the deaths of stars

51
The Deaths of Stars

Upload: walker

Post on 14-Jan-2016

46 views

Category:

Documents


0 download

DESCRIPTION

The Deaths of Stars. Outline. I. Lower-Main-Sequence Stars A. Red Dwarfs B. Sunlike Stars C. Mass Loss from Sunlike Stars D. Planetary Nebulae E. White Dwarfs II. The Evolution of Binary Stars A. Mass Transfer B. Recycled Stellar Evolution C. Accretion Disks D. Nova Explosions - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: The Deaths of Stars

The Deaths of Stars

Page 2: The Deaths of Stars

I. Lower-Main-Sequence StarsA. Red DwarfsB. Sunlike StarsC. Mass Loss from Sunlike StarsD. Planetary NebulaeE. White Dwarfs

II. The Evolution of Binary StarsA. Mass TransferB. Recycled Stellar EvolutionC. Accretion DisksD. Nova ExplosionsE. The End of Earth

Outline

Page 3: The Deaths of Stars

III. The Deaths of Massive StarsA. Nuclear Fusion in Massive StarsB. The Iron CoreC. The Supernova Deaths of Massive StarsD. Types of SupernovaeE. Observations of SupernovaeF. The Great Supernova of 1987G. Local Supernovae and Life on Earth

Outline (continued)

Page 4: The Deaths of Stars

The End of a Star’s LifeWhen all the nuclear fuel in a star is used up,

gravity will win over pressure and the star will die.

High-mass stars will die first, in a gigantic explosion, called a supernova.

Less massive stars will die

in a less dramatic

event, called a nova

Page 5: The Deaths of Stars

Red Dwarfs

Stars with less than ~ 0.4

solar masses are completely

convective.

Hydrogen and helium remain well mixed throughout the entire star.

No phase of shell “burning” with expansion to giant.

Star not hot enough to ignite He burning.

Mass

Page 6: The Deaths of Stars

Sunlike Stars

Sunlike stars (~ 0.4 – 4 solar masses) develop a helium core.

Expansion to red giant during H burning shell phase

Ignition of He burning in the He core

Formation of a degenerate C,O core

Mass

Page 7: The Deaths of Stars

Mass Loss From StarsStars like our sun are constantly losing mass in a

stellar wind ( solar wind).

The more massive the star, the stronger its stellar wind.

Far-infrared

WR 124

Page 8: The Deaths of Stars

The Final Breaths of Sun-Like Stars: Planetary Nebulae

The Helix Nebula

Remnants of stars with ~ 1 – a few Msun

Radii: R ~ 0.2 - 3 light years

Expanding at ~10 – 20 km/s ( Doppler shifts)

Less than 10,000 years old

Have nothing to do with planets!

Page 9: The Deaths of Stars

The Formation of Planetary Nebulae

The Ring Nebula in Lyra

Two-stage process:

Slow wind from a red giant blows away cool, outer layers of the star

Fast wind from hot, inner layers of the star overtakes the slow wind and excites it

=> Planetary Nebula

Page 10: The Deaths of Stars

The Dumbbell Nebula in Hydrogen and Oxygen Line Emission

Page 11: The Deaths of Stars

Planetary NebulaeOften asymmetric, possibly due to

• Stellar rotation

• Magnetic fields

• Dust disks around the stars

The Butterfly Nebula

Page 12: The Deaths of Stars

The Remnants of Sun-Like Stars: White Dwarfs

Sunlike stars build up a Carbon-

Oxygen (C,O) core, which does not

ignite Carbon fusion.

He-burning shell keeps dumping C

and O onto the core. C,O core collapses

and the matter becomes

degenerate.

Formation of a

White Dwarf

Page 13: The Deaths of Stars

White DwarfsDegenerate stellar remnant (C,O core)

Extremely dense:1 teaspoon of WD material: mass ≈ 16 tons!!!

White Dwarfs:

Mass ~ Msun

Temp. ~ 25,000 K

Luminosity ~ 0.01 Lsun

Chunk of WD material the size of a beach ball would outweigh an ocean liner!

Page 14: The Deaths of Stars

White Dwarfs (2)

Low luminosity; high temperature => White dwarfs are found in the lower left corner of the

Hertzsprung-Russell diagram.

Page 15: The Deaths of Stars

The Chandrasekhar LimitThe more massive a white dwarf, the smaller it is.

Pressure becomes larger, until electron degeneracy pressure can no longer hold up against gravity.

WDs with more than ~ 1.4 solar masses can not exist!

Page 16: The Deaths of Stars

Mass Transfer in Binary StarsIn a binary system, each star controls a finite region of space,

bounded by the Roche Lobes (or Roche surfaces).

Matter can flow over from one star to another through the Inner Lagrange Point L1.

Lagrange points = points of stability, where matter can

remain without being pulled towards one of the stars.

Page 17: The Deaths of Stars

Recycled Stellar EvolutionMass transfer in a binary system can significantly alter the stars’ masses and affect their stellar evolution.

