the datasheetarchive - datasheet search engine · maximum current and temperature ratings ~. 100...

8
~~~~v]]j~]jj:,~-)J~~ $;~~: , #J>{j#:,L LE,J,b jtib~w,.. :-w r .7 <,;.?- I 1.1-T~: m Ffls’.r R ::G(3’\!ER~f !~’Q’?J[E [:! F]:2CT; F[ : Fs .. designed for special applications such as dc power supplies, inverters, converters, ultrasonic systems, choppers, low RF interfer- ence and free wheeling diodes. A complete line of fast recovery rectifiers having typical recovery time of ‘100 nanoseconds providing high efficiency at frequencies to 250 kHz. Designer’s Data for “Worst Case” Conditions The DesignersA Data sheets Derrnit the desiqn of most circuits entirelv from the in- . ~- -+ formation p;esented. Limit curves representing boundaries on device characteris- tics – are given to fac[l(tate worst case” design. .,..‘ I Rating I Symbol I MR8Z0 I MR821 i MR822 \ MR824 I ~,R,~Z&’ —— T --—— , Peak Repetitive Reverse Voltage l—~ v~R~fl I\j-.– 100 ~ 200 L .’~~ Working Peak Reverse Voltage I VRWM 50 i DC Blocking Voltage 400 .~, j4~@ _J:—v5._ ! Non-Repetitive Peak Reverse —&--l–=fi~’650 ~ VRSKI i 75 I Operating and Storage Junction ~ TJTstg j ~ ~~ .-65 10+175 _ ., . . Temperature Ranqe (2) , \.&tA ik.,s$ Unit —— volts ——— volts volts Amp —— Amp —— Oc —— .:,f\: I / VI R820 I l-i -10.51mAl Charaderistic +Ll –% . Typ ~ Max / ““ii ] _—— _ Reverse Recoverv Time ‘rr i ! [ i n~ (IF = l.OAmp to VR = 30 Vdc, Fig.re251 (IFM = 15 Amp, di/dt = 25 A/vs, Figure 21j) ——— 1 Reverse Recoverv Current r:T- & -?3 j IRM(REC) i (IF = l. OAmpto VR = 30 Vdc, Figure 25: —— (1) MU*7 be derated for re”erse oower dissi,,a?.ion. See Note 3 (2) Derate as shown i“ Figure 1. ATrad emark of Motorola Inc. ——-—-—. I 0234 o&5 T ‘+”--” 0.025 0.246 0055 0035 I I —r i * 0.1]5 0175 1 0.115 —— 0.135 0990 1010 L CASE 194 l— FAE[;HANI!CAL CHARACTERISTICS CASE: Void Free, Transfer Molded F I IV ISH: External Surfaces are Cor- rosion Resistant F)OL.AR 17rY: Indicated by Diode Symbol \VEIGHT: 2.5 Grams (Approximately) ltiAXIMUM LEAD TEMPERATURE I:OR SOLDERING PURPOSES: 350°C, 3/8” from case for 10 s at 5.0 lb. tension. I __~ @ MOTOROLA INC 1972

Upload: others

Post on 24-Mar-2021

14 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The DatasheetArchive - Datasheet Search Engine · MAXIMUM CURRENT AND TEMPERATURE RATINGS ~. 100 — — — — — — I \ c 3oo~~ 80 4odc~ ~ 1 60 80 100 200 300 400 600 VR, PEAK

~~~~v]]j~]jj:,~-)J~~ $;~~: , #J>{j#:,L LE,J,b jtib~w,.. :-wr .7 <,;.?- I 1.1-T~: m

Ffls’.r R ::G(3’\!ER~f !~’Q’?J[E[:! F] :2CT; F[ : Fs

. . designed for special applications such as dc power supplies,

inverters, converters, ultrasonic systems, choppers, low RF interfer-

ence and free wheeling diodes. A complete line of fast recovery

rectifiers having typical recovery time of ‘100 nanoseconds providing

high efficiency at frequencies to 250 kHz.

Designer’s Data for “Worst Case” Conditions

The DesignersA Data sheets Derrnit the desiqn of most circuits entirelv from the in- .

~- -+

formation p;esented. Limit curves – representing boundaries on device characteris-tics – are given to fac[l(tate worst case” design.

.,..‘

IRating I Symbol

I

MR8Z0 I MR821 i MR822 \ MR824 I ~,R,~Z&’——

T

--——

, Peak Repetitive Reverse Voltage l—~v~R~fl I\j-.–100 ~ 200

L

.’~~Working Peak Reverse Voltage I VRWM 50

i DC Blocking Voltage

400 .~, j4~@

_J:—v5._! Non-Repetitive Peak Reverse

—&--l–=fi~’650~ VRSKI i 75 I

Operating and Storage Junction ~ TJTstg j ~ ~~ .-65 10+175 _., . ..

