the falsificacion of chiral nuclear forces · 2018. 11. 20. · e. ruiz arriola university of...

60
escudougr The Falsificacion of Chiral Nuclear Forces E. Ruiz Arriola University of Granada Atomic, Molecular and Nuclear Physics Department XIIth Quark Confinement and the Hadron Spectrum, Thessaloniki (Greece) September 1st 2016 with Rodrigo Navarro P´ erez, Jos´ e Enrique Amaro Soriano E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 1 / 60

Upload: others

Post on 27-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • escudougr

    The Falsificacion of Chiral Nuclear Forces

    E. Ruiz Arriola

    University of GranadaAtomic, Molecular and Nuclear Physics Department

    XIIth Quark Confinement and the Hadron Spectrum, Thessaloniki (Greece)

    September 1st 2016

    with Rodrigo Navarro Pérez, José Enrique Amaro Soriano

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 1 / 60

  • escudougr

    References

    [1] Coarse graining Nuclear InteractionsProg. Part. Nucl. Phys. 67 (2012) 359

    [2] Error estimates on Nuclear Binding Energies from Nucleon-Nucleon uncertaintiesarXiv:1202.6624 [nucl-th].

    [3] Phenomenological High Precision Neutron-Proton Delta-Shell PotentialPhys.Lett. B724 (2013) 138-143.

    [4] Nuclear Binding Energies and NN uncertaintiesPoS QNP 2012 (2012) 145

    [5] Effective interactions in the delta-shells potentialFew Body Syst. 54 (2013) 1487.

    [6] Nucleon-Nucleon Chiral Two Pion Exchange potential vs Coarse grained interactionsPoS CD12 (2013) 104.

    [7] Partial Wave Analysis of Nucleon-Nucleon Scattering below pion productionPhys.Rev. C88 (2013) 024002, Phys.Rev. C88 (2013) 6, 069902.

    [8] Coarse-grained potential analysis of neutron-proton and proton-proton scatteringbelow the pion production thresholdPhys.Rev. C88 (2013) 6, 064002, Phys.Rev. C91 (2015) 2, 029901.

    [9] Coarse grained NN potential with Chiral Two Pion ExchangePhys.Rev. C89 (2014) 2, 024004.

    [10] Error Analysis of Nuclear Matrix Elements Few Body Syst. 55 (2014) 977-981.

    [11] Partial Wave Analysis of Chiral NN Interactions Few Body Syst. 55 (2014) 983-987.

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 2 / 60

  • escudougr

    [12] Statistical error analysis for phenomenological nucleon-nucleon potentialsPhys.Rev. C89 (2014) 6, 064006.[13] Error analysis of nuclear forces and effective interactionsJ.P.G42(2015)3,034013.14] Bootstrapping the statistical uncertainties of NN scattering data Phys.Lett. B738(2014) 155-159.[15] Triton binding energy with realistic statistical uncertainties (with E. Garrido)Phys.Rev. C90 (2014) 4, 047001.[16] The Low energy structure of the Nucleon-Nucleon interaction: Statistical vsSystematic Uncertainties arXiv:1410.8097 [nucl-th] (Jour. Phys. G, in press).[17] Low energy chiral two pion exchange potential with statistical uncertaintiesPhys.Rev. C91 (2015) 5, 054002.[18] Minimally nonlocal nucleon-nucleon potentials with chiral two-pion exchangeincluding ∆ resonances (with M. Piarulli, L. Girlanda, R. Schiavilla).Phys.Rev. C91 (2015) 2, 024003.[19] The Falsification of Nuclear Forces EPJ Web Conf. 113 (2016) 04021[20] Statistical error propagation in ab initio no-core full configuration calculations oflight nuclei (with P. Maris, J.P. Vary) Phys.Rev. C92 (2015) no.6, 064003[21] Uncertainty quantification of effective nuclear interactionsInt.J.Mod.Phys. E25 (2016) no.05, 1641009[22] Binding in light nuclei: Statistical NN uncertainties vs Computational accuracy(with A. Nogga) arXiv:1604.00968[23] Precise Determination of Charge Dependent Pion-Nucleon-Nucleon CouplingConstants arXiv:1606.00592[24] Three pion nucleon coupling constantsMod.Phys.Lett.A,Vol.31,No.28(2016)1630027

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 3 / 60

  • escudougr

    Error Analysis and Nuclear Structure

    What is the predictive power of theoretical nuclear physics ?

    INPUT from Experiment → CALCULATION → OUTPUT vs Experiment

    Experiment much more precise than theory, but how much ?

    ∆Mexp < 1KeV� ∆Mth =?

    Theoretical Predictive Power Flow: From light to heavy nuclei

    H(A) = T + V2N + V3N + V4N + · · · → E2, E3, E4, . . .

    Chiral expansion allows to compute V2N , V3N , V4N . . . systematically so that one has thehierarchy

    V2N � V3N � V4N � . . .

    Forces depend on the renormalization scale allowing to adjust B2, B3, . . .

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 4 / 60

  • escudougr

    Sources of uncertainties/bias

    Input data from experimentChoose the form of the potentialHow to estimate theoretical errors based on INPUT data

    INPUT = NN, 3N, · · · → OUTPUT = 4N, . . .First Step: INPUT=NN scattering dataOUTPUT=NN scattering amplitudes

    0 50 100 150 200 250 300 3500

    20

    40

    60

    80

    100

    120

    140

    160

    180

    Tlab [MeV]

    θ [de

    gree

    s CM

    ]

    NN-OnLine http://nn-online.org 7 June 2013

    0 50 100 150 200 250 300 3500

    20

    40

    60

    80

    100

    120

    140

    160

    180

    Tlab [MeV]

    θ [de

    gree

    s CM

    ]

    NN-OnLine http://nn-online.org 7 June 2013

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 5 / 60

  • escudougr

    The issue of predictive power in Chiral Approach

    Chiral forces are UNIVERSAL at long distances

    V χ(r) = V π(r) + V 2π(r) + V 3π(r) + . . . r � rc

    Chiral forces are SINGULAR at short distances

    V χ(r) =a1

    f2πr3

    +a2

    f4πr5

    +a3

    f6πr7

    + . . . r � rc

    They trade model independence for regulator dependence

    What is the best theoretical accuracy we can get within “reasonable” cut-offs ?