Page 18: The Deaths of Stars

White Dwarfs in Binary Systems

Binary consisting of WD + MS or Red Giant star => WD accretes matter from the companion

Angular momentum conservation => accreted matter forms a disk, called accretion disk.

Matter in the accretion disk heats up to ~ 1 million K => X-ray emission => “X-ray binary”.

T ~ 106 K

X-ray emission

Page 19: The Deaths of Stars

Nova Explosions

Nova Cygni 1975

Hydrogen accreted through the accretion

disk accumulates on the surface of the WD

Very hot, dense layer of non-fusing hydrogen

on the WD surface

Explosive onset of H fusion

Nova explosion

Page 20: The Deaths of Stars

Recurrent Novae

In many cases, the

mass transfer cycle

resumes after a nova

explosion.

Cycle of repeating explosions

every few years –

decades.

T Pyxidis

R Aquarii

Page 21: The Deaths of Stars

The Fate of Our Sun and the End of Earth• Sun will expand to a

Red giant in ~ 5 billion years

• Expands to ~ Earth’s radius

• Earth will then be incinerated!

• Sun may form a planetary nebula (but uncertain)

• Sun’s C,O core will become a white dwarf

Page 22: The Deaths of Stars

The Deaths of Massive Stars: Supernovae

Final stages of fusion in high-mass stars (> 8 Msun), leading to the formation of

an iron core, happen extremely rapidly: Si burning

lasts only for ~ 1 day.

Iron core ultimately collapses, triggering an explosion that destroys

the star:

A Supernova

Page 23: The Deaths of Stars

Observations of Supernovae

Supernovae can easily be seen in distant galaxies.

Page 24: The Deaths of Stars

Type I and II SupernovaeCore collapse of a massive star:

Type II Supernova

If an accreting White Dwarf exceeds the Chandrasekhar mass limit, it collapses,

triggering a Type Ia Supernova.

Type I: No hydrogen lines in the spectrum

Type II: Hydrogen lines in the spectrum

Page 25: The Deaths of Stars

Supernova Remnants

The Cygnus Loop

The Veil Nebula

The Crab Nebula:

Remnant of a supernova

observed in a.d. 1054

Cassiopeia A

Optical

X-rays

Page 26: The Deaths of Stars

Synchrotron Emission and Cosmic-Ray Acceleration

The shocks of supernova remnants

accelerate protons and electrons to extremely

high, relativistic energies.

“Cosmic Rays”

In magnetic fields, these relativistic

electrons emit

Synchrotron Radiation.

Page 27: The Deaths of Stars

The Famous Supernova of 1987: SN 1987A

Before At maximum

Unusual type II Supernova in the Large Magellanic Cloud in Feb. 1987

Page 28: The Deaths of Stars

The Remnant of SN 1987A

Ring due to SN ejecta catching up with pre-SN stellar wind; also observable in X-rays.

Page 29: The Deaths of Stars

Local Supernovae and Life on Earth

Nearby supernovae (< 50 light years) could kill many life forms on Earth through gamma radiation and high-energy particles.

At this time, no star capable of producing a

supernova is < 50 ly away.

Most massive star known (~ 100 solar

masses) is ~ 25,000 ly from Earth.

Page 30: The Deaths of Stars

novasupernovathermal pulseplanetary nebulacompact objectblack dwarfChandrasekhar limitRoche lobeRoche surfaceLagrangian pointaccretion disksupernova (type I)supernova (type II)carbon deflagrationsupernova remnantsynchrotron radiation 

New Terms

Page 31: The Deaths of Stars

Quiz Questions

1. What event marks the end of every star's main sequence life?

a. The end of hydrogen fusion in the core.b. The beginning of the CNO cycle.c. The beginning of the triple-alpha process.d. The formation of a planetary nebula.e. Both a and c above.

Page 32: The Deaths of Stars

Quiz Questions

2. Why can't the lowest-mass stars become giants?

a. They never get hot enough for the triple-alpha process.b. Their gravity is too weak to stop them from expanding beyond the giant phase.c. They live so long that none has ever left the main sequence.d. The rate of hydrogen-shell fusion is too slow to cause the star to expand.e. They are fully connective, and never develop a hydrogen shell fusion zone.

Page 33: The Deaths of Stars

Quiz Questions

3. Why do we suspect that all white dwarfs observed in our galaxy were produced by the death of medium-mass stars?

a. The range of white dwarf masses is narrow.b. High-mass stars do not produce white dwarfs.c. Both a and b above.

Page 34: The Deaths of Stars

Quiz Questions

4. What observational evidence do we have that stars are losing mass?

a. The solar wind.b. Stellar emission lines at ultraviolet and X-ray wavelengths.c. Some absorption lines in the spectra of giant stars are blue shifted.d. Both a and b above.e. All of the above.

Page 35: The Deaths of Stars

Quiz Questions

5. What type of spectrum does the gas in a planetary nebula produce?

a. A continuous spectrum.b. An emission line spectrum.c. An absorption line spectrum.d. An emission line spectrum superimposed on a continuous spectrum.e. All of the above.

