. Precambrian crustal evolution of the Yangtze Block tracked by detrital zircons from Neoproterozoic sedimentary rocks. Precambrian Res. 177:131-144. Doi: 10.1016/j.precamres.2009.11.008. [1067]

Wang, L.; Yu, J.; O‘Reilly, S.Y.; Griffin, W.L.; Sun, T.; Wei, Z.; Jiang, S.; and Shu, L. 2008. Grenvillian orogeny in the Southern Cathaysia Block: Constraints from U-Pb ages and Lu-Hf isotopes in zircon from metamorphic basement. Chin. Sci. Bull. 53:3037-3050. [824]

Page 254: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

245

Wang, J.; Wu, Y.; Gao, S.; Peng, M.; Liu, X.; Zhao, L.; Zhou, L.; Hu, Z.; Gong, H.; and Liu, Y. 2010. Zircon U-Pb and trace element data from rocks of the Huai‘an Complex: New insights into the late Paleoproterozoic collision between the Eastern and Western blocks of the North China Craton. Precambrian Res. 178:59-71. Doi: 10.1016/j.precamres.2010.01.007. [1085]

Wang, Q.; Chen, N.; Li, X.; Hao, S.; and Chen, H. 2008. LA-ICPMS zircon U-Pb geochronological constraints on the tectonothermal evolution of the Early Paleoproterozoic Dakendaban Group in the Quanji Block, NW China. Chinese Sci. Bull. 53:2849-2858. [782]

Wang, Q.; Schiøtte, L.; and Campbell, I.H. 1998. Geochronology of supracrustal rocks from the Golden Grove area, Murchison Province, Yilgarn Craton, Western Australia. Aus. J. Earth Sci. 45:571-577. [212]

Wang, W.; Wang, F.; Chen, F.; Zhu, X.; Xiao, P.; and Siebel, W. 2010. Detrital zircon ages and Hf-Nd isotopic composition of Neoproterozoic sedimentary rocks in the Yangtze Block: Constraints on the Deposition Age and Provenance. J. Geol. 118:79-94. [1025]

Wang, X.-L.; Zhou, J.-C.; Griffin, W.L.; Wang, R.-C.; Qiu, J.-S.; O‘Reilly, S.Y.; Xu, X.; Liu, X.-M.; and Zhang, G.L. 2007. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: Dating the assembly of the Yangtze and Cathaysia Blocks. Precambrian Res. 159:117-131. doi:10.1016/j.precamres.2007.06.005. [289]

Wang, Y., Fan, W.; Zhao, G.; Ji, S.; and Peng, T. 2007. Zircon U-Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China Block. Gondwana Res. 12: 404-416. [664]

Wang, Y.; Liu, D.; Chung, S.-L.; Tong, L.; and Ren, L. 2008. SHRIMP zircon age constraints from the Larsemann Hills region, Prydz Bay, for a late Mesoproterozoic to early Neoproterozoic tectono-thermal event in east Antarctica. Am. J. Sci. 308:573-617. [709]

Page 255: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

246

Wang, Y.; Xia, X.; Zhang, Y.; Fan, W.; Li, C.; Bi, X.; and Li, S. 2009. Early Mesozoic unroofing pattern of the Dabie Mountains (China): Constraints from the U-Pb detrital zircon geochronology and Si-in-white mica analysis of synorogenic sediments in the Jianghan Basin. Chem. Geol. 266:231-241. Doi: 10.1016/j.chemgeo.2009.06.012. [906]

Wasteneys, H.A.; Kamo, S.L.; Moser, D.; Krogh, T.E.; Gower, C.F.; and Owen, J.V. 1997. U-Pb geochronological constraints on the geological evolution of the Pinware terrane and adjacent areas, Grenville Province, southeast Labrador, Canada. Precambrian Res. 81:101-128. [226]

Wasteneys, H.A.; Wardle, R.J.; and Krogh, T.E. 1996. Extrapolation of tectonic boundaries across the Labrador Shelf: U-Pb geochronology of well samples. Can. J. Earth Sci. 33:1308-1324. [1038]

Watt, G.R.; Kinny, P.D.; and Friderichsen, J.D. 2000. U-Pb geochronology of Neoproterozoic and Caledonian tectonothermal events in the East Greenland Caledonides. J. Geol. Soc. London. 157:920-921. [175]

Weber, B.; Schaaf, P.; Valencia, V.A.; Iriondo, A.; and Ortega-Gutierrez, F. 2006. Provenance ages of late Paleozoic sandstones (Santa Rosa Formation) from the Maya block, SE Mexico. Implications on the tectonic evolution of western Pangea. Rev. Mex. Cienc. Geol. 23:262-276. [162]

Weber, B.; Valencia, V.A.; Schaaf, P.; and Ortega-Gutiérrez, F. 2009. Detrital zircon ages from the Lower Santa Rosa Formation, Chiapas: Implications on regional Paleozoic stratigraphy. Rev. Mex. De Cienc. Geol. 26:260-276. [859]

Weber, B.; Valencia, V.A.; Schaaf, P.; Pompa-Mera, V.; and Ruiz, J. 2008. Significance of Provenance ages from the Chiapas Massif Complex (Southeastern Mexico): redefining the Paleozoic Basement of the Maya Block and Its Evolution in a Peri-Gondwanan Realm. J. Geol. 116:619-639. [820]

Page 256: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

247

Weber, M. Cardona, A.; Valencia, V.; García-Casco, A.; Tobón, M.; and Zapata, S. 2009(in press). U/Pb detrital zircon provenance from Late Cretaceous metamorphic units of the Guajira Peninsula, Columbia: Tectonic implications on the collision between the Caribbean arc and the South American margin. J. South Am. Sci. doi:10.1016/j.jsames,2009.10.004. [1048]

Weislogel, A.L.; Graham, S.A.; Chang, E.Z.; Wooden, J.L.; Gehrels, G.E.; and Yang, H. 2006. Detrital zircon provenance of the Late Triassic Songpan-Ganzi complex: Sedimentary record of collision of the North and South China blocks. Geology. 34:97-100. [17]