    What is a reasonable cut-off ?rc =?

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 6 / 60

  • escudougr

    Bottomline

    THE PROBLEM

    GOAL: Estimate uncertainties from IGNORANCE of NN,3N,4N interactionReduce computational cost

    Statistical Uncertainties: NN,3N,4N DataData abundance bias

    Systematic Uncertainties: NN,3N,4N potentialMany forms of potentials possible

    Confidence level of Imperfect theories vs Perfect experiments

    OUR APPROACH

    Start with NN

    Fit data WITH ERRORS with a simple interaction

    Compare different interactions

    Estimate uncertainties of Effective Interactions and Matrix elements

    Propagate errors to A=3,4, etc.

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 7 / 60

  • escudougr

    Tjon-Line Correlation

    α-triton calculations find a linear correlation between

    BΑ= 4Bt -3BdBΑ= 4Bt -3Bd

    ++Exp.Exp.

    CD-BonnCD-Bonn

    AV18AV18

    NijmINijmINijmIINijmII

    Vlowk HAV18LVlowk HAV18L

    SRG HN3LOLSRG HN3LOL

    6 7 8 9 1020

    22

    24

    26

    28

    30

    BtHMeVL

    HMeV

    L

    SRG argument with on-shell nuclear forces Timoteo, Szpigel, ERA, Few Body 2013

    Bα = 4Bt − 3Bd →∂Bα

    ∂Bt

    ∣∣∣Bd

    = 4

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 8 / 60

  • escudougr

    Tjon-Lines: numerical accuracy

    (with A. Nogga)∆Estattriton = 15KeV ∆E

    statα = 50KeV

    -7.70 -7.68 -7.66 -7.64 -7.62 -7.60

    -25.0

    -24.9

    -24.8

    -24.7

    -24.6

    -24.5

    EH3HL HMeVL

    EH4HeLHM

    eVL

    -9.0 -8.8 -8.6 -8.4 -8.2 -8.0 -7.8 -7.6

    -30.0

    -29.5

    -29.0

    -28.5

    -28.0

    -27.5

    -27.0

    -26.5

    -26.0

    EH3HL HMeVL

    EH4HeLHM

    eVL

    4-Body forces are masked by numerical noise in the 3 and 4 body calculation if

    ∆numt > 1KeV ∆numt > 20KeV

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 9 / 60

  • escudougr

    SIMPLE ESTIMATE

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 10 / 60

  • escudougr

    Motivation

    Effective Interaction [Skyrme, Moshinsky]

    Useful simplifications in many body calculations [Brink, Vaughterin]

    Power expansion in CM momenta

    V (p′,p) =∫d3xe−ix·(p

    ′−p)V̂ (x)

    = t0(1 + x0Pσ) +t1

    2(1 + x1Pσ)(p

    ′2 + p2)

    +t2(1 + x2Pσ)p′ · p + 2itV S · (p′ ∧ p)

    +tT

    2

    [σ1 · pσ2 · p + σ1 · p′σ2 · p′ −

    1

    3σ1σ2(p

    ′2 + p2)]

    +tU

    2

    [σ1 · pσ2 · p′ + σ1 · p′σ2 · p−

    2

    3σ1σ2p

    ′ · p]

    +O(p4)

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 11 / 60

  • escudougr

    Skyrme parameters as EFT counterterms

    Comparing similar terms

    (t0, x0t0) =1

    2

    ∫d3x

    [V3S1 (r)± V1S0 (r)

    ](t1, x1t1) = −

    1

    12

    ∫d3xr2

    [V3S1 (r)± V1S0 (r)

    ](t2, x2t2) =

    1

    54

    ∫d3xr2

    [V3P0 (r) + 3V3P1 (r) + 5V3P2 (r)± 9V1P1 (r)

    ]tV =

    1

    72

    ∫d3xr2

    [2V3P0 (r) + 3V3P1 (r)− 5V3P2 (r)

    ]tU =

    1

    36

    ∫d3xr2

    [−2V3P0 (r) + 3V3P1 (r)− V3P2 (r)

    ]tT =

    1

    5√

    2

    ∫d3xr2V�1 (r)

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 12 / 60

  • escudougr

    Scale dependence

    Skyrme parameters fitting at different energy ranges

    AV18DS Uncoupled S-Waves

    DS Coupled S-Waves

    kCM [MeV]

    t 0[M

    eVfm

    3]

    380360340320300280260240220200

    0−200−400−600−800−1000−1200−1400

    AV18DS Uncoupled S-Waves

    DS Coupled S-Waves

    kCM [MeV]

    x0

    380360340320300280260240220200

    1

    0.5

    0

    −0.5

    −1

    AV18DS Uncoupled S-Waves

    DS Coupled S-Waves

    kCM [MeV]

    t 1[M

    eVfm

    5]

    380360340320300280260240220200

    3000

    2500

    2000

    1500

    1000

    500

    0

    AV18DS Uncoupled S-Waves

    DS Coupled S-Waves

    kCM [MeV]

    x1

    380360340320300280260240220200

    0.1

    0.05

    0

    −0.05

    −0.1

    AV18DS

    kCM [MeV]

    t 2[M

    eVfm

    5]

