the anacona terrane: a small early paleozoic peri ...€¦ · the anacona terrane a small early...

18
149 Proterozoic Cambrian Triassic Silurian Cretaceous Neogene Ordovician Jurassic Paleogene Permian Quaternary Carboniferous Devonian Chapter 8 Volume 1 https://doi.org/10.32685/pub.esp.35.2019.08 Citation: Restrepo, J.J., Martens, U. & Giraldo–Ramírez, W.E. 2020. The Anacona Terrane: A small early Paleozoic peri–Gondwanan terrane in the Cauca–Romeral Fault System. In: Gómez, J. & Mateus–Zabala, D. (editors), The Geology of Colombia, Volume 1 Proterozoic – Paleozoic. Servi- cio Geológico Colombiano, Publicaciones Geológicas Especiales 35, p. 149–165. Bogotá. https:// doi.org/10.32685/pub.esp.35.2019.08 Published online 21 May 2020 1 [email protected] Universidad Nacional de Colombia Sede Medellín GEMMA Research Group Medellín, Colombia 2 [email protected] S2SGeo 1315 Alma Ave Ste 134, Walnut Creek, CA 94596, USA 3 [email protected] Alcaldía de Marinilla Calle 30 n.° 30–13 Marinilla, Antioquia, Colombia * Corresponding author The Anacona Terrane: A Small Early Paleozoic Peri–Gondwanan Terrane in the Cauca–Romeral Fault System Jorge Julián RESTREPO 1 * , Uwe MARTENS 2 , and Wilmer E. GIRALDO–RAMÍREZ 3 Abstract The Anacona Terrane is a small terrane south of Medellín that underwent a geologic history dissimilar to that of the adjacent Tahamí Terrane to the east and the Quebradagrande (Ebéjico) Terrane to the west. The metamorphic basement of the Anacona Terrane is relatively old, comprising amphibolites and metasedimentary rocks, with probable late Neoproterozoic depositional ages, and granitic orthogneisses, with Ordovician magmatic ages. The age of the last metamorphic event to affect the Ana- cona Terrane is constrained to the Devonian or earliest Carboniferous, while Triassic metamorphism, which is widespread in the Tahamí Terrane, has not been documented in the Anacona Terrane, indicating that the terranes were amalgamated during or after the Triassic. Correlatives of the terrane are the Acatlán Complex in southern México and the Marañón Complex and coastal islands in Perú; we surmise that the Anacona Terrane may have originated in a southerly position and migrated northwards, similar to the motion of the Caribbean Plate relative to the South American margin. Keywords: Anacona, tectonostratigraphic terranes, Colombian Andes, Proterozoic sedimentation, garnet amphibolites. Resumen El Terreno Anacona es un pequeño terreno localizado al sur de Medellín que presenta una historia geológica diferente a la de los terrenos adyacentes, el Tahamí al este y el Quebradagrande (Ebéjico) al oeste. El basamento metamórfico del Terreno Anacona es relativamente antiguo, comprende anfibolitas y rocas metasedimentarias, con probable edad de depositación neoproterozoica tardía, y ortogneises graníticos con edades magmáticas ordovícicas. La edad del último evento metamórfico que afectó al Terreno Anacona está restringida al Devónico o Carbonífero temprano, mientras que el metamorfismo triásico, presente en el Terreno Tahamí, no ha sido registrado en el Terre- no Anacona. Lo anterior indica que estos terrenos se amalgamaron durante o después del Triásico. El Complejo Acatlán en el sur de México y el Complejo Marañón y las islas costeras en Perú son equivalentes del Terreno Anacona; proponemos que el Terreno Anacona podría haberse originado en una posición al sur y migrado al norte, siguiendo el desplazamiento de la Placa del Caribe con relación al margen suramericano. Palabras clave: Anacona, terrenos tectonoestratigráficos, Andes colombianos, sedimentación proterozoica, anfibolitas granatíferas.

Upload: others

Post on 18-Oct-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Anacona Terrane: A Small Early Paleozoic Peri ...€¦ · The Anacona Terrane A Small Early Paleozoic Peri–Gondwanan Terrane in the Cauca–Romeral ault System Carboniferous

149 Pro

tero

zoic

Cam

bria

nTr

iass

icS

iluria

nC

reta

ceou

sN

eoge

neO

rdov

icia

nJu

rass

icP

aleo

gene

Per

mia

nQ

uate

rnar

yC

arbo

nife

rous

Dev

onia

n

Chapter 8Volume 1

https://doi.org/10.32685/pub.esp.35.2019.08

Citation: Restrepo, J.J., Martens, U. & Giraldo–Ramírez, W.E. 2020. The Anacona Terrane: A small early Paleozoic peri–Gondwanan terrane in the Cauca–Romeral Fault System. In: Gómez, J. & Mateus–Zabala, D. (editors), The Geology of Colombia, Volume 1 Proterozoic – Paleozoic. Servi-cio Geológico Colombiano, Publicaciones Geológicas Especiales 35, p. 149–165. Bogotá. https://doi.org/10.32685/pub.esp.35.2019.08

