the contribuons of satellite laser ranging to satellite almetry · 2016. 10. 19. · 1 the...

40
1 The Contribu-ons of Satellite Laser Ranging to Satellite Al-metry Frank G. Lemoine NASA Goddard Space Flight Center October 12, 2016 20 th Interna+onal Workshop on Laser Ranging Potsdam, Germany With contribuBons from N. Zelensky (SGT @ NASA GSFC), A. Couhert (CNES, Toulouse)

Upload: others

Post on 16-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    TheContribu-onsofSatelliteLaserRangingtoSatelliteAl-metry

    FrankG.LemoineNASAGoddardSpaceFlightCenter

    October12,2016

    20thInterna+onalWorkshoponLaserRangingPotsdam,Germany

    WithcontribuBonsfromN.Zelensky(SGT@NASAGSFC),A.Couhert(CNES,Toulouse)

  • 2

    •Introduc+on•ThescienceofSatelliteAl+metry.•Role&Contribu+onofSLR.(1)POD.(2)ITRF.(3)Geocenter.(4)Time-VariableGravity.(5)OrbitValida+on..•Somecurrentchallenges.

  • 3

    POD-Schema-c

    Inordertodeterminetheheightoftheseasurface,wemustknowthesatelliteposi-on(meaningitsorbitalephemerides)toaprecisioncommensuratetoorbeFerthantheaccuracyoftheal-meter

    ThisexampleisforTOPEX,butthesameprincipleappliesforallal-metersatellites.

  • 4

    Example Ground Track Coverage for TOPEX (& Jason-1, Jason-2, Jason-3)

    ImagefromAVISO(Toulouse,France) Al-tude1336km.Inclin.=66.039°;Groundtrackrepeat:9.9156days.Cross-tracksepara-on(equator):315km

    TOPEX/Poseidon 1992-2006

    Jason-3 2016 –

  • 5

    Example: Ground Track Coverage for TOPEX vs. ERS/Envisat

    Al-tude~785km.Inclin.98.543°;(sun-synchronous)Groundtrackrepeat:35days.Cross-tracksepara-on(equator):80km

    TOPEX/Jason-1,2,3 ERS&Envisat&SARAL

  • 6

    •Introduc+on•ThescienceofSatelliteAl+metry.•Role&Contribu+onofSLR.(1)POD.(2)ITRF.(3)Geocenter.(4)Time-VariableGravity.(5)OrbitValida+on.•Somecurrentchallenges.

  • 7

    ScienceofAl-metry-IMeanSeaSurface

    Meandisplacementoftheseasurfacefromareferenceellipsoid;FollowsthegeoidoftheEarthandincludesthedynamicoceantopography.MSSareconstructedfrommanyyearsofsatelliteal-metryanddatafromdifferentsatellites:E.g.TOPEX/Poseidon,Jason,ERS-2,ENVISAT

    DNSC08MSS&DTU10(DTUSpace)(Andersen&Knudsen,JGR,2009,doi:10.1029/2008JC005179)

  • 8

    ScienceofAl-metry-IIDynamicOceanTopography

    Withindependentinforma-ononthegravityfieldoftheEarth(e.g.GOCE)itispossibletoseparateouttheDOTcontribu-ontoaMeanSeaSurfaceandimagethemeanshapeoftheoceanscausedbytheoceancurrents...andalsocomputethemeangeostropicveloci-es.(a)  GOCEDOTfilteredwitha140kmGaussianfilter(b)  SurfacegeostrophiccurrentspeedscomputedfromthefilteredGOCEDOT.(Knudsen,P.,etal.,“Aglobalmeandynamictopographyandoceancircula-ones-ma-onusingapreliminaryGOCEgravitymodel”,J.Geodesy,2011)

  • 9

    (GeodynamicsandEarthOceanSatellite:GEOS-3)Launched:Apr.9,1975OperatedthroughJuly1979.

    B.Douglasetal.,JGR,1983,hFp://dx.doi.org/10.1029/JC088iC14p09595

    ScienceofAl-metry-IIIGulfStreamMeanVeloci+es:Al+metry+gravityfromGOCE

    Sanchez-Reales,etal.,2012,MarineGeodesy.