    380360340320300280260240220200

    2780

    2775

    2770

    2765

    2760

    2755

    2750

    2745

    AV18DS Coupled S-Waves

    kCM [MeV]

    x2

    380360340320300280260240220200

    −0.82−0.825−0.83−0.835−0.84−0.845−0.85−0.855−0.86

    AV18DS

    kCM [MeV]

    t V[M

    eVfm

    5]

    380360340320300280260240220200

    140

    135

    130

    125

    120

    115

    110

    105

    AV18DS

    kCM [MeV]

    t U[M

    eVfm

    5]

    380360340320300280260240220200

    148014701460145014401430142014101400

    AV18DS

    kCM [MeV]

    t T[M

    eVfm

    5]

    380360340320300280260240220200

    −3600−3800−4000−4200−4400−4600

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 13 / 60

  • escudougr

    Simple estimate

    Fermi type shape density

    ρ(x) =ρ0

    1 + e(r−R)/a

    Error band for stable nuclei binding energy

    0 50 100 150 200 250

    0

    2

    4

    6

    8

    10

    A

    -B(A)/AMeV

    ∆B

    A=

    3

    8A∆t0

    ∫d3x ρ(x)2

    ∆t0 = 10MeVfm3 → 75MeVfm3

    ∆B/A = 0.6MeV → 2.5MeV

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 14 / 60

  • escudougr

    Skyrme Parameters

    Nuclear and Neutron matter

    Error grows linearly with the density

    ∆Bn.m.A

    =3

    8∆t0ρ ∼ 3.75ρ

    ∆BnA

    =1

    4∆[t0(1 − x0)]ρn ∼ 3.5ρn

    0.0 0.1 0.2 0.3 0.4 0.5 0.6

    0

    20

    40

    60

    80

    100

    120

    �n fm

    - 3

    B/N

    MeV

    0.0 0.1 0.2 0.3 0.4 0.5 0.6

    - 10

    0

    10

    20

    30

    40

    �n.m. fm

    - 3

    B/A

    MeV

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 15 / 60

  • escudougr

    The voices of wisdom

    “There is no way to deduce the uncertainty of calculated nuclear ground state energies,obtained in ab initio or any other many-body method, from the variance of a set of phaseshift equivalent nucleon-nucleon (NN) interactions.The paper does not make any sense to me and is not suitable for publication in anyjournal. ”Referee I

    “ There is no doubt that even within a (hypothetical) possibility to solve the nuclearmany-body problem exactly, errors in knowing the many-body Hamiltonian must carryover to properties of finite nuclei. The idea is novel and very interesting.The paper raises a very important question of how the errors related to the estimation ofnuclear forces may propagate to the calculated biding energies of nuclei”.Referee II

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 16 / 60

  • escudougr

    Our contribution

    np+pp LARGEST database analysis so far = 6713

    Scrupulous statistical error analysis

    6 statistically equivalent chiral or non-chiral interactions

    Propagation of errors to light nuclei

    Upgrade of the simple calculation

    ∆B/A = 2− 2.4MeV

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 17 / 60

  • escudougr

    The sophisticated calculation

    Uncertainty analysis and order-by-order optimization of chiral nuclear interactionsB.D. Carlsson, A. Ekström, C. Forssén, D.Fahlin Strömberg, G.R. Jansen, O. Lilja, M.Lindby, B.A. Mattsson, K.A. WendtPhys.Rev. X6 (2016) no.1, 011019

    Take into account 2N and 3N chiral forces order by order, different regularizations andestimates of higher orders

    ∆B16O16

    = 4MeV

    Much worse than the semiempirical mass formula

    Most dependence on the cut-off Λ or the regularization

    Is this the predictive power of theoretical nuclear physics ?

    Conservative vs realistic uncertainty estimates

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 18 / 60

  • escudougr

    ANATOMY OF NUCLEAR FORCES

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 19 / 60

  • escudougr

    Fundamental approach: QCD

    Lattice form factor gπNN ∼ 10− 12Lattice NN potential g2πNN/(4π) = 12.1± 2.7QCD sum rules gπNN ∼ 13(1)

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 20 / 60

  • escudougr

    Long distances

    Nucleons exchange JUST one pionp

    p

    p

    p

    p

    p

    p

    p

    p

    p

    n

    n

    n

    n

    n

    n

    ππ π

    ππ

    n n

    n n

    0

    0 0

    + −

    g −g

    g g −g −g

    2 g 2 g 2 g2 g

    Low energies (about pion production) 8000 pp + np scattering data (polarizations etc.)

    0 50 100 150 200 250 300 3500

    20

    40

    60

    80

    100

    120

    140

    160

    180

    Tlab [MeV]

    θ [de

    grees

    CM]

    NN-OnLine http://nn-online.org 7 June 2013

    0 50 100 150 200 250 300 3500

    20

    40

    60

    80

    100

    120

    140

    160

    180

    Tlab [MeV]

    θ [de

    grees

    CM]

    NN-OnLine http://nn-online.org 7 June 2013

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 21 / 60

  • escudougr

    Nucleon-Nucleon Scattering

    Scattering amplitude

    M = a+m(σ1 · n)(σ2 · n) + (g − h)(σ1 ·m)(σ2 ·m)+ (g + h)(σ1 · l)(σ2 · l) + c(σ1 + σ2) · n

    l =kf + ki

    |kf + ki|m =

    kf − ki|kf − ki|

    n =kf ∧ ki|kf ∧ ki|

    5 complex amplitudes → 24 measurable cross-sections and polarization asymmetriesPartial Wave Expansion