Page 36: The Deaths of Stars

Quiz Questions

6. Why are the stars found inside planetary nebulae only at temperatures above 25,000 K?

a. These stars are fusing hydrogen at their surface.b. These stars have at least two active layers of fusion.c. These stars have multiple concentric layers of active fusion.d. We cannot see the interior stars that are below this temperature, as they are too dim.e. Planetary nebulae glow due to the ionization of low-density gas by a hot interior star.

Page 37: The Deaths of Stars

Quiz Questions

7. What happens to white dwarfs as they age?

a. Their surface temperature decreases.b. Their luminosity decreases.c. Their size decreases.d. Both a and b above.e. All of the above.

Page 38: The Deaths of Stars

Quiz Questions

**8. Why have no black dwarfs yet been observed in our galaxy?

a. They can only be detected by their gravitational influence on a binary companion.b. They are too dim for our present-day telescopes to detect.c. Astronomers are not motivated to search for such objects.d. They are all too distant (in theory) to be detected.e. Our galaxy is too young for any to have formed.

Page 39: The Deaths of Stars

Quiz Questions

9. What unusual property do all higher-mass white dwarfs have?

a. They are cooler than lower-mass white dwarfs.b. They are smaller than lower-mass white dwarfs.c. They are less dense than lower-mass white dwarfs.d. They are less luminous than lower-mass white dwarfs.e. All of the above.

Page 40: The Deaths of Stars

Quiz Questions

10. What prevents gravity from shrinking a white dwarf to a smaller size?

a. Helium core fusion.b. Helium shell fusion.c. Hydrogen core fusion.d. Hydrogen shell fusion.e. Degenerate electrons.

Page 41: The Deaths of Stars

Quiz Questions

11. Which stars have high rates of mass loss due to intense stellar winds?

a. High-mass stars.b. Newly forming stars.c. Stars approaching death.d. Both a and b above.e. All of the above.

Page 42: The Deaths of Stars

Quiz Questions

12. What happens to a star when it becomes a giant if it has a close binary companion?

a. Radiation from the giant's surface can ionize the companion's gases.b. Radiation from the companion's surface can vaporize the giant.c. Matter can be transferred from the companion to the giantd. Matter can be transferred from the giant to the companion.e. The giant can explode as a nova or supernova.

Page 43: The Deaths of Stars

Quiz Questions

13. What can happen to the white dwarf in a close binary system when it accretes matter from the companion giant star?

a. The white dwarf can become a main sequence star once again.b. The white dwarf can ignite the new matter and flare up as a nova.c. The white dwarf can accrete too much matter and detonate as a supernova type Ia.d. Both a and b above.e. Both b and c above.

Page 44: The Deaths of Stars

Quiz Questions

**14. What might be evidence that some close binary pairs have merged to become a single giant star? Remember conservation principles!

a. Two sets of spectral lines, one from each star, have been observed for some giants.b. Alternating radial motion of a giant is revealed by an alternating Doppler shift.c. Some giants are between luminosity classes.d. Some giants are pulsating variable stars.e. Some giant stars have rapid rotation.

Page 45: The Deaths of Stars

Quiz Questions

15. Which type of star eventually develops several concentric zones of active shell fusion?

a. Low-mass stars.b. Medium-mass stars.c. High-mass stars.d. White dwarfs.e. Neutron stars.

Page 46: The Deaths of Stars

Quiz Questions

16. Which of the following trends accurately represents the characteristics of the several different fusion zones inside a late-stage high-mass star going from the outer to inner-most zone?

b. Mass of individual nuclei increases.c. Fusion lifetime decreases.a. Temperature decreases.d. Both a and b above.e. All of the above.

Page 47: The Deaths of Stars

Quiz Questions

17. Why can't massive stars generate energy from iron fusion?

a. The temperature at their centers never gets high enough.b. The density at their centers is too low.c. Iron fusion consumes energy.d. Not enough iron is present.e. Both a and b above.

Page 48: The Deaths of Stars

Quiz Questions

18. Which of the following statements accurately describe some observed properties of type Ia and type II supernovae?

a. Type Ia supernovae have hydrogen lines in their spectra.b. Type II supernovae have hydrogen lines in their spectra.c. Type Ia supernovae are more luminous.d. Both a and c above.e. Both b and c above.

Page 49: The Deaths of Stars

Quiz Questions

19. Which type of supernova leaves NO core remnant?

a. Type Ia supernovae.b. Type Ib supernovae.c. Type II supernovae.d. Both a and b above.e. All of the above.

Page 50: The Deaths of Stars

Quiz Questions

20. Why do old supernova remnants emit X-rays?

a. Electrons accelerated by magnetic fields produce radiation.b. The expanding hot gas collides with the interstellar medium.c. Short-lived unstable isotopes of nickel and cobalt emit X-rays.d. The remnant gas is excited by the neutrino burst.e. Radiation from the central black hole excites the gas.

Page 51: The Deaths of Stars

Answers

1. a2. e3. b4. e5. b6. e7. d8. e9. b10. e

11. e12. d13. e14. e15. c16. d17. c18. b19. a20. b