  • 10

    ThepreciseorbitsforTOPEX/Poseidon,Jason-1,Jason-2,allcomputedinaconsistentreferenceframe(ITRF2008,andinfutureITRF2014)areusedtocomputetheglobalchangeinmeansealevelfromsatelliteoceanradaral-meterdata.

    hcp://podaac.jpl.nasa.gov/Integrated_Mul+-Mission_Ocean_Al+meterData

    ScienceofAl-metry-IV

  • 11

    ScienceofAl-metry-V

    Regionalmeansealevelvaria+onsfromTOPEX,Jason-1,andJason-2withrespectto1993-2002mean;hcp://podaac.jpl.nasa.gov/Integrated_Mul+-Mission_Ocean_Al+meterData

    MeasurementofRegionalandGlobalMeanSeaLevelChange

    TOPEX/Poseidon 1992-2002 (-2006)

    Jason-1, 2001-2009 (-2013) Jason-2, 2008- Jason-3, 2016-

    1993-2016

  • 12

    ScienceofAl-metry-VIElNino:1997(TOPEX/Poseidon)vs.2015(Jason-2)

    Seeupdatesevery~10daysathcp://sealevel.jpl.nasa.gov/science/elninopdo/latestdata/archive/

  • 13

    ScienceofAl-metry-VIIHurricaneIntensifica+onfromPassageoverWarmCoreEddies

    98˚W

    98˚W

    96˚W

    96˚W

    94˚W

    94˚W

    92˚W

    92˚W

    90˚W

    90˚W

    88˚W

    88˚W

    86˚W

    86˚W

    84˚W

    84˚W

    82˚W

    82˚W

    20˚N 20˚N

    22˚N 22˚N

    24˚N 24˚N

    26˚N 26˚N

    28˚N 28˚N

    30˚N 30˚N

    32˚N 32˚N

    -20

    -10

    -10

    -10

    -10

    -10

    -10

    -10

    -10

    000

    0

    0

    10

    10

    1010

    2020

    30

    3030

    40

    40

    50

    50

    60

    757598104115115115

    115144144

    161173

    167

    161

    150

    08/26

    08/2708/28

    08/29

    CU CCAR Sea Surface Height (cm) 08/27Max winds in miles/hr

    hFp://oceanmo-on.org/html/impact/natural-hazards.htmhFp://www.nasa.gov/centers/jpl/news/ostm-20080701.html

    MappingofGulfofMexicoSeaSurfaceHeightVaria-onsbyDr.RobertR.Leben,UniversityofColorado,Boulder.

    SeaSurfaceHeightvaria-onsshowtheloca-onofwarmwatereddies–whichappearhigherinabsoluteheight.Theirlatentheightcancontributetohurricaneintensifica-on.

  • 14

    Oceanographic&GeophysicalSignalSummary

    Phenomenon Amplitude

    MeanSeaSurface ±~100m Geoid+D.O.T.

    GlobalDynamicOceanTopography

    ±~1.5m Onlyresolvablewithindependentsatellitegravityinforma-on

    SeaLevelChange ~3mm/yr(globalaverage)

    Regionalvaria-ons

    WarmCoreEddies ~50cm e.g.HurricaneKatrina

    ElNino ±~30cm

  • 15

    Oceanographic&GeophysicalSignalSummary

    Phenomenon Amplitude

    MeanSeaSurface ±~100m Geoid+D.O.T.

    GlobalDynamicOceanTopography

    ±~1.5m Onlyresolvablewithindependentsatellitegravityinforma-on

    SeaLevelChange ~3mm/yr(globalaverage)

    Regionalvaria-ons

    WarmCoreEddies ~50cm e.g.HurricaneKatrina

    ElNino/LaNina ±~30cm aperiodic(inter-annual)phenomenon.

    Requirementsfororbitaccuracy:TOPEX/Poseidon•ini-alorbiterrorbudget:~13cm(Tapleyetal.,1994,JGR-Oceans).•Achieved2.5cmby1994(tunedgravitymodel,JGM-2,JGM-3)•PostprocessingITRF2005&ITRF2008;GRACEgravitymodels):1.5-2.0cmorbits.Jason-1->Jason-3•Goalis1cmradialorbiterroraccuracy!!***REQUIRESVERIFICATION****•Wemustalsohaveanorbitthatisstableenoughtoaccuratelymeasureglobalandregionalchangesinmeansealevel

  • 16

    OrbitStabilityrequirement(global&regionalmeansealevel)

    AblainM.etal.,“Improvedsealevelrecordoverthesatelliteal-metryera(1993–2010)fromtheClimateChangeIni-a-veproject”OceanSci.,11,67–82,2015

  • 17

    •Introduc+on•ThescienceofSatelliteAl+metry.•Role&Contribu+onofSLR.(1)POD.(2)ITRF.(3)Geocenter.(4)Time-VariableGravity.(5)OrbitValida+on.(6)(ModelValida+on).•Somecurrentchallenges.