    Msm′s,ms(θ) =

    1

    2ik

    ∑J,l′,l

    √4π(2l + 1)Y l

    ′m′s−ms (θ, 0)

    × Cl′,s,Jms−m′s,m′s,ms

    il−l′(SJ,sl,l′ − δl′,l)C

    l,s,J0,ms,ms

    , (1)

    S-matrix

    SJ =

    e2iδJ,1J−1 cos 2�J iei(δJ,1J−1+δJ,1J+1) sin 2�Jiei(δJ,1J−1+δ

    J,1J+1

    )sin 2�J e

    2iδJ,1J+1 cos 2�J

    , (2)E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 22 / 60

  • escudougr

    Analytical Structure

    s = 4(M2N + p2)→ ELAB = 2p2/MN

    Partial Wave Scattering Amplitude analytical for |p| ≤ mπ/2

    TJll′ (p) ≡ SJll′ (p)− δl,l′ = pl+l′∑n

    Cn,l,l′p2n

    Nucleons behave as elementary (AT WHAT SCALE ?)

    8000 np+pp data

    Π2Π3Π4Π5Π

    Ρ,Ω,Σ

    NNNNΠ

    -0.4 -0.2 0.0 0.2 0.4-0.4

    -0.2

    0.0

    0.2

    0.4

    Re ELAB HGeVL

    ImE

    LA

    BHG

    eVL

    Nucleons are heavy → Local Potentials

    Vnπ(r) ∼g2n

    re−nmπr

    Crucial long range electromagnetic effects are localE. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 23 / 60

  • escudougr

    Charge dependent One Pion Exchange

    VOPE,pp(r) = f2ppVmπ0 ,OPE(r),

    VOPE,np(r) = −fnnfppVmπ0,OPE(r) + (−)(T+1)2f2c Vmπ± ,OPE(r),

    where Vm,OPE is given by

    Vm,OPE(r) =

    (m

    mπ±

    )2 13m [Ym(r)σ1 · σ2 + Tm(r)S1,2] ,

    S1,2 = 3σ1 · r̂σ2 · r̂ − σ1 · σ2

    Ym(r) =e−mr

    mr

    Tm(r) =e−mr

    mr

    [1 +

    3

    mr+

    3

    (mr)2

    ]

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 24 / 60

  • escudougr

    Small short range

    OPE exchange

    V1π(r) = −f2πNNe−mηr

    r

    TPE exchange

    η-exchange

    Vη(r) = −f2ηNNe−mηr

    r

    NN 1S03.0 3.5 4.0 4.5 5.0

    -0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0.0

    rHfmL

    VHrL

    HMeV

    L

    3.0 3.5 4.0 4.5 5.0

    -0.015

    -0.010

    -0.005

    0.000

    rHfmL

    HrLHM

    eVL

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 25 / 60

  • escudougr

    Small but crucial long range

    Coulomb interaction (pp) e/r

    Magnetic moments ∼ µpµn/r3, µpµp/r3, µnµn/r3Lowered χ2/ν ∼ 2→ χ2/ν ∼ 2→ 1Summing 1000-2000 partial waves

    Vacuum polarization (Uehling potential,Lamb-shift)

    Relativistic corrections 1/r2

    Coulomb

    Mag.Mom.

    Rel.Coul.

    Vac.Pol.

    10 100 1000 104 10510-27

    10-22

    10-17

    10-12

    10-7

    0.01

    rHfmL

    Vpp

    ,em

    HrLHM

    eVL

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 26 / 60

  • escudougr

    Effective Elementary

    When are two protons interacting as point-like particles ?

    Electromagnetic Form factor

    Fi(q) =

    ∫d3reiq·rρi(r)

    Electrostatic interaction

    V elpp(r) = e2

    ∫d3r1d

    3r2ρp(r1)ρp(r2)

    |~r1 − ~r2 − ~r|→ e

    2

    rr > re ∼ 2fm

    Pointlike protons

    Extended protons

    0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    rHfmL

    Vpp

    ,em

    HrLHM

    eVL

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 27 / 60

  • escudougr

    Quark Cluster Dynamics (qcd)

    Atomic analogue. Neutral atoms

    Non-overlapping atoms exchange TWO photons (Van der Waals force)

    Overlapping atoms are not locally neutral; ONE photon exchange is possible (Chemicalbonding)

    R/2

    xi

    yiηi

    ξiR/2

    c.m.

    c.m.

    ClusterB

    ClusterA

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 28 / 60

  • escudougr

    Finite size effects

    NN potential in the Born-Oppenheimer approximation Calle Cordon, RA, ’12

    V̄ 1π+2π+...NN,NN (r) = V1πNN,NN (r) + 2

    |V 1πNN,N∆(r)|2

    MN −M∆+

    1

    2

    |V 1πNN,∆∆(r)|2

    MN −M∆+O(V 3) ,

    Bulk of TWO-Pion Exchange Chiral forces reproduced

    Finite size effects set in at 2fm → exchange quark effects become explicitHigh quality potentials confirm these trends.

