the evolution of high energy neutrino telescopescsspier/www/talks/history-of-nutel.pdf · the...

76
The evolution of high energy neutrino telescopes Christian Spiering DESY

Upload: ngonhu

Post on 09-Apr-2018

216 views

Category:

Documents


2 download

TRANSCRIPT

The evolution of high energy neutrinotelescopes

Christian SpieringDESY

The evolution of high energy neutrinotelescopes

…a long marchwhich has notyet reachedits end.

under-ground

optical:- deep water- deep ice

- air showers- radio- acoustics

Ann.Rev.Nucl.Sci10 (1960) 63

Ann.Rev.Nucl.Sci10 (1960) 1

Moisej Markov Bruno Pontecorvo

M.Markov,1960: „We propose to install detectors deep in a lake or in the sea and to determine the direction of charged particles with the helpof Cherenkov radiation“ Proc. 1960 ICHEP, Rochester, p. 578.

Central interest: cross sections, W-mass… one of the main motivations for Reines‘ South Africa detector, the Kolar Gold Field Detector (India) and the Baksan scintillation detector. Early sixties: doesthe neutrino cross section saturate beyond 1 GeV (i.e. one would never measureatm. neutrinos with energies higher than a few GeV). The question was relaxed in the mid seventies:

First measurement of atmosphericneutrinos

Beside several ideas like e.g.H. Uberall and C. Cowan, 1965 CERN Conf. on Experimental Neutrino Physics, p. 231– Downward looking PM observing a

10 m thick water target, „possibly in ocean or a lake“

V. Bogatyrev, Yad.Fiz 13 (1971) 336– Three detectors each 107 tons of distilled

water a several km depth, widely spacedSN triangulation

in 1965 detection of nearlyhorizontal atmospheric neutrinosby F. Reines in a South African Gold mine.

DUMAND

1973 ICRC, Reines, Learned, Shapiro, Zatsepin, Miyake: a deep water detector to clarify puzzles in muon depth-intensitycurvesPuzzles faded away, but there remained the awareness that such a detector could also work as neutrino detectorThe name: DUMAND (Deep Underwater Muon And Neutrino Detector), proposed by Fred Reines1975: First DUMAND Workshop in Washington State CollegeDUMAND Steering Committee, chaied by F.Reines, J. Learned, . A.Roberts

See also: A.Roberts: The birth of high-energy neutrinoastronomy: a personal history of the DUMAND project,Rev. Mod. Phys. 64 (1992) 259.

ν

μ

Principle and capabilities

Angular resolution of 1° possible

astrononomy

Energy resolution formuons is 50% at best, for 1 km tracklength

The DUMAND Workshops

An unbelievable source of basic ideas(including crazy ones which are sometimes the most exciting)

1976 Honolulu1978 Scripps1979 Khabarovsk/Baikal1978 HonoluluPlus dedicated workshops on deployment, acousticdetection, signal procressing and oceanengineering

Which physics?

UNDINE: UNderwater Detection of Interstellar Neutrino Emission– i.e. Supernova too rarely to optimize an ocean detector for it ( IMB)

ATHENE: ATmospheric High-Energy Neutrino Experiment– Better with underground experiments

UNICORN: UNderwater Interstellar COsmic Ray Neutrinos– The high energy option– preferred option, but: how large are the fluxes ?– think as big as possible !

A. Roberts:

1978: 1.26 km³22,698 OMs

1980: 0.60 km³6,615 OMs

1982: 0.015 km³756 OMs

1988: 0.002 km³

216 OMs

DUMAND-II

Financial and technological reality !

DUMAND-II (The Octagon)

9 strings216 OMs100 diameter, 240 m heightDepth of bottom: 4.8 kmLowest OM 100 m abovebottom

γγνμππγ

νν

νμπ

μ

μ

+→+→+→+→+

++→

+→+→+

+ 0

....

pnp

e

pp

e

or

Point sources, DUMAND-II (0.002 km³) expectations in the eighties !!!