West, D.P. Jr.; Yates, M.G.; Gerbi, C.; and Barnard, N.Q. 2008. Metamorphosed Ordovician Fe- and Mn-rich rocks in south-central Maine: From peri-Gondwanan deposition through Acadian metamorphism. Am. Min. 93:270-282. [605]

Wetmore, P.H. 2003. Investigation into the tectonic significance of the along strike variations of the Peninsular Ranges Batholith, Southern and Baja California. Unpub. Ph.D. dissertation, University of Southern California, Los Angeles. [327]

Whitman, A.G.; Morton, A.C.; and Fanning, C.M. 2004. Insights into Cretaceous-Palaeogene sediment transport paths and basin evolution in the North Atlantic from a heavy mineral study of sandstones from southern East Greenland. Petrol. Geosci. 10:61-72. [254]

Whitmore, G.; Armstrong, R.; Sudan, P.; and Ware, C. 2003. A model for economic accumulation of zircon, northern KwaZulu-Natal. Heavy Minerals 2003, Johannesburg, South African Institute of Mining and Metallurgy: 237-242. [539]

Wilde, S.A.; Valley, J.W.; Kita, N.T.; Cavosie, A.J.; and Liu, D. 2008. SHRIMP U-Pb and CAMECA 1280 Oxygen isotope results from ancient detrital zircons in the Caozhuang Quartzite, Eastern Hebei, North China Craton: Evidence for crustal reworking 3.8 Ga ago. Am. J. Sci. 308:185-199. [599]

Page 257: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

248

Wilde, S.A.; Zhang, X.; and Wu, F. 2000. Extension of a newly identified 500 Ma metamorphic terrane in North East China: Further U-Pb SHRIMP dating of the Mashan Complex, Heilongjiang Province, China. Tectonophysics. 328: 115-130. [653]

Will, T.M.; Zeh, A.; Gerdes, A.; Frimmel, H.E.; Millar, I.L.; and Schmädicke, E. 2009. Palaeoproterozoic to Palaeozoic magmatic and metamorphic events in the Shackleton Range, East Antarctica: Constraints from Zircon and Monazite Dating and implications for the amalgamation of Gondwana. Precambrian Res. 172: 25-45. Doi:10.1016/j.precamres.2009.03.008. [841]

Williams, I.S. 2001. Response of detrital zircon and monazite, and their U-Pb isotopic systems, to regional metamorphism and host-rock partial melting, Cooma Complex, southeastern Australia. Aus. J. Earth Sci. 48:557-580. [392]

Williams, I.S., and Claesson, S. 1987. Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides. Contrib. Mineral. Petrol. 97:205-217. [445]

Williams, I.S.; Krezemińska, E.; and Wiszniewska, J. 2009. An extension of the Svecofennian orogenic provence into NE Poland: Evidence from geochemistry and detrital zircon from Paleoproterozoic paragneisses. Precambrian Res. 172:234-254. Doi: 10.1016/j.precamres.2009.04.008. [913]

Williams, I.S.; Roye Rutland, R.W.; and Kousa, J. 2008. A regional 1.92 Ga tectothermal episode in Ostrobothnia, Finland: Implications for models of Svedofennian accretion. Precambrian Res. 165: 15-36. Doi: 10.1016/j.precamres.2008.05.004. [581]

Willner, A.P.; Gerdes, A.; and Massonne, H.-J. 2008. History of crustal growth and recycling at the Pacific convergent margin of SouthAmerica at latitudes 29°-36°S revealed by a U-Pb and Lu-Hf isotope study of detrital zircon from late Paleozoic accretionary systems. Chem. Geol. 253: 114-129. Doi: 10.1016/j/chemgeo.2008.04.016. [613]

Page 258: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

249

Willner, A.P.; Sindern, S.; Metzger, R.; Ermolaeva, T.; Kramm, U.; Puchkov, V.; and Kronz, A. 2003. Typology and single grain U/Pb ages of detrital zircons from Proterozoic sandstones in the SW Urals (Russia): Early time marks at the eastern margin of Baltica. Precambrian Res. 124:1-20. [126]

Wintsch, R.P.; Aleinikoff, J.N.; Walsh, G.J.; Bothner, W.A.; Hussey, A.M. II; and Fanning, C.M. 2007. SHRIMP U-Pb evidence for a late Silurian age of metasedimentary rocks in the Merrimack and Putnam-Nashoba terranes, eastern New England. Am. J. Sci. 307:119-167. [195]

Wodicka, N.; Parrish, R.R.; and Jamieson, R.A. 1996. The Parry Sound domain: a far-travelled allochton? New Evidence from U-Pb zircon geochronology. Can. J. Earth Sci. 33:1087-1104. [1039]

Worden, K.; Carson, C.; Scrimgeour, I., Lally, J.; and Doyle, N. 2008. A revised Palaeoproterozoic chronostratigraphy for the Pine Creek Orogen, northern Australia: Evidence from SHRIMP U-Pb zircon geochronology. Precambrian Res. 166:122-144. Doi:10.1016/j.precamres.2007.05.009. [543]

Wu, F.-Y.; Clift, P.D.; and Yang, J.-H. 2007. Zircon Hf isotopic constraints on the sources of the Indus Molasse, Ladakh Himalaya, India. Tectonics. 26, TC2014. doi:10.1029/2006TC002051. [484]

Wu, F.-Y.; Ji, W.-Q.; Liu, C.-Z.; and Chung, S.-L. 2010. Detrital zircon U-Pb and Hf isotopic data from the Xigaze fore-arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet. Chem. Geol. 271:13-25. Doi: 10.1016/j.chemgeo.2009.12.007. [1051]

Wu, F.-Y.; Yang, J.-H.; Wilde, S.A.; Liu, X.-M.; Guo, J.-H.; and Zhai, M.-G. 2007. Detrital U-Pb and Hf isotopic constraints on the crustal evolution of North Korea. Precambrian Res. 159:155-177. doi:10.1016/j.precamres.2007.06.007. [290]