    -10

    -8

    -6

    -4

    -2

    0

    1.6 1.8 2 2.2 2.4 2.6 2.8 3

    VC

    (r)

    [MeV

    ]

    r [fm]

    BO-TPE no-FFBO-TPE axial-FF

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    1.6 1.8 2 2.2 2.4 2.6 2.8 3

    VS(r

    ) [M

    eV]

    r [fm]

    BO-TPE no-FFBO-TPE axial-FF

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    1.6 1.8 2 2.2 2.4 2.6 2.8 3

    VT(r

    ) [M

    eV]

    r [fm]

    BO-TPE no-FFBO-TPE axial-FF

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    1.6 1.8 2 2.2 2.4 2.6 2.8 3

    WC

    (r)

    [MeV

    ]

    r [fm]

    BO-TPE no-FFBO-TPE axial-FF

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.6 1.8 2 2.2 2.4 2.6 2.8 3

    WS(r

    ) [M

    eV]

    r [fm]

    OPE no-FFOPE axial-FF

    BO-TPE no-FFBO-TPE axial-FF

    -1

    0

    1

    2

    3

    4

    5

    6

    7

    8

    1.6 1.8 2 2.2 2.4 2.6 2.8 3

    WT(r

    ) [M

    eV]

    r [fm]

    OPE no-FFOPE axial-FF

    BO-TPE no-FFBO-TPE axial-FF

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 29 / 60

  • escudougr

    COARSE GRAINING

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 30 / 60

  • escudougr

    The number of parameters (for ELAB ≤ 350 MeV)At what distance look nucleons point-like ?

    r > 2fm

    When is OPE the ONLY contribution ?

    rc > 3fm

    What is the minimal resolution where interaction is elastic ?

    pmax ∼√MNmπ → ∆r = 1/pmax = 0.6fm

    How many partial waves must be fitted ?

    lmax = pmaxrc = rc/∆r = 5

    Minimal distance where centrifugal barrier dominates

    l(l + 1)

    r2min≤ p2

    How many parameters ?(1S0,3 S1) , (1P1,3 P0,3 P1,3 P2), (1D2,3 D1,3D2,3D3), (1F3,3 F2,3 F3,3 F4)

    2× 5 + 4× 4 + 4× 3 + 4× 2 + 4× 1 = 50E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 31 / 60

  • escudougr

    0.6 1.2 1.8 2.4 30.0

    FINITE NUCLEON SIZE

    QUARK EXCHANGE

    ONE PION EXCHANGE

    p=350 MeV

    L=0

    L=1

    L=2

    L=3

    L=4

    1S0,3S1

    1G4,3G3,3G4,3G5,E4

    POINT−LIKE NUCLEON

    1P1,3P0,3P1,3P2,E1

    1D2,3D1,3D2,3D3,E2

    1F3,3F2,3F3,3F4,E3

    TPE

    (ω, ρ, σ)

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 32 / 60

  • escudougr

    Delta Shell Potential

    A sum of delta functions

    V (r) =∑i

    λi

    2µδ(r − ri)

    [Aviles, Phys.Rev. C6 (1972) 1467]

    Optimal and minimal sampling of the nuclear interaction

    Pion production threshold ∆k ∼ 2 fm−1

    Optimal sampling, ∆r ∼ 0.5fm

    Delta ShellAnalitic Potential

    r [fm]

    543210

    0

    −0.2−0.4−0.6−0.8−1

    −1.2−1.4

    k = 1.1 fm−1, u(r)2

    r [fm]

    543210

    2

    1.5

    1

    0.5

    0

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 33 / 60

  • escudougr

    Coarse Graining the AV18 potential

    Delta ShellAV18

    r [fm]

    V[fm

    −1]

    43.532.521.510.50

    4

    3

    2

    1

    0

    -1

    Delta ShellAV18

    r [fm]

    V[fm

    −1]

    43.532.521.510.50

    4

    3

    2

    1

    0

    -1

    N = 600N = 54N = 42N = 30N = 18

    ELAB [MeV]

    δ[deg]

    350300250200150100500

    706050403020100

    -10-20-30

    N = 5N = 4N = 3N = 2N = 1

    ELAB [MeV]

    δ[deg]

    350300250200150100500

    706050403020100

    -10-20

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 34 / 60

  • escudougr

    Delta Shell Potential

    3 well defined regions

    Innermost region r ≤ 0.5 fmShort range interactionNo delta shell (No repulsive core)

    Intermediate region 0.5 ≤ r ≤ 3.0 fmUnknown interactionλi parameters fitted to scattering data

    Outermost region r ≥ 3.0 fmLong range interactionDescribed by OPE and EM effects

    Coulomb interaction VC1 and relativistic correction VC2 (pp)Vacuum polarization VV P (pp)Magnetic moment VMM (pp and np)

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 35 / 60

  • escudougr

    STATISTICS

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 36 / 60

  • escudougr

    Self-consistent fits

    We test the assumption

    Oexpi = Othi + ξi∆Oi i = 1, . . . , NData ξi ∈ N [0, 1]

    Least squares minimization p = (p1, . . . ,)

    χ2(p) =N∑i=1

    (Oexpi − Fi(p)

    ∆Oexpi

    )2→ min

    λiχ2(pχ2(p0) (3)

    Are residuals Gaussian ?

    Ri =Oexpi −Othi

    ∆OiOthi = Fi(p0) i = 1, . . . , N (4)

    If Ri ∈ N [0, 1] self-consistent fit.Normality test for a finite sample with N elements → Probability (Confidence level)p-value

    χ2min = 1± σ√

    2

    νν = NDat −NPar p = 1−

    ∫ σσdte−t

    2

    √2π

    Histograms, Moments, Kolmogorov-Smirnov, Tail Sentitive QQ-plots

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 37 / 60

  • escudougr

    Normality tests

    Does the sequencexexp1 ≤ x

    exp2 ≤ · · · ≤ x

    expN ∈ N [0, 1]

    We compute the theoretical points

    n

    N + 1=

    ∫ xthn−∞

    dte−t

    2/2

    √2π

    The Q-Q plot is xthn vs xexpn

    For large Nxthn − xexpn = O(1/

    √N)

    Complete database. N = 8125

    420-2-4

    0.5

    0.4

    0.3

    0.2

    0.1

    0

    Complete database

    Theoretical Quantiles N(0, 1)

    EmpiricalQuantiles

    420-2-4

    4

    2

    0

    -2

    -4 Kolmogorov-Smirnov

    Tail Sensitive

    All residuals

    (a)

    QTh

    QEm

    p−

    QTh

    43210-1-2-3-4

    3

    2

    1

    0

    -1

    -2

    -3

    -4

    -5

    -6

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 38 / 60

  • escudougr

    Granada-2013 np+pp database

    Selection criterium

    Mutually incompatible data. Which experiment is correct? Is any of the two correct?