Note: in 1989, the only proven TeV γ source was the Crab SNR!With these assumptions, a km³ detector would have discovered 5-50 (worst scenario) up to several ten thousand events (best scenario) per source

Diffuse sources, DUMAND-II (0.002 km³) expectations in the eighties

Technology boostsOptical fibers with < 12 dbattenuation over 40-km lengthand data rates of hundreds of MBaud (Nobel prize 2009!)

Appearance of 16“ Hamamatsu PMT

Appearance of 14“ „smart“ Philips PMT

JOMJapanese Optical Module

EOMEuropean Optical Module

1987: The SPS

1982-87: a series of 14 cruises, with two lost strings1987: success !– depth-intensity curve– angular distributions– attenuation lenght (47±22 m)

„Short Prototype String“

DUMAND after the SPS:

1989: HEPAP supports DUMAND-II1990: DOE allocates funds for DUMAND-IIFurther financial cuts TRIAD (3 strings)1993: shore cable laidDecember 1993: deployment of first string and connection to junction box. Failure after severalhours1995: DUMAND project is terminated

RussiaVery active during early DUMAND workshops(Chudakov, Berezinsky, Bezrukov, Zhelesnykh, Petrukhin)Kicked out of DUMAND after Russian Afghanistan invasionA. Roberts:

1980: Chudakov proposes exploration of Lake Baikal as possible site for a neutrino telescope1981: start of site investigations at Lake Baikal (Domogatksy, Bezrukov)

Exploration of Atlantic, Black Sea, Indian Ocean, Pacific and Mediterranean sites (Zheleznyk, Petrukhin)

A. Roberts: „Communication among these groups is not very good“

The Lake BAIKAL experiment

G. Domogatsky

Bezrukov, Domogatsky, Berezinsky, Zatsepin

Largest fresh water reservoir in the worldDeepest Lake (1.7 km)1981: first site explorations & R&DChoosen site 3.6 km from shore, 1.3 km depth

Ice as a natural deployment platform

… and its mis-interpretation:

A. Roberts:

Lake Baikal: the eighties

1984: first stationary string– Muon flux measurement

1986: second stationary string(Girlyanda 86)– Limits on GUT

magnetic monopolesAll that with 15-cm flat-window PMT FEU-49

Development of a Russiansmart phototube (Quasar)

Towards NT-2001988: Germany joins

1989/90: design of NT-200

1993 + 1994: NT-36 - 18 channels at 3 strings- first underwater array- first 2 neutrino candidates

1995: NT-72- 38 channels at 4 strings

1996: NT-96- 48 channels at 4 strings- clear neutrinos

1998: NT-200- 96 channels at 8 strings

4-string stage (1996)

J. Learned:„Congratulations for winningthe 3-string race!“(Baikal vs Dumand vs AMANDA)

NT-200

NT-200

3600 m

1366

m

2 PMTs in coincidenceto surpress background

NT200 results

Atmospheric neutrinos

WIMP searchDiffuse neutrino fluxes

Skymap

GRB coincidencesMagnetic monopoles

396 ν candidates

Amanda 4 years

Baikal 5 years

NT200+

NT200

3600 m

1366

m

140 mNT200+

- upgrade 2005/06- 4 times better sensitivity thanNT200 for PeV cascades

- basic cell for km3 scale detector

construction1993-1998

For searches of diffuse neutrino fluxes, the small NT200 could compete with the much larger Amanda by monitoring

a large volume below the detector. NT200+ fences this volume.

Gigaton Volume Detector, GVD

Sacrifice low energies (muon threshold ~ 10 TeV)Protoype strings being testedModular clusters, stepwise installation > 2012~ 2000 optical modules (conventional PMs)

12 clusters of strings

NT1000: top view

R ~ 60 m

L~ 350

 m

All other deep water/ice detector projects startedaround 1990 or later.

