the dna synthesis

24
The DNA synthesis -P-O-P-O-P-O- Ribose-Base - O - O - O - O | | | | | | | | | O O O 3’ OH-Ribose- DNA e - .. Three models for DNA replication

Upload: razi

Post on 11-Jan-2016

40 views

Category:

Documents


1 download

DESCRIPTION

The DNA synthesis. 3’ OH- Ribose- DNA. O. O. O. ||. ||. ||. - O. -P-O-P-O-P-O- Ribose -Base. |. |. |. - O. - O. - O. e -. Three models for DNA replication. (1958). 5’-P. 3’-OH . DNA synthesis is semidiscontinuous and primed by RNA. Synthesis of Okazaki fragments (1-2 Kb). - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: The DNA synthesis

The DNA synthesis

-P-O-P-O-P-O-Ribose-Base-O-O-O -O

|||| ||

| | |

O O O

3’OH-Ribose-DNA

e-

..

Three models for DNA replication

Page 2: The DNA synthesis

(1958)

Page 3: The DNA synthesis
Page 4: The DNA synthesis
Page 5: The DNA synthesis

5’-P

3’-OH

Page 6: The DNA synthesis

DNA synthesis is semidiscontinuous and primed by RNA

Synthesis of Okazaki fragments (1-2 Kb)

Page 7: The DNA synthesis

An RNA primer for initiation of DNA synthesis

Primer removal by RNAse H and DNA

polymerase I

Synthesizing New DNA Strands

Page 8: The DNA synthesis

The holoenzyme is a complex of 900 kD (about the same mass of small ribosome unit)

1)a catalytic core(subunit)2)a dimerization component () that links two cores3) a processivity component () that keeps the polymerase on the DNA4) a clamp loader () that places the processivity subunits on DNA

The "core enzyme" contains subunits , , and .The subunit has a basic ability to synthesize DNA, the subunit has the 3’–5’ proofreading exonuclease, and may be required for assembly.A dimer binds to the core polymerase, and provides adimerization function that binds a second core polymerase (associated with another clamp). The holoenzyme is asymmetric, because it has only 1 complex. This complex is responsible for adding a pair of dimers to each parental strand of DNA.

Each of the core complexes of the holoenzyme synthesizes one of the new strands of DNA. This corresponds to the need to synthesize a continuous leading strand (where polymerase remains associated with the template) and a discontinuous lagging strand (where polymerase repetitively dissociates and reassociates).

Page 9: The DNA synthesis

The DNA is in the classic B-form duplex up to the last 2 base pairs at the 3’ end of the primer, which are in the more open A-form.

The structure of DNA polymerase III

The subunit of DNA polymerase III consists of a head to tail dimer, shown

in red and orange that form a ring completely surrounding a DNA duplex.

(bacterial protein which increases processivity ofthe catalytic subunit)

Catalytic core

Page 10: The DNA synthesis

Il meccanismo d’azione della DNA polimerasi

A) Uno ione metallico (Mg2+ o Mn2+) riduce l’affinità del 3’-OH per il suo idrogeno favorendo la formazione

di un 3’-O- necessario per l’attacco nucleofilo. B) Il secondo ione metallico coordina le cariche negative dei fosfati e e stabilizza il pirofosfato prodotto durante la formazione del legame tra innesco e nucleotide.

Per la polimerazzazione dei dNTP è richiesto il corretto appaiamento delle basi e la sintesi diminuisce di un fattore 10,000 in presenza di appaiamenti errati.

Pos. 3’Pos. 3’

nucleotideentrante

stampo

estremità3’OH

Page 11: The DNA synthesis

Come la DNA polimerasi discrimina tra desossinucleotidi trifosfato e

ribonucleotidi trifosfato

La DNA polimerasi non può utilizzare gli rNTP

Sebbene gli rNTP siano nella cellula 10 volte più concentrati dei dNTP, essi sono incorporati ad una velocità 1,000 volte più bassa rispetto ai dNTP.

Pos. 3’

Pos. 2’

Page 12: The DNA synthesis

Quando viene aggiunto un nucleotide non corretto diminuisce la velocità di polimerizzazione mentre viene stimolata l’attività esonucleasica 3’-5’.

Il sistema di correzione abbassa la presenza di errori a 1 ogni 107 addizioni.

L’attività 3’-5’ esonucleasica della DNA polimerasi Proofreading control (correttore di bozze )

DNA con appaiamenti perfetti

DNA con errori

DNA Pol III, triangoli

Subunità θ, cerchi

Page 13: The DNA synthesis

The Escherichia coli DNA

replication

The loop of single-stranded template must extend for the length of at least one Okazaki fragment

More than 500

bp/sec synthesis

The model for coordinating replication by two DNA polymerases at replication fork

New synthesized DNA

Okazaki fragments

Page 14: The DNA synthesis
Page 15: The DNA synthesis
Page 16: The DNA synthesis

DNA topoisomerases provide a solution to the topological problem

Type I E. coli topois. I and III, yeast and human topois. III, eukaryotic topois. I, archaeal reverse gyrase

Type II E. coli topois. II (gyrase) and IV, eukaryotic topois. II and IV

The substrate is ssDNA The substrate is dsDNA

Reactions of topoisomerases

Type I Type II

Type I enzymes, because of their inability to make double-strands breaks, can only catalyze reactions when at least on circle bears a single-strand nick, whereas type II enzymes perform reactions with intact circles

nick

nick

Page 17: The DNA synthesis

Type I topoisomerases

The type I topoisomerase I of E. coli (topA) relaxes highly negatively supercoiled DNA. This enzymes does not act on positively supercoiled DNA and does not need ATP to function.