Published online 21 May 2020

1 [email protected] Universidad Nacional de Colombia Sede Medellín GEMMA Research Group Medellín, Colombia

2 [email protected] S2SGeo 1315 Alma Ave Ste 134, Walnut Creek, CA 94596, USA

3 [email protected] Alcaldía de Marinilla Calle 30 n.° 30–13 Marinilla, Antioquia, Colombia

* Corresponding author

The Anacona Terrane: A Small Early Paleozoic Peri–Gondwanan Terrane in the Cauca–Romeral Fault System

Jorge Julián RESTREPO1* , Uwe MARTENS2 , and Wilmer E. GIRALDO–RAMÍREZ3

Abstract The Anacona Terrane is a small terrane south of Medellín that underwent a geologic history dissimilar to that of the adjacent Tahamí Terrane to the east and the Quebradagrande (Ebéjico) Terrane to the west. The metamorphic basement of the Anacona Terrane is relatively old, comprising amphibolites and metasedimentary rocks, with probable late Neoproterozoic depositional ages, and granitic orthogneisses, with Ordovician magmatic ages. The age of the last metamorphic event to affect the Ana-cona Terrane is constrained to the Devonian or earliest Carboniferous, while Triassic metamorphism, which is widespread in the Tahamí Terrane, has not been documented in the Anacona Terrane, indicating that the terranes were amalgamated during or after the Triassic. Correlatives of the terrane are the Acatlán Complex in southern México and the Marañón Complex and coastal islands in Perú; we surmise that the Anacona Terrane may have originated in a southerly position and migrated northwards, similar to the motion of the Caribbean Plate relative to the South American margin.Keywords: Anacona, tectonostratigraphic terranes, Colombian Andes, Proterozoic sedimentation, garnet amphibolites.

Resumen El Terreno Anacona es un pequeño terreno localizado al sur de Medellín que presenta una historia geológica diferente a la de los terrenos adyacentes, el Tahamí al este y el Quebradagrande (Ebéjico) al oeste. El basamento metamórfico del Terreno Anacona es relativamente antiguo, comprende anfibolitas y rocas metasedimentarias, con probable edad de depositación neoproterozoica tardía, y ortogneises graníticos con edades magmáticas ordovícicas. La edad del último evento metamórfico que afectó al Terreno Anacona está restringida al Devónico o Carbonífero temprano, mientras que el metamorfismo triásico, presente en el Terreno Tahamí, no ha sido registrado en el Terre-no Anacona. Lo anterior indica que estos terrenos se amalgamaron durante o después del Triásico. El Complejo Acatlán en el sur de México y el Complejo Marañón y las islas costeras en Perú son equivalentes del Terreno Anacona; proponemos que el Terreno Anacona podría haberse originado en una posición al sur y migrado al norte, siguiendo el desplazamiento de la Placa del Caribe con relación al margen suramericano.Palabras clave: Anacona, terrenos tectonoestratigráficos, Andes colombianos, sedimentación proterozoica, anfibolitas granatíferas.

Page 2: The Anacona Terrane: A Small Early Paleozoic Peri ...€¦ · The Anacona Terrane A Small Early Paleozoic Peri–Gondwanan Terrane in the Cauca–Romeral ault System Carboniferous

150

RESTREPO et al.

1. Introduction

The basement of the Central Cordillera of Colombia com-prises low– to high–grade metamorphic rocks of diverse age locally intruded by Triassic, Cretaceous, and Paleogene plu-tons. Initial studies regarded the metamorphic basement as a single unit, the Ayurá–Montebello Group (Botero, 1963), but it soon became apparent that several metamorphic events had affected this group of rocks. This led to the proposal that the metamorphic basement of the Central Cordillera was a poly-metamorphic unit (Restrepo & Toussaint, 1984) and that this metamorphic basement formed the “backbone” of the Tahamí Terrane (Toussaint & Restrepo, 1989; see also Restrepo & Toussaint, 2020).

Mapping conducted in the 1970s and 1980s revealed in detail the nature of the metamorphic basement exposed around the county of Caldas, ca. 20 km south of Medellín (Echeve- rría, 1973; Sepúlveda & Saldarriaga, 1980; Patiño & Noreña, 1984; Maya & Escobar, 1985). Unlike the majority of the met-amorphic basement in the Central Cordillera, which is char-acterized by low–P assemblages (e.g., Echeverría, 1973), the rocks near Caldas include garnet–bearing amphibolites and kyanite–bearing metapelites indicative of medium–pressure metamorphism (Restrepo & Toussaint, 1977). Furthermore, geochronologic work consistently yielded older ages than the Permian – Triassic metamorphic events detected in the rest of the Tahamí Terrane (Restrepo & Toussaint, 1978; Restrepo et al., 1991). The first Precambrian K–Ar hornblende age of 1650 ± 500 Ma (Restrepo & Toussaint, 1978) was discarded after the same sample was dated again by the same meth-od, yielding ages between 254 ± 9 Ma and 319 ± 48 Ma; in contrast, a K–Ar muscovite age from the granitic orthogneiss yielded an age 343 ± 12 Ma, older than all the other mica ages from gneisses in the Central Cordillera (Restrepo et al., 1991). Recently, more robust U–Pb and 40Ar–39Ar geochronology has confirmed that the metamorphic basement in the Caldas area underwent a different geological evolution compared with the rest of the metamorphic basement of the Tahamí Terrane. It was therefore separated as an independent unit termed the Anacona Terrane (Figure 1; Martens et al., 2014; Restrepo et al., 2009).