In the eighties /early nineties, shallow detectorshave been proposed but never built.

On the other hand, deep underground detectorsreached their full blossom:- solar neutrinos- supernova neutrinos- limits on proton decay- first hints to neutrino oscillations- sky maps

Shallow detector projects

Advantages: easy access, less challenging environmentDisadvantages: huge background, not expandable

GRANDE– Shallow water, Lake, Arkansas, H. Sobel (Irvine)

LENA– Artificial water pool, Gran Sasso, M.Koshiba

SINGAO– Resistive Plate Chambers, Italy/UK

Swedish lakes– Early nineties, before Sweden joined Amanda

Underground Detectors

KGF

Baksan

FREJUS

Soudan

IMB

KamiokandeSuperkamiokande

MACRO

e.g. MACRO, 1356 upgoing muons

~ 1000 m²

Neu

trin

o os

cilla

tions

, pro

ton

deca

y

Def

icit

of s

olar

neu

trino

s(s

eeK

ai Z

uber

‘sta

lk)

Def

icit

of a

tmos

pher

icne

utrin

osas

func

tion

of d

ista

nce

and

ener

gy

Stri

ngen

t lim

its o

n pr

oton

life

time

|Δm

2 32| =

(2.6

±0.2

) ·10

-3 e

V2

|Δm

2 21| =

(8.3

±0.3

) ·10

-5 e

V2

θ 12

= 33

.9º±

1.6º

θ 23

= 45

º±3º

θ 13

< 9º

1990

-200

0: re

visi

ting

the

expe

ctat

ions

Und

ergr

ound

det

ecto

rs, 1

000

m²,

only

fory

oung

Sup

erno

vae

in o

urG

alax

y(B

erez

insk

y)

New

est

imat

eson

neu

trino

sfro

mS

uper

nova

rem

nant

san

d ot

herg

alac

ticso

urce

sba

sed

on o

bser

vatio

nsw

ithW

hipp

lean

d H

EG

RA

For s

uper

nova

rem

nant

s, m

icro

quas

ars,

ext

raga

lact

icso

urce

s: n

eed

dete

ctor

of o

rder

1 k

m³.

The

Wax

man

-Bah

call

boun

d

The

Man

nhei

m-P

roth

eroe

boun

d

GR

B a

s so

urce

sof

cos

mic

rays

and

neut

rinos

γbo

und

WB

bou

nd

MP

R b

ound

Diff

use

Flux

es20

02Th

ism

odel

was

dow

n-co

rrec

ted

bya

fact

orof

20

in 2

005.

The

ice

optio

n

1988

: Pom

eran

tzw

orks

hop,

NS

F S

cien

ce a

nd T

echn

olog

y C

ente

r for

the

S

outh

Pol

e (A

. Wes

tpha

l, T.

Mill

er, D

. Low

der,

B. P

rice)

E. Z

elle

r (K

ansa

s) s

ugge

sts

to F

. Hal

zen

radi

odet

ectio

nof

ne

utrin

os in

Ant

arct

ic ic

e

1989

: atte

mpt

of W

estp

hala

nd L

owde

rto

mea

sure

ice

trans

pare

ncy

in e

xist

ing

bore

hole

s

Jan.

89,

ICR

C, A

dela

ide:

Dec

ide

to p

ropo

se A

man

da (B

. Pric

e,

D. L

owde

r, S

. Bar

wic

k, B

. Mor

se, F

. Hal

zen,

A. W

atso

n)

1990

: Mor

se e

t al.

depl

oy P

MTs

in G

reen

land

ice

F. H

alze

n

Natu

reSe

pt91

Sou

th P

ole

1991

/91

first

smal

lPM

Tsde

ploy

edR

esul

tsco

nsis

tent

with

25 m

abs

orpt

ion

leng

th

Hea

ters

and

pum

psto

mel

tthe

hole

s

1 km

2 km

93/9

4

Cat

astr

opha

ldel

ay

of li

ght b

etw

een

strin

gs 2

0 m

aw

ay!