    Maximization of experimental consensus

    Exclude data sets inconsistent with the rest of the database

    1 Fit to all data (χ2/ν > 1)2 Remove data sets with improbably high or low χ2 (3σ criterion)3 Refit parameters4 Re-apply 3σ criterion to all data5 Repeat until no more data is excluded or recovered

    3σ consistent data. N = 6712

    Complete database. N = 8125

    420-2-4

    0.5

    0.4

    0.3

    0.2

    0.1

    0

    3σ consistent data

    Theoretical Quantiles N(0, 1)

    EmpiricalQuantiles

    420-2-4

    4

    2

    0

    -2

    -4 Kolmogorov-Smirnov

    Tail Sensitive

    3σ residuals

    (b)

    QTh

    QEm

    p−

    QTh

    43210-1-2-3-4

    2

    1.5

    1

    0.5

    0

    -0.5

    -1

    -1.5

    -2

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 39 / 60

  • escudougr

    Fitting NN observables

    Database of NN scattering data obtained till 2013

    http://nn-online.org/http://gwdac.phys.gwu.edu/NN provider for Android

    Google Play Store

    [J.E. Amaro, R. Navarro-Perez, and E. Ruiz-Arriola]

    2868 pp data and 4991 np data

    3σ criterion by Nijmegen to remove possible outliers

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 40 / 60

  • escudougr

    Fitting NN observables

    Delta shell potential in every partial wave

    V JSl,l′ (r) =1

    2µαβ

    N∑n=1

    (λn)JSl,l′δ(r − rn) r ≤ rc = 3.0fm

    Strength coefficients λn as fit parameters

    Fixed and equidistant concentration radii ∆r = 0.6 fm

    EM interaction is crucial for pp scattering amplitude

    VC1(r) =α′

    r,

    VC2(r) ≈ −αα′

    Mpr2,

    VV P (r) =2αα′

    3πr

    ∫ ∞1

    dx e−2merx[1 +

    1

    2x2

    ](x2 − 1)1/2

    x2,

    VMM (r) = −α

    4M2p r3

    [µ2pSij + 2(4µp − 1)L·S

    ]

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 41 / 60

  • escudougr

    To believe or not to believe

    0 2000 4000 6000 8000 100000.0

    0.5

    1.0

    1.5

    2.0

    Ndat

    Χ2Ndat

    25Σ

    1ΣGr-All

    TLAB < 350 MeV

    SAID-2007

    GrHSelectedL

    NijmHSelectedL

    AV18 CD-Bonn

    χ2min/ν = 1±√

    2/ν

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 42 / 60

  • escudougr

    A=2 STATISTICAL UNCERTAINTIES

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 43 / 60

  • escudougr

    To fit or not to fit

    N- Experimental Data Oexpi ±∆Oi with i = 1, . . . , NTheory with P-parameters Othi = Oi(p1, . . . , pP )

    Distance between theory and data

    ||Oth(p)−Oexp||2 =∑i

    [Othi −O

    expi

    ∆Oi

    ]2

    Closest theory to data (Least Squares Method, Lagrange)

    D2min = minp||Oth(p)−Oexp||2

    Statistical interpretation: Maximum likelihood

    Propose fits with natural parameters

    Reject fits with bound states other than the deuteron

    Check fit residuals a posteriori

    χ2min/ν = 1±√

    2/ν

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 44 / 60

  • escudougr

    Fit Phases or fit data ?

    Phase shifts are NOT experimental observables UNLESS we have a complete set of 10measurements (cross sections and polarization asymmetries) for a given energy.

    Data is difficult since magnetic moments are 1/r3 difficult 1000-2000 partial waves inmomentum space approaches

    Fitting phases is easier but

    100

    101

    102

    103

    104

    0 50 100 150 200 250 300 350

    χ2/N

    ELAB,Max (MeV)

    LO pp

    LO np

    NLO pp

    NLO np

    N2LO pp

    N2LO np

    Local chiral effective field theory interactions and quantum Monte Carlo applications A. Gezerlis, I. Tews, E. Epelbaum,

    M. Freunek, S. Gandolfi, K. Hebeler, A. Nogga and A. Schwenk, Phys. Rev. C 90 (2014) no.5, 054323

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 45 / 60

  • escudougr

    Are residuals irrelevant ?

    Even if you have a “good” fit , it can be inconsistent

    Fit N2LO for TLAB125MeVOptimized Chiral Nucleon-Nucleon Interaction at Next-to-Next-to-Leading Order; A. Ekström, G. Baardsen, C. Forssén,

    G. Hagen, M. Hjorth-Jensen, G.R. Jansen, R. Machleidt, W. Nazarewicz, T. Papenbrock, J. Sarich; Phys.Rev.Lett. 110

    (2013) no.19, 192502

    -2

    -1

    0

    1

    2

    -4 -3 -2 -1 0 1 2 3 4

    QEm

    p−

    QTh

    QTh

    Tail SensitiveKolmogorov-Smirnov

    residualsscaled residuals

    scaled standarized residuals

    Gross Systematic errors !!

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 46 / 60

  • escudougr

    Frequentist or Bayes ?