Temperature Ranqe (2) , \.&tAik.,s$

Unit——

volts

———volts

volts

Amp

——Amp

——Oc

——

.:,f\:I / VI R820 I l-i -10.51mAl

Charaderistic +Ll –% . Typ ~ Max / ““ii ]_—— _

Reverse Recoverv Time ‘rri

! [

i n~

(IF = l.OAmp to VR = 30 Vdc, Fig.re251

(IFM = 15 Amp, di/dt = 25 A/vs, Figure 21j)——— 1

Reverse Recoverv Current

r:T- & -?3

j IRM(REC) i

(IF = l. OAmpto VR = 30 Vdc, Figure 25:——

(1) MU*7 be derated for re”erse oower dissi,,a?.ion. See Note 3

(2) Derate as shown i“ Figure 1.

ATrad emark of Motorola Inc.

——-—-—.

I

0234 o&5

T ‘+”--”

0.025

0.246 0055 0035

I

I—r

i

*0.1]5

0175

1 0.115——0.135

09901010

LCASE 194

l—

FAE[;HANI!CAL CHARACTERISTICS

CASE: Void Free, Transfer Molded

F I IV ISH: External Surfaces are Cor-

rosion Resistant

F)OL.AR 17rY: Indicated by Diode

Symbol

\VEIGHT: 2.5 Grams (Approximately)

ltiAXIMUM LEAD TEMPERATURE

I:OR SOLDERING PURPOSES:

350°C, 3/8” from case for 10 s

at 5.0 lb. tension.

I

__~@ MOTOROLA INC 1972

Page 2: The DatasheetArchive - Datasheet Search Engine · MAXIMUM CURRENT AND TEMPERATURE RATINGS ~. 100 — — — — — — I \ c 3oo~~ 80 4odc~ ~ 1 60 80 100 200 300 400 600 VR, PEAK

MAXIMUM CURRENT AND TEMPERATURE RATINGS

~. 100 — — — — — — I \

c 3oo~~

804odc~ ~

1

60 80 100 200 300 400 600

VR, PEAK REVERSE VOLTAGE (VOLTS)

NOTE 1

MAXIMUM JUNCTION TEMPERATURE DE RATING

When operating this rectifier at junction temperaturesover approximately 85°C, reverse power dissipation’$$

..,, *2and the possibility of thermal runaway must be Q@~~:<i

},*sidered. The data of Figure 1 is based upon worstq~sb,.++reverse power and should be used to derate.$J~>#$”from its maximum value of 175°C. Seel&*@’J?oradditional information on derating for@@ rsRv@bwer

TA, AMBIENT TEMPERATURE (oC)

TA, AMBIENT TEMPERATURE (°C)

z w x I \E.

~

_400 v~

20 40 60 80 100 120 140 160 18[

TA, AMBIENT TEMPERATURE (°C)

Page 3: The DatasheetArchive - Datasheet Search Engine · MAXIMUM CURRENT AND TEMPERATURE RATINGS ~. 100 — — — — — — I \ c 3oo~~ 80 4odc~ ~ 1 60 80 100 200 300 400 600 VR, PEAK

MAXIMUM CURRENT RATINGS

~-NOTE 2

‘--—~Current derating data is bawd uDon the thermal resDonse data of F iQure 29 a!ld the forward Dower dissioa-

~ -_tion data of F~ures 19 and 20. Since reverse powe; dissipation is no; consider(~~ ir~ F igures 6 ‘thr” 11, ad’di -

-___.~tional derating for reverse voltage and for juncrion to ambient thermal resistance rlust be applled. See Note 3.

SINE WtiVE INPUT SLQLIAREWAVE iNPUT-. -..-,,-,-,,,-.:,+,.,~:~ _-.=::,,:.c,-~-- - $ “ = ,-, - :- ;,.,,; ~.-.-:.]:~

-. ,”--- .._ —.-. x

“:’ =’:, ,,::,7 : “~,,;:; ‘ - ~~., . .. . . . . d.-, :

~ 20

; ‘ $ ‘ ‘ $ i

RESISTIVE. INDUCTIVE

~ LOAOS

+ BOTH L2ADS TO HEAT$ 16 . — SINK WITH LEN GTIHSm AS SHO’NN5 L = 1/8,, - –—.

g 12 —

z \a 1/4” — ——0

: 8.0u 318” <a.u 518*L \

z 4.0~ <

<-.