  • 18

    FirstLaserRanging,Oct.31,1964,NASAGSFC

    GEOS-3

    SEASAT, 1978

    ERS-1 ERS-2

    Envisat

    TOPEX,Jason1,2,3

    Representa+veSLRprecisionvs.+me

    AdaptedfromJ.Degnan.“ImpactofSLRTechnologyInnova-onsonModernScience”,18thILRSWorkshop,Fujiyoshida,Japan,Nov.11,2013.hFp://cddis.gsfc.nasa.gov/lw18/docs/presenta-ons/Session0/13-0001-Degnan_2.pdf

  • 19

    Onaverageweobtain20-30passes/dayfromthedifferentsta-onsoftheglobalILRSnetwork.

    Onaverage20-30sta-onshavetrackedTP,J1,J2&J3perday

    SLR–TP,J1,J2,J3trackingsummary

  • 20

    TrackingDataforAl-meterPOD

    SLR

    DORIS

    TOPEX,Jason-1,Jason-2,Jason-3(en-re-mespan:1993-2016)

    TOPEX,Jason-1,Jason-2,Jason-3(NoDORISonTOPEX:2004-2006)

    GPS TOPEX(1993-1994only.Demo.)Jason-1(2001-2006)Jason-2,(July2008-present)Jason-3:(Jan.2016-present)

  • 21

    SLR–TP,J1,J2RMSResiduals

    TOPEXLRA.(Schwartz,AppliedOp-cs,1990)

    LRAforJason-1,Jason-2,Jason-3(courtesyoftheILRS)

    SLRRMSResidualstoNASAGSFCstd1504orbitsforTOPEX/Poseidon,Jason-1,Jason-2.

  • 22

    SLR–J2&J3RMSResiduals

    LRAforJason-1,Jason-2,Jason-3(courtesyoftheILRS)

    SLRRMSResidualstoNASAGSFCstd1504orbitsforJason-2andJason-3duringtandemcalibra+onperiod(February–September2016)(fromN.Zelensky,SGT@NASAGSFC)

  • 23

    SLR–J1&J2OrbitAccuracyAchievedJason-1andJason-2RadialRMSOrbitDifferencesby10-daycycle(2002-2014)

    (DifferencesbyOrbitTypeandbyAnalysisCenters)

    Couhert,A.,etal.,“Towardsthe1mm/ystabilityoftheradialorbiterroratregionalscales”,Adv.SpaceRes.,2015,doi:10.1016/j.asr.2014.06.041.

    NASAGSFCvs.JPLvs.CNESvs.ESOCSLR/DORIS(NASAGSFC)vsGPS-only(JPL)vs.GPS+DORIS+SLR(ESOC)vs.GPS+DORIS+SLR(CNES-GDR-D)

    JASON-1

    JASON-2

  • 24

    SLR–Valida-onofJason-2GPS&DORISorbits

    Thefactthattheseorbitsfromdifferenttrackingsystemsagreeat~1cmradialRMS,isareasonwhywecanhavesuchhighconfidenceinthedetermina+onofMeanSeaLevelchangefromsatelliteal+metry.

    InthesetestswithDORIS&GPSdata,SatelliteLaserRangingMeasurementsofJason-2areindependentanddirectlymeasureorbitaccuracy.

    SLRRMSoffit(Coresta+ons,Alleleva+ons)forCNESGDR-Eorbits(basedonDORIS+GNSS,reduced-dynamicorbits)(fromAlexandreCouhert,CNES)

  • 25

    SLR–Evalua-onofDORIS-onlyorbits(Saral)

    (Zelenskyetal.,2016,“Towardsthe1-cmSARALorbit”,Adv.SpaceRes,doi:10.1016/j.asr.2015.12.011)

    Athigheleva-onsSLRmeasuresdirectlytheradialorbiterror;Sointhisexample,wecansaytheDORIS-onlyorbitsonSARALhaveanorbitalaccuracyof10-15mm.