(µse

c in

stea

d of

100

nse

c)

40 m

Exp

lana

tion

rem

nant

bubb

les

whi

char

edi

sapp

pear

ing

with

incr

easi

ngde

pth.

Am

anda

B4

1995

: DE

SY

and

Sto

ckho

lm b

uild

~ 10

0 m

odul

es, 8

6 de

ploy

edin

the

seas

on95

/96

at 1

450-

1950

m d

epth

The

DE

SY

cre

w

B4:

firs

t2 n

eutri

nos

Dril

ling

Hot

wat

erdr

illin

gH

ot w

ater

drill

ing

1 km

2 km

IceC

ube

will

wor

k !

96/9

7A

MA

ND

A -

B10

120

m

AM

AN

DA

B10

NATU

RE 2

001

Sky

plot

of th

eve

ryfir

st17

Nu

cand

idat

esin

B10 B10

sky

plot

publ

ishe

din

Nat

ure

2001

1 km

2 km

120

m

•3

long

stri

ngs

•st

udy

deep

and

sha

llow

ice

for f

utur

e Ic

eCub

e

97/9

8

0.02

0.1

0.5

Sca

tterin

gco

effic

ient

(1/m

)vs

. dep

th

1 km

2 km

AM

AN

DA

-II

99/0

020

0 m

Nea

rly h

oriz

onta

l μ

Oce

an W

ater

AM

AN

DA

resu

lts

δ=90

º

24h

0h

Max

Sig

nific

ance

δ=54

º, α=

11.4

h3.

38σ

No

sign

ifica

nt e

xces

s fo

und

Diff

use

fluxe

sPo

int s

ourc

esN

eutr

inos

from

GR

BW

IMP

sear

ches

Mag

netic

Mon

opol

esC

osm

icra

ysSN

mon

itorin

g…

.S

kym

apfro

m7y

ears

AM

AN

DA

: no

sign

ifica

ntex

cess

The

one

intr

igui

ngco

inci

denc

e…

.

Yea

r2

00

02

00

12

00

22

00

3

May

Jun

eJu

ly

Flux

ofTe

V p

hoto

ns(a

rb. u

nits

) 0123

νν

WHIPPLE

Arr

ival

tim

e of

ne

utrin

osfro

mth

edi

rect

ion

of th

eA

GN

E

S19

59+6

50

05/0

6: 8

Rem

aini

ng:

22 Ic

eCub

e S

tring

s5

Dee

pCor

eS

tring

s

com

plet

ein

Jan

uary

2011

04/0

5: 1

07/0

8: 1

806

/07:

13

08/0

9: 1

9 st

rings

IceC

ube

Obs

erva

tory

Sha

dow

of t

he M

oon

Sha

dow

of t

he M

oon

Cos

mic

Ray

sC

osm

ic R

ays

Abs

olut

e po

intin

g ≤

1°A

ngul

ar re

solu

tion ≤

0.5°

8 m

onth

sIc

eCub

e 40

str

ings

Dow

nwar

dm

uons

, max

. 28°

abo

veho

rizon

, med

ian

ener

gyof

prim

ary

pare

nt~

30 T

eV

Larg

e-sc

ale

anis

otro

pyof

dow

ngoi

ngm

uons

IceC

ube

(40

strin

gs20

08)

anis

otro

pies

on th

epe

r-m

ille

scal

e

(sky

map

in e

quat

oria

lco

ordi

nate

s)

90

‐90

24h

0024

h

90 ‐90

12 TeV

126 TeV

MIL

AG

RO

Com

pare

to

Nor

ther

n

hem

isph

ere

Tibe

t air

show

erar

ray

Sim

ulat

ion

(Lal

lem

ente

t al.

Sci

ence

200

5)

Com

pton

-Get

ting

effe

ct?

Hel

iosp

here

effe

ct?

Nea

rby

puls

ar?