Page 259: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

250

Wu, F.-Y.; Zhao, G.-C.;Sun, D.-Y.; Wilde, S.A.; and Yang, J.-H. 2007. The Hulan Group: Its role in the evolution of the Central Asian Orogenic Belt of NE China. J. Asian Earth Sci. 30:542-556. [575]

Wu, Y.-B.; Gao, S.; Gong, H.-J.; Xiang, H.; Hao, W.-F.; Yang, S.-H.; and Liu, Y.-S. 2009. Zircon U-Pb age, trace element and Hf isotopic composition of Kongling terrane in the Yangtze Craton: Refining the timing of Paleoproterozoic high-grade metamorphism. J. Metamorphic Geol. 27:461-474. Doi: 10.1111/j.1525-1314.2009.00826.x. [910]

Wyche, S.; Nelson, D.R.; and Riganti, A. 2004. 4350-3130 detrital zircons in the Southern Cross Granite-Greenstone Terrane, western Australia: Implications for the early evolution of the Yilgarn Craton. Aus. J. Earth Sci. 51:31-45. [153]

Wysoczanski, R.J., and Allibone, A.H. 2004. Age, correlation, and provenance of the Neoproterozoic Skelton Group, Antarctica: Grenville age detritus on the margin of east Antarctica. J. Geol. 112:401-416. [58]

Xia, X.; Sun, M.; Zhao, G.; Wu, F.; and Xie, L. 2009. U-Pb and Hf isotopic study of detrital zircons from Lüliang khondalite, North China Craton, and their tectonic implications. Geol. Mag. 146:701-716. Doi: 10.1017/S0016756809006396. [902]

Xia, X.; Sun, M.; Zhao, G.; Wu, F.; Xu, P.; Zhang, J.; and He, Y. 2008. Paleoproterozoic crustal growth in the western block of the North China Craton: Evidence from detrital zircon Hf and whole rock Sr-Nd isotopic compositions of the Khondalites from the Jining Complex. Am. J. Sci. 308:304-327. [603]

Xia, X.; Sun, M.; Zhao, G.; Wu, F.; Xu, P.; Zhang, J.; and Luo, Y. 2006a. U-Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites: Constraints on the evolution of the Ordos Terrane, Western Block of the North China Craton. Earth Planet. Sci. Lett. 241:581-593. [396]

Page 260: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

251

Xia, X.; Sun, M.; Zhao, G.; and Luo, Y. 2006b. LA-ICP-MS U-Pb geochronology of detrital zircons from the Jining Complex, North China Craton and its tectonic significance. Precambrian Res. 144:199-212. [435]

Xia, X.; Sun, M.; Zhao, G.; Wu, F.; Xu, P.; Zhang, J.; He, Y.; and Zhang, J. 2006c. U-Pb age and Hf Isotope study of detrital zircons from the Wanzi Supracrustals: Constraints on the Tectonic setting and evolution of the Fuping Complex, Trans-North China Orogen. Acta Geologica Sinica. 80: 844-863. [463]

Xie, J.; Mann, P.; and Escalona, A. 2010. Regional provenance study of Eocene clastic sedimentary rocks within the South America—Caribbean plate boundary zone using detrital zircon geochronology. Earth Planet. Sci. Lett. 291:159-171. Doi: 10.1016/j.epsl.2010.01.009. [1068]

Xie, J.; Wu, F.; and Ding, Z. 2007. Detrital zircon composition of U-Pb ages and Hf isotope of the Hunshandake sandland and implications for its provenance. Acta Petrol. Sinica. 23:523-528. [724]

Xu, W.; Zhang, H.; and Liu, X. 2007. U-Pb zircon dating constraints on formation time of Qilian high-grade metamorphic rock and its tectonic implications. Chin. Sci. Bull. 52:531-538. [588]

Xu, W.-C.; Zhang, H.-F.; Parish, R.; harris, N.; Guo, L.; and Yuan, , H.-L. 2010. Timing of granulite-facies metamorphism in the eastern Himalaya syntaxis and its tectonic implications. Tectonophysics. 485:231-244. Doi: 10.1016/j.tecto.2009.12.023. [1066]

Xu, X.; O‘Reilly, S.Y.; Griffin, W.L.; Deng, P.; and Pearson, N.J. 2005. Relict Proterozoic basement in the Nanling Mountains (SE China) and its tectothermal overprinting. Tectonics. 24: TC2003. Doi:10.1029/2004TC001652. [608]

Page 261: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

252

Xu, X.; O‘Reilly, S.Y.; Griffin, W.L.; Wang, X.; Pearson, N.J.; and He, Z. 2007. The crust of Cathaysia: Age, assembly and reworking of two terranes. Precambrian Res. 158:51-78. [375]

Yamashita, K.; Creaser, R.A.; and Villeneuve, M.E. 2000. Integrated Nd isotopic and U-Pb detrital zircon systematics of clastic sedimentary rocks from the Slave Province, Canada: Evidence for extensive crustal reworking in the early- to mid-Archean. Earth Planet. Sci. Lett. 174:283-299. [227]

Yan, Y.; Lin, G.; Xia, B.; Li, Z.; Cui, X.; and Yuan, G. 2006. U-Pb dating of single detrital zircon grains from Mesozoic sandstone in the Beipiao Basin in the eastern Yan-Liao Orogenic Belt, China: provenance and correlation of tectonic evolution. J. Asian Earth Sci. 26:669-681. [96]

Yang, J..; Du, Y.; Cawood, P.A.; and Yajun, X. 2009. Silurian collisional suturing onto the southern margin of the North China Craton: Detrital zircon geochronology constraints from the Qilian Orogen. Sediment. Geol. 220:95-104. Doi: 10.1016/j.sedgeo.2009.07.001. [925]