  • 26

    SLR–Contribu-ontoITRF

    FiguresfromZuheirAltamimi,IGN/France

    Areferenceframerealiza-onconsistsofposi+onsandveloci+esofthereferencepoints.ForITRF2014,post-seismicrelaxa-onisalsomodeledforthefirst-me.

  • 27

    SLR–Contribu-ontoITRF

    FiguresfromZuheirAltamimi,IGN/FranceSeealsoAltamimietal.(2016)

    SLRcontributestotheoriginandscaleoftheterrestrialreferenceframeaswellasposi-on/velocityofkeyreferencepoints(coreSLRsta-ons).

    ILRS/SLRorigincomponentswrt.ITRF2014

    VLBISLR

    SLR/VLBIscaleswrt.ITRF2014

  • 28

    TP,J1,J2,J3.PrimedataforMeasureofchangeinglobalMeanSeaLevel.(Keyclimateindicator).•Mustbedeterminedinastable&consistentreferenceframe•ITRF2008atpresent.(ITRF2014resultsbyOSTSTInLaRochelleNov.2016)•OnlySLR&DORISspanen+re+meseries!!(GPSonTOPEX:1993-1994only;GPSonJason-1:2001-2006;GPSonJason-2:2008-present).

    ITRF&MeanSeaLevel

  • 29

    Regional TOPEX (1993-2002) Sea Surface Height Trend differences from direct impact of the ITRF2005 (GGM02C) minus CSR95 (JGM3) orbit differences. (from Beckley et al., Geophys. Res. Lett., 2007). Errors in the Z component of the TRF can produce large regional errors in MSL rate determination.

    MeanSeaLevel:ImpactofTRFerror

  • 30

    SLR–Geocenter&Al-metryPOD(I)

    InthesolidEarthcenterofmassframe,geocentermo-onoftheTotalEarth’smassreferencedtoCF:

    rc(t) = rcm(t)–rcf(t)

    rcm(t): displacementofthecenterofmass(CM)largelyduetoredistribu+onofcon+nentalwater,atmosphericandoceanicmassattheEarth’ssurface.

    rcf(t): displacementofthecenteroffigure(CF)dueinlargeparttoelas+cdeforma+onoftheEarth’ssurfacecausedbyloading. Note.TheSLRcenterofnetwork(CN)becomesthe

    centeroffigure(CF)originintheSLRgeocenteres+mate.

    L1/L2GeocenterSolu+onfromRies(2013)

  • 31

    SLR–Geocenter&Al-metryPOD(II)

    CSRCMmodellargelyremovesannualZdifferencesignaturebetweenSLR/DORIS&JPL13a/GPSReduced-dynamicorbits

  • 32

    SLR–Time-VariableGravity(1)

    •SLRcontributestodetermina-onofthe-me-variablegravityvaria-onsoftheEarth.•Pre-GRACE–itistheprimarysourceofinforma-onforlowdegreeterms.•IneraofGRACE---determina-onofzonalterms(C20,C40)–towhichGRACEdataarerela-velyinsensi-veorstronglyaliasedwithS2-likesignal.

  • 33

    SLR–Time-VariableGravity(1)

    1990 1995 2000 2005 2010 2015−2

    −1

    0

    1

    2 x 10−10 c22

    9c5CSR SLR

    NASAGSFCSLR+DORIS-derivedTVG+meseriesvs.CSR/SLR/RL05series.

    C22

    4x4&5x5-meseriesdeveloped@NASAGSFCforal-metrysatellitePOD,andforDORISreprocessingassociatedwithITRF2014.

    IMPROVEMENTSEENBYSLR(TP,J1,J2)

    (Lemoineetal.,2014,OSTST)

  • 34

    SARAL, 2013-

    CRYOSAT-2, 2010- Jason-2, 2008- Jason-3, 2016-

    ISRO (India)

    Haiyang (HY)-2A, 2011

    (CNSA) Sentinel-3A

    2016

    CurrentOcean-radarmappingal+metersatellites(Oct.2016)

    SLR+DORIS+GNSSSLR+DORIS

    SLR+DORIS

    (SLR)+DORIS+GNSS

    SLR+DORIS+...(GNSS*)

    Thesesatellitesforma“virtual”constella+onthatmonitorstheoceansurfacetopography.GoldenAgeofSatelliteAl+metry!!

  • 35Space Geodesy Applications, June 7, 2012

    Summary:Whydoweneedmul+pletrackingsystems?