L— o

75 85 95 105 115 125 135 145 -155 165 175

TL, LEAO TISMPERATURE (°C)

20 40 60 80 100 120 143 i 60 I 80

TA, AM81ENT “TEMPERATURE (DC)

TI., LEAD TEMF’ERATURE (DC)

TA, Ah181ENT Tl:MPERATURE (°C)

——

Page 4: The DatasheetArchive - Datasheet Search Engine · MAXIMUM CURRENT AND TEMPERATURE RATINGS ~. 100 — — — — — — I \ c 3oo~~ 80 4odc~ ~ 1 60 80 100 200 300 400 600 VR, PEAK

REVERSE POWER DISSIPATION AND CURRENT

NOTE 3 Ie”rwhe” Vp IS the line tol, ”e.oltage .cro~the rect!flers. For

DE RATING FOR REVERSE POWER DISSIPATION capac,ttveioads, II )s recommended that thedc case on Figure 13

be used, regardless of Input waveform, for brtdge clrc” its. ForInthlsrectifler, power loss due to reverse .urrentisgenerallv not

neg[,gcb le. For reliable circ” It deszgn, the max, m.m j“ncrloncapacitively loaded full wave center-tapped clrcu!~s. the 20.1

temperature must be Ihm!ted to either 175°Cor the temperaturedata of Ftq. re 12 should be used for sane wave ,np”t. and the

capac, t,”e load data of F,gure 13sho”ld be used for square wavewhich results lnthermalc. naway. Proper derat, ng may beaccom- nnp”ts regardless of l(p~)ll (a.). For these two .ases. ~’P IS theplish ed by .seofeq” ation 1 orequat$on 2. “oltage a.ross one leg of the transformer.

Eq”atlon 1 TA ‘T1 - (175 -TJ(ma. )) -PB ROJA EXAMPLE

Where. T1 = Ma., mum Allowable Ambte”t Tempera?”re“eglecti”g re”erse power d,ss, patio” (from F,gures Find Maximum Ambient Temperature for 1A” = 2 A, Cap.c!t,.e

loorll) Load of IPKIIA” = 20, Input Voltage = 120 V (rms) Sine Wave,

TJ(max) = Maximum AllOwable Junction Tempera- R9JA = Z5°C1W, Half Wave Circu>t.

t.re to prevent thermal r“nawav or 175°C, wh,ch Solution 1

ever is lower, (See F19. re 1 ) Step 1. F!nd Vp; Vp = fi Vin = 169 V, VR[pk) = 338 V

PR = Reverse Power D,s.lpatio” (Fcom F!g”re 12 Step 2: Fnd TJ(maxI from F,gure 1. Read TJ(ma.I = 119°C.

or 13, adjusted for TJIm8. ) as show. below) Step 3: Find PR(m..) fcom FiQ”re12. Read PR = 770mW@140°C

ROJA = Thermal Resistance, Junction to Amb, e.t, Step4. F!nd IR normalized from F,g. re 14. Read lR(norm) = 0.4

Step 5 Correct PR to TJ[max) PR = lRI.orm) . PR [Figure 12}

When thermal reslsrance, j.ncr, on to amb(ent, IS o“er 20 °ClW,PR=O.4x770=310mW.

\ ::J

the effect of thermal response IS negligible. Satisfactory deratingStep 6 Find PF from Fgure 19 Read PF = 24 W. ~*:*

may be fo. ”d by “sing Step 7: Compute TA from TA = TJ(max I (PR + PF) ROJA YJ;,,T.,,::J .,,!.

Equat, on 2 TA = TJ[max) - (PR + P=) R@JA TA =119-10.31+2.4)(25) :*,.,..“’” ‘.::4} t’.;’.

TA = 51°C.~+,:~

PF = Forward Power Diss, patio” [see F 19.re, lg & 20)~,,,.,. }..;

SO!utl On 2““/ii::>.,41

Other Terms defined above.<;i-. ,,

1..:Steps 1 thru 5 are as above

,,]i,,,, .,

The reverse power given on Figures 12 and 13 is calculated for,,i ,. ,...i~~.