Yang, J.; Gao, S.; Chen, C.; Tang, Y.; Yuan, H.; Gong, H.; Xie, S.; and Wang, J. 2009. Episodic crustal growth of North China as revealed by U-Pb age and Hf isotopes of detrital zircons from modern rivers. Geochim. Et. Cosmochim. Acta. 73: 2660-2673. Doi: 10.1016/j.gca.2009.02.007. [835]

Yang, J.-H.; Wu, F.-W.; Shao, J.-A.; Wilde, S.A.; Xie, L.W.; and Liu, X.-M. 2006. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China. Earth Planet. Sci. Lett. 246:336-352. [995]

Yin, C.; Zhao, G.; Sun, M.; Xia, X.; Wei, C.; Zhou, X.; and Leung, W. 2009. LA-ICP-MS U-Pb zircon ages of the Qianlishan Complex: Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Precambrian Res. 174:78-94. Doi: 10.1016/j.precamres. 2009.06.008. [930]

Page 262: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

253

Young, D.N.; Fanning, C.M.; Shaw, R.D.; Edgoose, C.J.; Blake, D.H.; Page, R.W.; and Camacho, A. 1995. U-Pb zircon dating of tectonomagmatic events in the northern Arunta Inlier, central Australia. Precambrian Res. 71:45-68. [416]

Yu, J.; Li, H.; Zhang, S.; Yang, F.; and Feng, Q. 2008. Timing of the terrestrial Permian-Triassic boundary biotic crisis: Implications from U-Pb dating of authigenic zircons. Sci. Chin. Ser. D 51:1633-1645. [793]

Yu, J.-H.; O‘Reilly, S.Y.; Wang, L.; Griffin, W.L.; Jiang, S.; Wang, R.; and Xu, X. 2007. Finding of ancient materials in Cathaysia and implication for the formation of Precambrian crust. Chin. Sci. Bull. 52: 13-22. [698]

Yu, J.-H.; O‘Reilly, S.Y.; Wang, L.; Griffin, W.L.; Zhang, M.; Wang, R.; Jiang, S.; Shu, L. 2008. Where was South China in the Rodinia supercontinent? Evidence from U-Pb geochronology and Hf isotopes of detrital zircons. Precambrian Res. 164:1-15. Doi: 10.1016/j.precamres.2008.03.002. [519]

Yue, Y.; Graham, S.A.; Ritts, B.D.; and Wooden, J.L. 2005, Detrital zircon provenance evidence for large-scale extrusion along the Altyn Tagh fault. Tectonophysics. 406:165-178. [53]

Yui, T.F.; Okamoto, K.; Usuki, T.; Lan, C.Y.; Chu, H.T.; and Liou, J.G. 2009. Late Triassic-Late Cretaceous accretion/subduction in the Taiwan region along the eastern margin of South China—evidence from zircon SHRIMP dating. Int. Geol. Rev. 51:304-328. [838]

Zajzon, N.; Szabó, Z.; Weiszburg, T.G.; and Jeffries, T.E. 2009(in press). Multiple provenance of detrital zircons from the Permian-Triassic boundary in the Bükk Mts., Hungary. Int. J. Earth Sci. doi:10.1007/s00531-009-0500-y. [1050]

Zaleski, E.; van Breemen, O.; and Peterson, V.L. 1999. Geological evolution of the Manitouwadge greenstone belt and Wawa-Quetico subprovince boundary, Superior

Page 263: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

254

Province, Ontario, constrained by U-Pb zircon dates of supracrustal and plutonic rocks. Can. J. Earth Sci. 36:945-966. [238]

Zeck, H.P., and Whitehouse, M.J. 2002. Repeated age resetting in zircons from Hercynian-Alpine polymetamorphic schists (Betic-Rif tectonic belt, S. Spain)—a U-Th-Pb ion microprobe study. Chem. Geol. 182: 275-292. [565]

Zeck, H.P., and Williams, I.S. 2001. Hercynian metamorphism in Nappe Core Complexes of the Alpine Betic-Rif Belt, Western Mediterranean – a SHRIMP zircon study. J. Petrol. 42: 1373-1385. [691]

Zeh, A.; Brätz. H.; Millar, I.L.; and Williams, I.S. 2001. A combined zircon SHRIMP and Sm-Nd isotope study of high-grade paragneisses from the Mid-German Crystalline Rise: Evidence for northern Gondwanan and Grenvillian provenance. J. Geol. Soc. London. 158:983-994. [423]

Zeh, A., and Gerdes, A. 2010. Baltica- and Gondwana-derived in the Mid-German Crystalline Rise (Central Europe): Implications for the Closure of the Rheic Ocean. Gondwana Res. 17:223-235. Doi: 10.1016/j.gr.2009.08.004. [950]

Zeh, A.; Gerdes, A.; Barton, J. Jr.; and Klemd, R. 2010. U-Th-Pb and Lu-Hf systematic of zircon from TTG‘s, leucosomes, meta-anorthosites and quartzites of the Limpopo belt (South Africa): Constraints for the formation, recycling and metamorphism of Palaeoarchean crust. Precambrian Res. 179:50-68. Doi: 10.1016/j.precamres.2010.02.012. [1108]

Zeh, A.; Gerdes, A.; Klemd, R.; and Barton, J.M. Jr.; 2008. U-Pb and Lu-Hf isotope record of detrital zircon grains from the Limpopo Belt – evidence for crustal recycling at the Hadean to early-Archean transition. Geochim. Et Cosmochim. Acta. 72:5304-5329. Doi: 10.1016/j/gca.2008.07.033. [759]

Zeh, A.; Gerdes, A.; Will, T.M.; and Millar, I.L. 2005. Provenance and magmatic-metamorphic evolution of a Variscan Island-arc Complex: Constraints from U-Pb dating, petrology,

Page 264: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

255

and geospeedometry of the Kyffhäuser Crystalline Complex, Central Germany. J. Petrol. 46: 1393-1420. [566]