The formal properties of eukaryotic type I topoisomerases are similar but they can relax positive as well negative supercoils.

The archaeal reverse gyrase (Solfolobolus) is able to introduce positive supercoils. Positive supercoiling could be useful to an organism growing at high temperature because it will tend to prevent DNA denaturation.

A covalent bond is transiently formed between a Tyr residue of the enzyme and the 5’end of DNA target

Page 18: The DNA synthesis

(-) (+)

(-) (-)

Sing inversion model for gyrase

action

Type II topoisomerases

The type II topoisomerases generally relax both negative and positive supercoils. Bacterial DNA gyrase is responsible for relaxing positive supercoiling in front of replication fork.

The reaction requires ATP to promote a conformational change of the enzyme.

The type II topoisomerase can be used to introduce or resolve catenated duplex circles and knotted molecules.

Bacterial DNA gyrase is able to introduce negative supercoils into a relaxed closed circular molecule. In the absence of ATP, the gyrase can relax negative but not positive supercoils.

La Topo I lega un tratto della doppia elica che presenta una denaturazione locale

La Topo I trattiene entrambi i filamenti di DNA

La Topo I va incontro ad un cambiamento conformazionale

Page 19: The DNA synthesis

Topoisomerases enable the helix to be unzipped (the two strands pulled apart) without the molecule having to rotate. The replication fork is therefore able to proceed.

Topoisomerases change the linking number of DNA in steps of either 1 or 2

A group of negatively supercoiled topoisomers (A) with a given distribution of linking numbers is relaxed either by a type I or type II enzymes.The result is a group of topoisomers of increasing linking number (B).A single topoisomer form is selected (C) and subjected to relaxation by type I topoisomerases (D) and to relaxation by type II topoisomerases (E).

Topoisomerases and DNA replication

DNA gyraseTopoisomerasi IV

Single topoisomer

Page 20: The DNA synthesis

The repliconReplicon is a unit of the genome in which DNA is replicated; contains an origin for initiation of replication and also have a terminus at which replication stops.

The bacterial chromosome is replicated bidirectionally as a single unit from oriC.

Electron micograph of -mode

replication in E. coli

Page 21: The DNA synthesis

Demonstration that DNA replication was bidirectional in Bacillus subtilis

(Gyurasits and Wake, J. Mol. Biology, 1973)

1) Bacterial spores were grown on medium containing low level of radioactive (3H) thymidine.

2) After 120 minutes of growth, high level of radioactive (3H) thymidine was supplied.

3) After 20 additional minutes DNA replication was halted.

4) DNA was exposed to X-ray film.

Page 22: The DNA synthesis

Methylation at the origin regulates initiation of DNA replication

A bacterial (or plasmid) origin must be used to initiate replication only once per cell cycle. Initiation is associated with some change that marks the origin so that a replicated origin can be distinguished from a nonreplicated origin.

The ability of a plasmid relying upon oriC to replicate in dam– E. coli depends on its state of methylation: - If the plasmid is methylated, it undergoes a single round of replication, and then the hemimethylated products accumulate in dam- cell. So a hemimethylated origin cannot be used to initiate a replication cycle. - An origin of nonmethylated DNA can function effectively both in wt and dam- strains.

The SeqA mutants reduce the delay in remethylationat both oriC and dnaA, thereby accumulating an excessive number of origins. This suggests that SeqA is part of a negative regulatory circuit that prevents origins from being remethylated. SeqA binds to hemimethylated DNA more strongly than to fully methylated DNA.

Page 23: The DNA synthesis

DNA fully methylated.

DNA replication converts GATC sites to hemimethylated state.

Hemimethylated GATC sites are bound by SeqA.

SeqA prevents full methylation of these sites and binding of oriC by DnaA.

SeqA dissociates from GATC sites.

When GATC sites become fully methylated DnaA can bind and direct a new round of replication.

Page 24: The DNA synthesis

Termination of DNA replication in E. coli

The termination sequences function in only one orientation. This arrangement creates a "replication fork trap;" if for some reason one fork is delayed, so that the forks fail to meet at the usual central position, the more rapid fork will be trapped at the ter region to wait for the arrival of the slow fork.

Termination requires the product of the tus gene, which codes for a protein (36 kDa) that recognizes the consensus sequence and prevents the replication fork from proceeding.

Tus binds to the consensus sequence, where it provides a contra-helicase activity and stops DnaB from unwinding DNA. A difficulty in understanding the function of the system in vivo is that it appears to be dispensable, since mutations in the ter sites or in tus are not lethal.