TJ = 150°C. When TJ is lower, PR <W(II decrease, IIS v.I”e can be

Step 6 Find TA = TI from F19.re 10. Read,T~.,~$1, ~?~.

found by multlplv, ng PR bv the normalized re”erse current fromStep 7 Compute TA from TA = TI (175$3fi4~X~}) PR ROJA

Figure 14 at the temperature of interestTA = 115- (lW~,i:Y’19~-(0,31) (25)~ A = ~ , 0c :., \ 3:& ,t,\’:,

The re”erse powt!r data IS .alc”lated for half wave rect!f, cattont~,;.... ,X-J

,<&,\> :...,:.~~circuits. For full wane rectification .slng either a bridge or a At times, a discrepancy beween ~$~vd WIII occur because

center-tapped transformer, the data for reslst,ve loads IS eq.lva- Ihermal response is factored i;,~.,~ol”th~ 2.,, ,$

*+..**YP.*

I

2000

1000

700

500

300

I I/ “/

‘CAPACITIVE

LOADS //

I la

W+,,*--- ““

.= 100 F/ Y ~ ! ! ! , , , 1 1 ,

v’ / ! [ 1 1

70MAXIMUM ~

1, —— I50 ‘

—— TYPICAL I 1 [ I

o 100 200 300 400 500 600 700

Vp, PEAK APPLIED VOLTAGE (VOLTS)

I

0 20 40 60 80 100 120 140 160 180 200

TJ,JUNCTION TEtlPERATURE (°C) VR, REVERSE VDLTAGE (VDLTS)

Page 5: The DatasheetArchive - Datasheet Search Engine · MAXIMUM CURRENT AND TEMPERATURE RATINGS ~. 100 — — — — — — I \ c 3oo~~ 80 4odc~ ~ 1 60 80 100 200 300 400 600 VR, PEAK

STATIC CHARACTERISTICS

4oo~ [I I –-—1 I ,., -.,----- ,..,., -, ,_ ...””. \,m. fi. .,, .m Ill

0.7

m

:- 1.0

0.5 -1.5 ;

‘bE ‘ ‘ ‘ -‘ - - - i - - - - - :

4,

— -2.0

0.3 i~ -2.50.4 0.6 0.8 1.0 1.2 1.4 1.6 0.3 0.5 1.0 ;.0 3.0 5.0 10 20 30 50 100 200300

0.21 m I I II

0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20

IF(AV), AVERAGE FORWARD CURRENT (AhlP) IF(AV), AVERAGE FCRWARD CURRENT (AMP)

Page 6: The DatasheetArchive - Datasheet Search Engine · MAXIMUM CURRENT AND TEMPERATURE RATINGS ~. 100 — — — — — — I \ c 3oo~~ 80 4odc~ ~ 1 60 80 100 200 300 400 600 VR, PEAK

TYPICAL RECOVERED STORED CHARGE DATA(See Note 4)

1.01 i 1 1 I I 1 t 1 1 1 1 [ 1 1 I1 1

I I I I I [ I I 1 I I I I [ 1

2.0

1.0

0.5

& , ,

1 1 I [ 1 1 1 1 I { [ 1 1 1 1 ,.I I I Ml

I

I I I I I I IllIFM=20A. I M

lfl A

[I I I I I I I I IIIFM= 20A

! ! ! ! I !!!!

0.2

0.1

0.05~= 0.02

0.01 0.02

1.0 2.0 5.0 10 20 50 ““” 50

——

2

~

+

&

———————

70

100

[100

I I I I I I IL

100 I.u 20 5.0 10 20

dl/dt (AM P/Ps)

NOTE 4.,.,...<,..! .,,* +

$:<,~>:i;$~~~*;,:.’

Reverse recover,~ t~e~s the period which elapses from the

time that the cur~n?~t~u a previously forward biased rectifierd i/dt

..,,, ‘..,-.i(t)

diode, pessas thrq<~~ going negatively until the reverse current1~~

recovers to,a’~~~Which is less than 107. peak reverse current.

Rever@;”y}e~S~ry time is a direct function of the forward

currey@~~~{r@ the application of reverse volta9e.

~~{~~~,given rectifier, recovery time is very circuit depend-

e~i~,N~&ical and maximum recovery time of all Motorola fast 1~~(~~~)re~~q power rectifiers are rated under a fixed set of conditions

.’,.>.,usI&g IF = 1.0 A, VR = 30 V. In order to cover all circuit

conditions, curves are given for typical recovered stored charge From stored charge curves versus di/dt, recovery time (trr)

versus mmmutation di/dt for various levels of forward current and peak reverse recovery CUrrent ( I RM ( R EC) ) can be CIOSely

and for junction temperatures of 25°C, 75°C, 100° C, and

15o”c.approximated using the following formulas:

To use these curves, it is necessary to know the forward

[1QR112

current level just before commutation, the circuit commutation ‘rr =1.41X —

di/dt, and the operating junction temperature. The reverse re-dildt

covery test current waveform for a I I Motorola fast recovery

rectifiers is shown.IRM(REC) = 1.41 x [QR x di/dt] “2

Page 7: The DatasheetArchive - Datasheet Search Engine · MAXIMUM CURRENT AND TEMPERATURE RATINGS ~. 100 — — — — — — I \ c 3oo~~ 80 4odc~ ~ 1 60 80 100 200 300 400 600 VR, PEAK

4SLO.BL3

FUSI:

30 V[lcCONSTANT VOI.TAGE

S“PP’’’A--

IF, FORW/Al?D CURRENT (AMP)

@

100 1.0 2.0 !1.0 10 20 50 100

Page 8: The DatasheetArchive - Datasheet Search Engine · MAXIMUM CURRENT AND TEMPERATURE RATINGS ~. 100 — — — — — — I \ c 3oo~~ 80 4odc~ ~ 1 60 80 100 200 300 400 600 VR, PEAK

NOTE 5

To determine maximum junction temperature of the diode

in a given situation, the following procedure is recommended:

The temperature of the lead should be measured using a

thermocouple placed on the lead as close as possible to the tiepoint. The thermal mass connected to the tie point is normally

large enough so that it will not significantly respond to heat

surges generated in the diode as a result of pulsed operation once

steady-state conditions are achieved. Using the measured valueof TL, the junction temperature may be determined by:

TJ=TL+ATJL,,<tl~:

where A TJL is the increase in junction temperature above thelead temperature. It may be determined by:

,:*$.,,,

~:’’”, \’f\a TJL = Ppk . R@JL [D + (1 - D) o r(tl + tp) + r(tp),{~$~~~~~~~!;o

where r(t) = normalized value of transient thermal r$#4~@hq~ at*iJ\::s., ?,..,s~

time t from Figure 29, i.e.: ‘ $,*’!!. *f.,., ‘.,}..a~,,.:~,?,,>s...\r(tl + tp) = b~$ta nce atnormalized value of transient therw,a~,~.

‘.!}$,,,~$~.time t, + tp. ,,.~. ,,

~k ~:~~ii~it$speakfan

pt,q“ME eq’*yale#square POwerpulse.

~1,7~*,+*~,i\l::<r:~...,:.* .$.,:*........ t..+

L, LEAO LENGTH (INCHES)

t, TIME (ins)

i<~~$.U<# of the above model permits junction to lead thermal

,.,~~~<fance for any mounting configuration to be found. Lowest

.’$~$ues occur when one side of the rectifier is brought as close as:..

possible to the heat sink as shown below. Terms in the modelsignify:

T* = Ambient Temperature R@s = Thermal Resistance, Heatsink to Ambient

TL = Lead Temperature R@L = Thermal Resistance, Lead

to Heat Sink

TC = Case Temperature R6J = Thermal Resistance, Junc-tion to Case

TJ = Junction Temperature PD = Power Dissipation = PF +PR

PF = Forward Power Dissipation

PR = Reverse Power Dissipation

(Subscripts A and K refer to anode and cathode sides respectiveiv)Values for thermal resistance components are:

RO L = 40 °C/W/l N. Typically and 44 °CfW/1 N Maximum.ReJ = 2°C/W Typically and 4°C/W Maximum.

Since ROJ is so low, measurements of the case temperature,Tc, will be approximately equal to junction temperature in prac-

tical lead mounted applications. When used as a 60 Hz rectifier,

the slow thermal response holds TJ(pK) close to TJ(AV) ,There-

fore maximum lead temperature may be found as follows:

TL = TJ(max) - ATJL

where

ATJL can be approximated as follows:

ATJL ~ ReJL . PD; PO is the sum of forward and

reverse power dissipation shown in Figures 12 & 19 for

sine wave operation and Figures 13 & 20 for square

wave operation.

The recommended method of mounting to a P.C. board is

shown on the sketch, where ReJA is approximately 25°C/W fora 1-1/2” x 1-1/2” copper surface area. Values of 40°C/W are

tVPical fOr mounting to terminal strips or P.C. boards where avail-able surface area is small.

w — —

ID..

I ~c ,0,,,,,0””,,,,”,~~Recommended wo”nting for half wave circuit

❑ OX 20912 * PHOENIX, ARIZONA 85036 9 A SUBSIDIARY OF MOTOROLA INC.

6??3 PRINTED IN U5A 12-71 IMPERIAL LITHO 826073 12>,4 D8 6073