Zeh, A.; Williams, I.S.; Brätz, H.; and Millar, I.L. 2003. Different age response of zircon and monazite during the tecto-metamorphic evolution of a high-grade paragneiss from the Ruhla Crystalline Complex, central Germany. Contrib. Mineral. Petrol. 145:691-706. [510]

Żelaźiewicz, A.; Bula, Z.; Fanning, C.; Seghedi, A.; and Źaba, J. 2009. More evidence on Neoproterozoic terranes in Southern Poland and southeastern Romania. Geol. Quart. 53: 93-124. [894]

Zhang, H.-F.; Xu, W.-C.; Zong, K.-Q.; Yuan, H.-L.; and Harris, N. 2008. Tectonic evolution of metasediments from the Gandise Terrane, Asian Plate, Eastern Himalayan Syntaxis, Tibet. Int. Geol. Rev. 50:914-930. [785]

Zhang, J.; Zhang, Z.; Xu, Z.; Yang, J.; and Cui, J. 2000. Discovery of Khondalite series from the western segment of Altyn Tagh and their petrological and geochronological studies. Science in China (Series D) 43:308-316. [780]

Zhang, J.-C.; Mattinson, C.G.; Meng, F.-C.; Yang, H.-J.; and Wan, Y.-S. 2009. U-Pb geochronology of paragneisses and metabasite in the Xitieshan area, north Qaidam Mountains, western China: Constraints on the exhumation of HP/UHP metamorphic rocks. J. Asian Earth Sci. 35:245-258. doi: 10.1016/j.seaes.2008.08.008. [777]

Zhang, L.; Ai, Y.; Li, X.; Rubatto, D.; Song, B.; Williams, S.; Song, S.; Ellis, D.; and Liou, J.G. 2007. Triassic collision of western Tianshan orogenic belt, China: Evidence from SHRIMP U-Pb dating of zircon from HP/UHP eclogitic rocks. Lithos 96: 266-280. [619]

Zhang, Q.-R.; Li, X.-H.; Feng, L.-J.; Huang, J.; and Song, B. 2008. A New Age Constraint on the Onset of the Neoproterozoic Glaciations in the Yangtze Platform, South China. J. Geol. 116: 423-429. [639]

Page 265: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

256

Zhang, S.-B.; Zhang, Y.-F.; Wu, Y.-B.; Zhao, Z.-F; Gao, S.; and Wu, F.-Y. 2006. Zircon U-Pb age an Hf isotopic evidence for 3.8 Ga crustal remnant and episodic reworking of Archean crust in South China. Earth Planet. Sci. Lett. 252:56-71. [89]

Zhao, G.; Wilde, S.A.; Guo, J.; Cawood, P.A.; Sun, M.; Li, X. 2010. Single zircon grains record two Paleoproterozoic collisional events in the North China Craton. Precambrian Res. 177:266-276. Doi: 10.1016/j.precamres.2009.12.007. [1069]

Zhao, J.X.; McCulloch, M.T.; and Bennett, V.C. 1992. Sm-Nd and U-Pb zircon isotopic constraints on the provenance of sediments from the Amadeus Basin, central Australia: Evidence for REE fractionation. Geochim. Cosmochim. Ac. 56:921-940. [346]

Zhao, Y.; Liu, X.; Song, B.; Li, J.; Yao, Y.; and Wang, Y. 1995. Constraints on the stratigraphic age of metasedimentary rocks from the Larsemann Hills, East Antarctica: Possible implications for Neoproterozoic tectonics. Precambrian Res. 75: 175-188. [503]

Zhou, J.B.; Wilde, S.A.; Zhao, G.-C.; Zhang, X.-Z.; Zheng, C.-Q.; Jin, W.; and Cheng, H. 2008. SHRIMP U-Pb zircon dating of the Wulian Complex: Defining the boundary between the North and South China Cratons in the Sulu Orogenic Belt, China, Precambrian Res. 162:559-576. [455]

Zhou, J.-B.; Wilde, S.A.; Zhao, G.-C.; Zheng, C.-Q.; Jin, W.; Zhang, X.-Z.; and Cheng, H. 2008. SHRIMP U-Pb zircon dating of the Neoproterozoic Penglai Group and Archean gneisses from the Jiaobei Terrane, North China, and their tectonic implications. Precambrian Res. 160:323-340. Doi:10.1016/j.precamres.2007.10.008. [433]

Zhou, J.-B.; Wilde, S.A.; Zhao, G.-C.; Zhang, X.-W.; Wang, H.; and Zeng, W.-S. 2010(in press). Was the easternmost segment of the Central Asian Orogenic Belt derived from Gondwana or Siberia: an intriguing dilemma. J. Geodynamics. 10.1016/j.jog.2010.02.004. [1082]

Page 266: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

257

Zhou, J.-B.; Wilde, S.A.; Zhao, G.-C.; Zheng, C.-Q.; Jin, W.; Zhang, X.-Z.; and Cheng, H. 2008, Detrital zircon U-Pb dating of low-grade metamorphic rocks on the Sulu UHP belt: Evidence for overthrusting of the North China Craton onto the South China Craton during continental subduction. J. Geol. Soc. London. 165:423-433. [487]

Zhou, J.-C.; Wang, X.-L.; and Qiu, J.-S. 2009. Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou, South China: Coeval arc magmatism and sedimentation. Precambrian Res. 170:27-42. Doi:10.1016/j.precamres.2008.11.002. [825]

Zhou, M.-F.; Ma, Y.; Yan, D-P.; Xia, X.; Zhao, J.-H.; and Sun, M. 2006. The Yanbian Terrane (southern Sichuan Province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze Block. Precambrian Res. 144:19-.38. [245]

Zhou, X.; Zhao, G.; Wei, C.; Geng, Y.; and Sun, M. 2008. EPMA U-Th-Pb Monazite and SHRIMP U-Pb zircon geochronology of high-pressure politic granulites in the Jiaobei Massif of the North China Craton. Am. J. Sci. 308:328-350. [602]