    Frequentist: What is the probability that given a theory data are correct ?

    Bayesian: What is the probability that given the data the theory is correct ? (priors,random parameters)

    χ2augmented → χ2data + χ2parametersBoth approaches agree for NData � NParameters. We have NDat ∼ 7000 and NPar = 40

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 47 / 60

  • escudougr

    Maximal energy vs shortest distance

    The full potential is separated into two pieces

    V (r) = Vshort(r)θ(rc − r) + V χlong(r)θ(r − rc)

    Data are fitted up to a maximal TLAB

    TLAB ≤ maxTLAB ↔ pCM ≤ Λ

    Max TLAB rc c1 c3 c4 Highest χ2/ν

    MeV fm GeV−1 GeV−1 GeV−1 counterterm

    350 1.8 -0.4(11) -4.7(6) 4.3(2) F 1.08350 1.2 -9.8(2) 0.3(1) 2.84(5) F 1.26125 1.8 -0.3(29) -5.8(16) 4.2(7) D 1.03125 1.2 -0.92 -3.89 4.31 P 1.70125 1.2 -14.9(6) 2.7(2) 3.51(9) P 1.05

    D-waves, forbidden by Weinberg counting, are indispensable !

    Data and χ-N2LO do not support rc < 1.8fm !(Several χ-potentials take rc = 0.9− 1.1fm)

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 48 / 60

  • escudougr

    Deconstructing chiral forces

    The full potential is separated into two pieces

    V (r) = Vshort(r)θ(rc − r) + V χlong(r)θ(r − rc)

    Under what conditions are the short distance phases compatible with zero

    |δshort| ≤ ∆δ rc = 1.8fm

    3G3

    1251007550250

    0.04

    -0.28

    -0.6

    -0.92

    -1.24

    ǫ3

    1251007550250

    4.05

    3.15

    2.25

    1.35

    0.45

    3D3

    TLAB [MeV]

    1251007550250

    2.2

    1.6

    1

    0.4

    -0.23F3

    1251007550250

    0.6

    0.2

    -0.2

    -0.6

    -11F3

    1251007550250

    -0.1

    -0.7

    -1.3

    -1.9

    -2.5

    3F21.06

    0.78

    0.5

    0.22

    -0.06ǫ2

    -0.3

    -0.9

    -1.5

    -2.1

    -2.7

    3P212.6

    9.8

    7

    4.2

    1.4

    3D222.5

    17.5

    12.5

    7.5

    2.5

    1D24.5

    3.5

    2.5

    1.5

    0.5

    3D1

    -1.6

    -4.8

    -8

    -11.2

    -14.4

    ǫ112.6

    9.8

    7

    4.2

    1.43S1

    146

    118

    90

    62

    343P1

    -1.8

    -5.4

    -9

    -12.6

    -16.21P1

    -1.8

    -5.4

    -9

    -12.6

    -16.2

    3P0

    10.4

    7.2

    4

    0.8

    -2.41S0

    60

    50

    40

    30

    20

    This is equivalent to set counterterms in given partial waves directly to cero

    δshort = 0↔ Cshort = 0

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 49 / 60

  • escudougr

    To count or not to count

    We can fit CHIRAL forces to ANY energy and look if counterterms are compatible withzero within errors

    We find that if ELAB ≤ 125MeV Weinberg counting is INCOMPATIBLE with data.

    You have to promote D-wave counterterms.N2LO-Chiral TPE + N3LO-Counterterms → Residuals are normalPiarulli,Girlanda,Schiavilla,Navarro Pérez,Amaro,RA, PRC

    We find that if ELAB ≤ 40MeV TPE is INVISIBLE

    We find that peripheral waves predicted by 5th-order chiral perturbation theory ARE NOTconsistent with data within uncertainties

    |δCh,N4LO − δPWA| > ∆δPWA,stat

    Dominant contributions to the nucleon-nucleon interaction at sixth order of chiral perturbation theory D.R. Entem, N.

    Kaiser, R. Machleidt, Y. Nosyk Phys.Rev. C92 (2015) no.6, 064001

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 50 / 60

  • escudougr

    Statistical vs Systematics

    Statistically equivalent interactions with χ2min/ν = 1±√

    2/ν DO NOT overlapp

    3I5

    35025015050

    -0.15

    -0.45

    -0.75

    -1.05

    -1.35

    ǫ5

    35025015050

    3.15

    2.45

    1.75

    1.05

    0.35

    3G5

    TLAB (MeV)35025015050

    0.2

    0

    -0.2

    -0.4

    -0.6

    3H5

    35025015050

    -0.14

    -0.42

    -0.7

    -0.98

    -1.26

    1H5

    35025015050

    -0.25

    -0.75

    -1.25

    -1.75

    -2.25

    3H4

    0.9

    0.7

    0.5

    0.3

    0.1

    ǫ4

    -0.2

    -0.6

    -1

    -1.4

    -1.8

    3F4

    3.6

    2.8

    2

    1.2

    0.4

    3G4

    9

    7

    5

    3

    1

    1G4

    2.25

    1.75

    1.25

    0.75

    0.25

    3G3

    -0.6

    -1.8

    -3

    -4.2

    -5.4

    ǫ37.2

    5.6

    4

    2.4

    0.8

    3D3

    5.4

    4.2

    3

    1.8

    0.6

    3F3

    -0.4

    -1.2

    -2

    -2.8

    -3.6

    1F3

    -0.7

    -2.1

    -3.5

    -4.9

    -6.3

    3F2

    1.5

    1.1

    0.7

    0.3

    -0.1

    ǫ2-0.35

    -1.05

    -1.75

    -2.45

    -3.15

    3P2

    18

    14

    10

    6

    2

    3D227

    21

    15

    9

    3

    1D2

    δ(deg.)