Inte

rste

llar m

agne

ticfie

ld?

Firs

t obs

erva

tion

on

Sou

ther

n he

mi-

sphe

read

dsim

porta

ntpi

ece

of in

form

atio

n.

Firs

t loo

kab

ove

horiz

on(Ic

eCub

e 20

07, 2

2 st

rings

)

PeV

-EeV

rang

e

Southe

rn hem

isph

ere

Northern he

misph

ere

Poin

t Sou

rces

: The

Prog

ress

fact

or

1000

in 1

5 ye

ars

!

Ano

ther

fact

or

1000

!

Diff

use

Flux

es: T

hePr

ogre

ss

Med

itera

nnea

npr

ojec

ts

NES

TOR

(s

ince

1991

) „A

man

da-s

ized

“--

unde

rcon

stru

ctio

n(?

)

AN

TAR

ES(s

ince

1996

)„A

man

da s

ized

“ --

data

taki

ng

NEM

O:

R&

D fo

rkm

3 pr

ojec

t

Sin

ce20

03: k

m3

initi

ativ

e K

M3N

eT

4100

m

2400

m

3400

mA

NT

AR

ES

NE

MO

NE

STO

R

NES

TOR

1991

:fir

stsi

test

udie

s19

92:

first

muo

n co

unt

1992

-200

1:m

any

ocea

nte

sts,

bu

ildla

b an

d in

frast

ruct

ure

2000

:ca

ble

to s

ite20

03:

depl

oyfir

stflo

or.

Cab

lefa

ilure

afte

ra

few

wee

ks

Com

pare

to 2

000

decl

ared

plan

:–

depl

oyfu

llto

wer

2003

–de

ploy

6 m

ore

tow

ers

2005

AN

TAR

ES

Instal

lation

:Ju

nctio

nBox

-De

c200

2Lin

e 1-M

arch

2006

Line 5

-1-D

ec20

07Lin

e 11-

12-M

ay 20

08

Ant

ares

resu

lts

NEM

O

R

&D

forK

M3N

eT-4

-floo

r tow

erin

200

6-f

ullt

ower

end

of 2

009

KM

3NeT

Rec

omm

enda

tions

KM

3NeT

2001

/02:

Hig

h E

nerg

y N

eutri

no A

stro

phys

ics

Pan

el–

Hig

h ph

ysic

sin

tere

st–

Nee

dkm

³ sca

le–

Nee

dbo

thhe

mis

pher

es–

No

mor

eth

an1

Nor

ther

n de

tect

or–

Tim

ely

form

atio

nof

Nor

ther

n he

mis

pher

ede

epw

ater

dete

ctor

isen

cour

aged

2008

: ApP

EC

–Th

e pr

iorit

y pr

ojec

t for

hig

h en

ergy

neu

trino

ast

rono

my

is K

M3N

eT.

–E

ncou

rage

d by

the

sign

ifica

nt te

chni

cal p

rogr

ess

of re

cent

yea

rs, t

he s

uppo

rt fo

r wor

king

tow

ards

KM

3NeT

is c

onfir

med

. –

Res

ourc

es fo

r a M

edite

rrane

an d

etec

tor s

houl

d be

poo

led

into

a s

ingl

e op

timis

ed d

esig

n fo

r a la

rge

rese

arch

infra

stru

ctur

e, w

ith in

stal

latio

n st

artin

g in

20

12.

–Th

e se

nsiti

vity

of K

M3N

eT m

ust s

ubst

antia

lly e

xcee

d th

at o

f all

exis

ting

neut

rino

dete

ctor

s in

clud

ing

IceC

ube.

KM

3NeT

Mar 2012

Des

ign

deci

sion

Con

stru

ctio

n

2013

2017

2011

Dat

a ta

king

2015

2 km

Site

S

ize

Con

figur

atio

nTe

chno

logy

Dep

loym

ent

…a

long

mar

chw

hich

has

not

yetr

each

edits

end.