Zhu, X.Y.; Chen, F.K.; Yang, L.; Wang, W.; Hieu, P.T.; Miao, L.C.; and Zhang, F.Q. 2009. Zircon Hf isotopic composition and source characteristics of the Wudang Group in the Qinling orogenic belt, western Henan Province. Acta Petrol. Sin. 25:3017-3028. [1099]

Zimmermann, U.; Niemeyer, H.; and Meffre, S. 2009(in press). Revealing the continental margin of Gondwana: The Ordovician arc of the Cordón de Lila (northern Chile). Int. J. Earth Sci. doi: 10.1007/s00531-009-0483-8. [952]

Zobell, E.A., 2007. Origin and tectonic evolution of Gondwana sequence units accreted to the Banda Arc: A structural transect through Central East Timor. MSc thesis. Brigham Young University. 75 pp. [628]

Zulauf, G.; Romano, S.S.; Dörr, W.; and Fiala, J., 2007. Crete and Minoan terranes: Age constraints from U-Pb dating of detrital zircons. In Linnemann, U.; Nance, R.D.; Kraft, P.; and Zulauf, G. (eds.). The Evolution of the Rheic Ocean: From Avalonian-Cadomian

Page 267: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

258

Active Margin to Alleghenian-Variscan Collision. Geol. Soc. Amer. Special Paper 423: 401-411. [500]

Page 268: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

259

Appendix B: Codes used in the Global Detrital Zircon Database Column 1: Study Number

Column 2: Sample Number

Column 3: Grain Number

Column 4: region 1

1: North America and Central America

2. South America

3. Europe

4. Asia

5. Africa

6. Australia

7. Antarctica

8. Arabian Peninsula

10. Pacific Islands and New Zealand

Column 5: region 2

Same first 10 as region 1

11: Indian subcontinent

Column 6: detrital vs. magmatic zircon

0: detrital

1: magmatic

Column 7: Paleoclimate—humidity

0: humid

1: arid

2: semi-arid

3. unknown/not reported

Page 269: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

260

Column 8: Paleoclimate – temp.

0: icehouse

1. Greenhouse

2. Transition 3. Unknown/not reported

Column 9: stratigraphic span of host unit (in Ma)

Column 10: Sample type

0: Point Sample

1: Multi-horizon sample

Column 11: stratigraphic age of host rock minimum (in Ma)

Column 12: stratigraphic age of host rock maximum (in Ma) [columns 12 and 11 independent of d. z. age)

Column 13: tectonic setting

0: foreland basin

1: intracratonic basin

2. passive margin

3. backarc basin

4. forearc basin

5. rift basin

6. retroarc basin

7. unknown/not reported

Column 14: U content (in ppm)

Column 15: Th content (in ppm)

Column 16: U/Th ratio

Column 17: Certainty of homogenous age

Page 270: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

261

0: certain host sediment homogenous age

1. Not certain

Column 18: 207Pb/235U age (in Ma)

Column 19: 207Pb/235U age 1-sigma error (in Ma)

Column 20: 207Pb/235U age 2-sigma error (in Ma)

Column 21: 206Pb/238U age (in Ma)

Column 22: 206Pb/238 U age 1-sigma error (in Ma)

Column 23: 206Pb/238U age 2-sigma error (in Ma)

Column 24: 207Pb/206Pb age (in Ma)

Column 25: 207Pb/206Pb age 1-sigma error (in Ma)

Column 26: 207Pb/206Pb age 2-sigma error (in Ma)

Column 27: Pooled Age (in Ma) (Uses 206/238 age over other ages when available; uses 207/206 age when 206/238 age not available.)

Column 28: Pooled Age 1-sigma error (in Ma)

Column 29: Pooled Age 2-sigma error (in Ma)

Column 30: Best Age 2 (uses 206/238 ages for grains 800 Ma or younger; 207/206 age for grains 800 Ma or older)

Column 31: Best age 1-sigma error (in Ma)

Column 32: Best age 2-sigma error (in Ma)

Column 33: Hf isotope Model Age Tchur

Colum 34: Hf isotope Model Age Tdm

Column 35: Hf isotope Model Age Tdm initial Lu ratio = 0.015

Column 36: Hf isotope Model Age Tdm initial Lu ratio = 0.014

Column 37: Hf isotope Model Age Tdm initial Lu ratio = 0.021

Column 38: Hf isotope Model Age Tdm initial Lu ratio = 0.055

Column 39: Hf isotope Model Age Tdm initial Lu ratio = 0.138

Page 271: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

262

Column 40: Hf isotope Model Age Tdm initial Lu ratio = 0.008

Column 41: Hf isotope Model Age Tdm initial Lu ratio = 0.013

Column 42: Hf isotope Epsilon value

Column 43: Global Pooled Hf Isotope Model Age

Column 44: 208Pb/232Th age (in Ma)

Column 45: 208Pb/232 Th age 1-sigma error (in Ma)

Column 46: 208Pb/232Th age 2-sigma error (in Ma)

Column 47: 206Pb/238U decay constant

0: not reported

1: 1.55125 *10^-10 (Jaffey et al. and Steiger and Jager)

6: not performed

Column 48: 207Pb/235U decay constant

0: not reported

1. 9.8485* 10^-10 (Jaffey et al. and Steiger and Jager)

6. not performed

Column 49: 208Pb/232Th decay constant

0: not reported

1. 4.9475 * 10^-11 (Steiger and Jager)

6. not performed

Column 50: Lu-Hf decay constant

0: not reported

1: 1.865 *10^-11 (Scherer et al. 2003)

2: 1.983* 10^-11 (Bizzaro et al. 2003)

3: 1.93* 10^-11 (Blichert-toft and Albarede, 1997)

4: 1.867*10^-11 (Patchett et al. 2004 or Soderlund et al. 2004)

Page 272: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

263

5: 2.78552* 10^-11 (Squigma et al. 1982)

6: Not performed

Column 51: Concordance vs. discordance

0: ≤5% concordant

1: discordant

2: ≤10% concordant

3: rejected by study

4: accepted by study

Column 52: %Concordance

Column 53: %Discordance

Column 54: Calculated %Concordance1

Using formula 100*(206Pb/238U age÷207Pb/206Pb age)