    10.8

    8.4

    6

    3.6

    1.2

    3D1

    -3

    -9

    -15

    -21

    -27ǫ1

    5.4

    4.2

    3

    1.8

    0.6

    3S1

    144

    112

    80

    48

    16

    3P1

    -3.5

    -10.5

    -17.5

    -24.5

    -31.5

    1P1

    -3.5

    -10.5

    -17.5

    -24.5

    -31.5

    3P0

    11

    4

    -3

    -10

    -17

    1S0

    63

    45

    27

    9

    -9

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 51 / 60

  • escudougr

    COUPLING CONSTANTS

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 52 / 60

  • escudougr

    Arqueological Flashback

    Chronological recreation of pion-nucleon coupling constants

    Nijmegen determinations

    f2 from NN data

    f2p from pp data

    Year

    201020001990198019701960

    0.084

    0.082

    0.08

    0.078

    0.076

    0.074

    0.072

    0.07

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 53 / 60

  • escudougr

    The pion-nucleon coupling constants f 2p , f20 and f

    2c

    (a)

    f2c × 102

    f2 p×

    102

    7.727.77.687.667.647.627.67.587.56

    7.64

    7.63

    7.62

    7.61

    7.6

    7.59

    7.58

    7.57

    7.56

    7.55

    7.54

    7.53

    (b)

    f2c × 102

    f2 0×

    102

    7.727.77.687.667.647.627.67.587.56

    8.2

    8.15

    8.1

    8.05

    8

    7.95

    7.9

    7.85

    7.8

    (c)

    f2p × 102

    f2 0×

    102

    7.647.637.627.617.67.597.587.577.567.557.547.53

    8.2

    8.15

    8.1

    8.05

    8

    7.95

    7.9

    7.85

    7.8

    Fits to the Granada-2013 database.f2 f20 f

    2c CD-waves χ

    2pp χ

    2np NDat NPar χ

    2/ν

    0.075 idem idem 1S0 3051 3951 6713 46 1.0510.0761(3) idem idem 1S0 3051 3951 6713 46+1 1.051- - - 1S0, P 2999 3951.40 6713 46+3 1.0430.0759(4) 0.079(1) 0.0763(6) 1S0, P 3045 3870 6713 46+3+9 1.039

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 54 / 60

  • escudougr

    The πNN vertices

    N=1000

    fΠ pp- fΠ nn

    fΠ pn- fΠ nnfΠ pp- fΠ pn

    0.270 0.275 0.280 0.285 0.290

    0.270

    0.275

    0.280

    0.285

    0.290

    p

    p

    p

    n

    n

    n

    π π πo o+

    0.2755(7) 0.276(1) 0.287(3)

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 55 / 60

  • escudougr

    Neutrons interact more strongly than protons

    neutron-neutron

    proton-proton

    3.0 3.5 4.0 4.5 5.0

    -0.4

    -0.3

    -0.2

    -0.1

    0.0

    rHfmL

    HrLHM

    eVL

    proton-proton

    neutron-neutron

    3.0 3.5 4.0 4.5 5.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    rHfmL

    HrLHM

    eVL

    neutron-neutron

    proton-proton

    3.0 3.5 4.0 4.5 5.00.0

    0.1

    0.2

    0.3

    0.4

    rHfmL

    HrLHM

    eVL

    neutron-neutron

    proton-proton

    3.0 3.5 4.0 4.5 5.0

    -1.6

    -1.4

    -1.2

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    rHfmL

    HrLHM

    eVL

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 56 / 60

  • escudougr

    Chiral Two Pion Exchange

    Fit to from Granada-2013 np+pp database TLAB < 350MeV

    (a)

    c1 [GeV−1]

    c3

    [G

    eV−

    1]

    3210-1-2-3-4

    -2.5

    -3

    -3.5

    -4

    -4.5

    -5

    -5.5

    -6

    -6.5

    (b)

    c1 [GeV−1]

    c4

    [G

    eV−

    1]

    3210-1-2-3-4

    5.5

    5

    4.5

    4

    3.5

    3

    (c)

    c3 [GeV−1]

    c4

    [G

    eV−

    1]

    -2.5-3-3.5-4-4.5-5-5.5-6-6.5

    5.5

    5

    4.5

    4

    3.5

    3

    Fit to from Granada-2013 np+pp database TLAB < 125MeV

    -10

    -8

    -6

    -4

    -2

    -10 -8 -6 -4 -2 0 2 4 6 8

    c3[G

    eV

    −1]

    c1 [GeV−1]

    22.53

    3.54

    4.55

    5.56

    6.5

    -10 -8 -6 -4 -2 0 2 4 6 8 10

    c4[G

    eV

    −1]

    c1 [GeV−1]

    22.53

    3.54

    4.55

    5.56

    6.5

    -11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1

    c4[G

    eV

    −1]

    c3 [GeV−1]

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 57 / 60

  • escudougr

    CONCLUSIONS

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 58 / 60

  • escudougr

    Conclusions

    Chiral nuclear forces have MANY advantages

    Weinberg’s paper has over 1000 citations

    Many calculations have been undertaken using 2,3,4 body forcesBUT:

    Many forms of Chiral nuclear forces can be falsified

    Only validated forces against data (and not phases) allow to make serious error analysis

    One should be able to make REALISTIC error estimates not just conservative ones

    Cut-off dependence is the largest source of error

    We must not count our chickens before they are hatched !

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 59 / 60

  • escudougr

    E. Ruiz Arriola (UGR) The Falsification of Chiral Nuclear Forces Confinement 2016 60 / 60