    15Space Geodesy Applications, June 7, 2012

    Whydoweneedmul-pletrackingsystems?

    We need multiple tracking systems (a) to ensure and establish orbit accuracy; This is especially important for the demanding application of measurement of the change in global mean sea level & to demonstrate orbit accuracy. (b) to ensure redundancy; in the event one tracking system has “problems”, or even fails. (I) GFO. Failure of GPS. SLR + altimeter crossovers only reliable tracking system. (II) Jason-1. DORIS Oscillator not hardened before launch – perturbed by passage through S. Atlantic anomaly, Apply a “correction” model.

  • 36

    SLR–ModelImprovement&Valida-onforAl-meterSatellites(Examples)

    1.  ImprovementsinTime-variablegravitymodeling,andintheITRF.

    CouhertAetal.(2015)“Towardsthe1mm/ystabilityoftheradialorbiterroratregionalscales”,Adv.SpaceRes.,doi:10.1016/j.asr.2014.06.041.2.ImprovementinNon-conserva+veforcemodelling.Zelenskyetal.,(2010).“DORIS/SLRPODmodelingimprovementsforJason-1andJason-2”,Adv.SpaceRes.,doi:10.1016/j.asr.2010.05.0083. TuningofphasemapsforGPS-satellitereceivers:LuthckeS.etal.(2003),MarineGeodesy,“The1-cmOrbit:...”HainesBr.etal.(2004),MarineGeodesy,“OnecmPODforJason-1...”MercierFl.etal.(2009),OSTSTmee+ng,SeaFleWashingtonJune2009.4. MonitoringPerformanceofDORIS/USOonJason-2

    usingT2L2instrument.BelliA.etal.,inpress(2016).“Temperature,radia+onandaginganalysisoftheDORISUltraStableOscillatorbymeansoftheTimeTransferbyLaserLinkexperimentonJason-2”,Adv.SpaceRes.,doi:10.1016/j.asr.2015.11.025.

  • 37

    •Introduc+on•ThescienceofSatelliteAl+metry.•Role&Contribu+onofSLR.(1)POD.(2)ITRF.(3)Geocenter.(4)Time-VariableGravity.(5)OrbitValida+on.(6)ModelValida+on.•Somecurrentchallenges.

  • 38

    SLR–CurrentChallenges:SLRbiases

    Challenge:WeuseSLRdatatovalidatetheperformanceofDORIS-onlyandGPS-onlyorGPS+DORISorbits(e.g.CNESGDR-E).WealsowishtousetheSLRdatatomonitorlong-termdrixsintheorbits.SLRbiasesinterferewithandcomplicatethisdirectorbitaccuracyvalida-on.Thisisconfoundedby(possible)referenceframeissues(GPSvs.SLR)andpossiblevelocityerrorsofsta-ons.

    Couhert,A.,etal.,“Towardsthe1mm/ystabilityoftheradialorbiterroratregionalscales”,Adv.SpaceRes.,2015,doi:10.1016/j.asr.2014.06.041.

    Graz

  • 39

    SLR–CurrentChallenges:TargetSignature

    Jason-1:SLRResidualstoGPSorbitvs.boresightangle

    Cerrietal.,2010,MarineGeodesy(Figure5)

    Zelenskyetal.,2016,Adv.SpaceRes.(Figure3.2)

    SARAL:ArnoldLRAmodelvs.meancorrec-on&datadistribu-onvs

    eleva-on

  • 40

    Summary•TOPEX,Jason-1,Jason-2,Jason-3formaseriesofsatellitesthatprovideessen-alkey“climatedatarecords”tomeasureglobal&regionalsealevelchange.•Thesesatellitesarepartofavirtualconstella-onofal-metersatellitestomonitortheglobaloceantopography.•Alltheal-metersatellitesuseSLRdirectlyforPOD,indirectlyforvalida-on,ortoestablishimprovementinunderlyingmodels.•Challenges:(1) MaintainingstabilityandaccuracyofSLRdata–aswellasminimizingbiases–

    orbitRMSradialaccuracygoalis1cmradialRMS.(2) Targetsignaturesonal+metersatellites.(3) Con+nuingtoImprovingmodelsforGeocenter,Non-conserva+veforce

    modellingandcoherencebetweenthedifferenttechniquesasmanifestedintheorbitscomputedwiththedifferentgeode+cdatatypesforanygivenal+metersatellite.