Column 55: Calculated %Concordance2

Using formula 100*(206Pb/238U age÷207Pb/235U age)

Column 56:Host rock Lithology

0: quartz arenites

1: feldsarenites

2: litharenites

3: siltstones

4: mudstones/shales

5: Breccias/Conglomerates/diamictons

6: Unconsolidated sediments

7: Carbonates

8: BIF and Ironstones

9: Chert or Silicicified layers

Page 273: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

264

10: Mixed Carbonate-Clastic

11: placer deposits

12: bauxites

Column 57: Metamorphic Grade

0: unmetamorphosed

1: Chlorite

2: biotite

3: Garnet

4: Staurolite

5: Sillimanite

Column 58: Method

0: U-Pb dating

Column 59: Mass Spectometer type

0: SHRIMP

1: LA-ICPMS (also includes older evaporation ages)

2: TIMS

3: Ion microprobe (not SHRIMP)

4: Pb-Pb evaporation techniques

Column 60: Best estimate stratigraphic age max

Column 61: Best estimate stratigraphic age min

Column 62: Range of Best Max –Best min

Column 63: Method of determining best age estimates

0: index fossils, biozones (biostratigraphy)

1: cross-cutting by age-dated igneous rocks

2: both 0 and 1

Page 274: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

265

3: Superposition and 0 or 1

4: Correlation to another well dated unit

5: modern –taken from modern sediments

6: magnetostratigraphy

7: magnetostratigraphy and biostratigraphy

8: chemostratigraphy

9. Cosmogenic nuclides and 5

Column 64: Source year

Column 65: bibliographic citation of source

Column 66: geographic location and long.-lat. Data (when available)

Page 275: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

266

Appendix C: Global Detrital Zircon Database Due to file size constraints the GDZDB is not included with the dissertation. Readers interested

in using the GDZDb may contact the author ([email protected]) to request a copy of the database.

The first page of the datebase is appended here to illustrate the nature of the database.

Study number

sample number

grain number spot spot number original sample #

1 1 1 0 1 k2

1 1 2 0 2 k2

1 1 3 0 3 k2

1 1 4 0 4 k2

1 1 5 0 5 k2

1 1 6 0 6 k2

1 1 7 0 7 k2

1 1 8 0 8 k2

1 1 9 0 9 k2

1 1 10 0 10 k2

1 1 11 0 11 k2

1 1 12 0 12 k2

1 1 13 0 13 k2

1 1 14 0 14 k2

1 1 15 0 15 k2

1 1 16 0 16 k2

1 1 17 0 17 k2

1 1 18 0 18 k2

1 1 19 0 19 k2

1 1 20 0 20 k2

1 1 21 0 21 k2

1 1 22 0 22 k2

1 1 23 0 23 k2

1 1 24 0 24 k2

Page 276: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

267

Appendix D: SAS Code used in this study The code used outputs multiple datasets that analyse the GDZDb and include analysis of grain size issues, descriptive statistics at the sample (age spectrum) level, and trends in publication rate.

%let n=0; * - the cutoff sample size, where n=number of dated grains; %let age=1000; * - the cutoff age of a sample for age-restrictive analysis [program step: data zircon3, variable currently used: maxage]; %let agefilter=0; * - if age filter set to 1, then samples older than age value will be removed if age filter set to 0, two age classes will be retained; %let var=skewness; data zircon; infile cards; input study sample grain grain2 region reg2 det humid temper geolage resolut minage maxage tecton U Th uthrat resol2 z_age1 z_age1e1 z_age2e2 z_age2 z_age2e1 z_age2e2 z_age3 z_age3e1 z_age3e2 pooled poole1 poole2 bpool1 bpole1 bpole2 Hf1 Hf2 Hf3 Hf4 Hf5 Hf6 Hf7 Hf8 Hf9 Ep Hfpool Th_age Th_agee1 Th_agee2 dc1 dc2 dc3 dc4 conc1 conc2 conc3 conc4 conc5 lithol metalith method machtype bestmax bestmin brange datmeth pubyear; if z_age1='.' then do; if z_age2='.' then variant=1; if z_age3='.' then variant=2; else variant=3; end; if z_age2='.' then do; if z_age3='.' then variant=4; if z_age1='.' then variant=1; else variant=5; end; if variant='.' then do; if z_age3='.' then variant=6; else variant=7; end; if bpool1>800 then agegp=2; else agegp=1; *if sample in (9 37 39 45 120 121 122 123 369) then delete; pubyear=round(pubyear,1); cards;

[insert data here]

; proc print data = zircon; * study sample region humid temper geolage resolut minage maxage tecton resol2 z_age lithol method; proc sort data=zircon;

Page 277: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

268

by study sample; proc univariate data=zircon noprint; var bpool1 tecton humid temper geolage resolut minage maxage resol2 lithol bestmin bestmax; by study sample; output out=zircon2 n=n mean=mean tecton humid temper geolage resolut minage maxage resol2 lithol bestmin bestmax std=std var=var skewness=skewness kurtosis=kurtosis range=range min=youngest max=oldest;proc print data = zircon2; data zircon3; set zircon2; if n>=&n; if tecton in (0 3 4 6) then tect2=1; *-group all active margins/basins into a single category; if tecton in (1 2) then tect2=0; *-group all passive margins/basins into a single category; if tecton in (7) then tect2=3; *-tectonic setting unkwown; if tecton=5 then tect2=2; *-group all rift samples together; if tecton in (0) then tect3=0; * - foreland basins; if tecton in (3 4 6) then tect3=1; * - arc settings; if tecton in (1 2) then tect3=2; * - passive and intracratonic; if tecton in (5) then tect3=3; * - rift; if tecton in (7) then tect3=4; *-tectonic setting unkown; agefilter=1; if agefilter=&agefilter then do; if maxage<=&age; *** - defines variable used to age-restrict data (curently set to: maxage); age=1; end; else do; if maxage>&age then age=2; else age=1; end; proc print data=zircon3; *proc plot data=zircon3; *plot mean*std=tect2; *plot kurtosis*skewness=tect2; *plot std*maxage=tect2; *plot skewness*std=tect2; *plot skewness*maxage=tect2; *plot skewness*minage=tect2; *plot range*n=tect2; *plot std*n=tect2; *plot mean*maxage=tect2; *plot youngest*minage=tect2; *plot oldest*minage=tect2; *plot mean*std=tect3; *plot kurtosis*skewness=tect3; *plot std*maxage=tect3; *plot skewness*std=tect3;

Page 278: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

269

*plot skewness*maxage=tect3; *plot skewness*minage=tect3; *plot range*n=tect3; *plot std*n=tect3; *plot mean*maxage=tect3; *plot youngest*minage=tect3; *plot oldest*minage=tect3; ************************* tect2 analysis **************************; proc sort data=zircon3; by tect2; proc univariate data=zircon3 noprint; var &var; by tect2; output out=zircon4 n=n mean=mean std=std range=range median=median max=max min=min; proc print data=zircon4; proc npar1way wilcoxon data=zircon3; var &var; class tect2; proc corr data=zircon3 spearman pearson; var mean std skewness kurtosis maxage range n; with mean std skewness kurtosis maxage range n; proc corr data=zircon3 spearman pearson; by tect2; var mean std skewness kurtosis maxage range n; with mean std skewness kurtosis maxage range n; *********************************************************************************; ************************* tect3 analysis **************************; proc sort data=zircon3; by tect3; proc univariate data=zircon3 noprint; var &var; by tect3; output out=zircon5 n=n mean=mean std=std range=range median=median max=max min=min; proc print data=zircon5; proc npar1way wilcoxon data=zircon3; var &var; class tect3; proc corr data=zircon3 spearman pearson; by tect3; var mean std skewness kurtosis maxage range n; with mean std skewness kurtosis maxage range n; *********************************************************************************;

Page 279: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

270

*********************************************************************************; *********** to keep track of unusually high anomalies ****; data temp; set zircon3; anomaly=bestmin-youngest; anomaly2=bestmin-minage; if anomaly>100; proc print data = temp; *********************************************************************************; *********************************************************************************; data zircon6; set zircon3; yresid=youngest-bestmin; *looks at sample size issues; bins=round(n,10); if bins=0 then bins=10; if tect2=0 then do; if bins>120 then bins=120; end; if tect2=1 then do; if bins>120 then bins=120; end; if tect2=2 then do; if bins>120 then bins=120; end; if tect2=3 then do; if bins>120 then bins=120; end; bin2=10*floor(n/10); keep sample n bestmin youngest skewness kurtosis std mean yresid tect2 bins bin2;

proc sort; by tect2; proc sort; by bestmin; proc print; proc plot; plot yresid*n=tect2; data zircon7; set zircon6; if n>20; proc sort data=zircon7; by tect2; proc chart; by tect2;

Page 280: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

271

vbar yresid /midpoints=-200 to 1800 by 200; proc univariate data=zircon7 noprint; by tect2; var yresid; output out=residtest mean=mean n=n median=median; proc print; proc npar1way data=zircon7 wilcoxon; class tect2; var yresid; proc sort data=zircon6; by tect2 bins; proc print data=zircon6; proc univariate noprint data=zircon6; by tect2 bins; var yresid; output out=resplot mean=mean n=n; proc print data=resplot; proc sort data=zircon6; by tect2 bin2; proc univariate noprint data=zircon6; by tect2 bin2; var yresid; output out=resplot2 mean=mean n=n; proc print data=resplot2; proc plot data=resplot; by tect2; *plot mean*bins='*'; *********************************************************************************; *********************************************************************************; *********************************************************************************; *********************************************************************************; ** NOTE: comparison of two age classes will only work when age filter different than 1; proc sort data=zircon3; by age; proc univariate data=zircon3 noprint; var &var; by age; output out=agecomp n=n mean=mean std=std range=range median=median max=max min=min; proc print data=agecomp; proc npar1way wilcoxon data=zircon3;

Page 281: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

272

var &var; class age; proc sort data=zircon3; by tect2 age; proc univariate data=zircon3 noprint; var &var; by tect2 age; output out=agecomp2 n=n mean=mean std=std range=range median=median max=max min=min; proc print data=agecomp2; proc npar1way wilcoxon data=zircon3; by tect2; var &var; class age; proc sort data=zircon3; by tect3 age; proc univariate data=zircon3 noprint; var &var; by tect3 age; output out=agecomp3 n=n mean=mean std=std range=range median=median max=max min=min; proc print data=agecomp3; proc npar1way wilcoxon data=zircon3; by tect3; var &var; class age; *********************************************************************************; *********************************************************************************; proc corr data=zircon pearson spearman; *compares three potential dates; var z_age1 z_age2 z_age3; with z_age1 z_age2 z_age3; proc plot data=zircon; *plot z_age2*z_age1='+'; *plot z_age3*z_age1='+'; *plot z_age3*z_age2='+'; proc sort data=zircon; by variant agegp; proc freq data=zircon; by variant; table agegp; proc univariate data=zircon noprint; by variant agegp;

Page 282: The Global Detrital Zircon Database: Quantifying the ... · This Global detrital zircon manuscript has benefitted from discussions with Kent Condie, Bruce Eglington, Marty Grove,

273

var z_age1 z_age2 z_age3; output out=dmethod n=z_age1 z_age2 z_age3; proc print data=dmethod; proc sort data=zircon; by pubyear agegp; proc freq data=zircon noprint; by pubyear agegp; table variant /out=dmethod2; proc print data=dmethod2; proc freq data=zircon noprint; by pubyear; table variant /out=dmethod3; proc univariate data=zircon noprint; by pubyear; var pooled; output out=dmethod4 n=n; proc print data=dmethod4; proc print data=dmethod3; run; quit;