Despite its relatively small size, approximately 45 km2, the Anacona Terrane satisfies the definition of tectonostratigraphic terrane (Coney et al., 1980; Jones et al., 1983); it is a fault–bounded geologic entity or fragment that is characterized by a distinctive geologic history that differs markedly from that of adjacent terranes. Detailed mapping has shown that the Anacona–Tahamí Terrane boundary is a regional north–south trending ductile fault zone, the Santa Isabel Fault (Figure 2; Giraldo–Ramírez, 2013), which is characterized by mylonites and tectonic breccias.

2. Lithology of Units

The two main rock units of the Anacona Terrane are the Cal-das Amphibolite and La Miel Orthogneiss (Figure 3a, 3b). The amphibolite is a polyphase metamorphic rock composed main-ly of blue–green hornblende + almandine–rich garnet + pla-gioclase. Unlike the nearby amphibolites of the Tahamí Terrane, the amphibolites in the Anacona Terrane are rich in garnet, up to 30% by volume (Figure 3a). The garnet porphyroblasts are characterized by coronas of hornblende + plagioclase + quartz. Peak amphibolite facies pressure and temperature (PT) condi-tions were estimated at 1.35 GPa, 630 °C (Bustamante, 2003). These PT conditions are consistent with those established for the mineral assemblages in the metasedimentary schists that are locally interbedded with the amphibolite. These assemblages contain kyanite, garnet, and staurolite, indicating medium–pres-sure, lower–amphibolite facies conditions. The schists are also polyphase, showing evidence for at least three metamorphic phases (Restrepo, 1986).

Some features are suggestive of the Caldas garnet am- phibolite being a retrogressed eclogite: the high garnet con-tent is more typical of eclogite than amphibolite; symplectites of hornblende and plagioclase are common; corona textures of garnet producing amphibole + plagioclase are suggestive of retrogression by decompression (Figure 4). However, de-spite detailed thin section petrography, it has not been possible to identify relict sodic clinopyroxene (omphacite) in this unit (Martens et al., 2014).

Geochemical analyses of the Caldas Amphibolite (Giraldo–Ramírez, 2013) show a predominance of basaltic protoliths. The rare earth element (REE) patterns (Figure 5) are slight-ly enriched in light REE, with Ta and Nb anomalies suggest-ing the presence of subduction–related fluids in the melted source. The REE patterns are transitional between continental arc and E–MORB or continental tholeiite. The trace element geochemistry is inconsistent with the generation of the am- phibolite protolith in a typical mid–ocean ridge; instead, it has been proposed that the basaltic protoliths formed in a continen-tal arc (Giraldo–Ramírez, 2013). These features contrast with the geochemical character of Tahamí Terrane amphibolites, which are predominantly MORB tholeiites (Correa–Martínez et al., 2005; Vinasco et al., 2006; Restrepo, 2008; Giraldo, 2010). Sm–Nd isotopic analyses of Caldas Amphibolite are presented in Table 1, showing positive εNd ranging from 2.6 and 5.8 and model ages between 0.89 and 1.19 Ga.

The second major geologic unit in the Anacona Terrane is the granitic, S–type La Miel Orthogneiss, which is composed of quartz + plagioclase + K–feldspar + muscovite + biotite ± garnet. The K–feldspar is mainly orthoclase that has been in-verted to microcline. The foliation of the rock is defined by the muscovite and biotite, and locally, a primary mineral tabular

Page 3: The Anacona Terrane: A Small Early Paleozoic Peri ...€¦ · The Anacona Terrane A Small Early Paleozoic Peri–Gondwanan Terrane in the Cauca–Romeral ault System Carboniferous

151

The Anacona Terrane: A Small Early Paleozoic Peri–Gondwanan Terrane in the Cauca–Romeral Fault System

Car

boni

fero

usD

evon

ian

Amazonian Craton

Ch

Y

An

Ta

Ca

CRUT

Ca

Tu

Cu

Tai

Tai

K

Ne

PacicOcean

Ecuador

Panamá

Caribbean Sea

Perú

Brasil

Venezuela

75°

W

70°

W

10° N

5° N

Cali

Bogotá

Medellín

Barranquilla

Yalcón Terrane (Y)

Tahamí Terrane (Ta)

Kogi Terrane (K)

Calima Terrane (Ca)

Tumaco Terrane (Tu)

Tairona Terrane (Tai)

Cuna Terrane (Cu)

Cauca–RomeralUndifferentiatedTerranes (CRUT)

Legend

Chibcha Terrane (Ch)

Andaquí Terrane (An)

Amazonian Craton

Town

Nechí SuspectTerrane (Ne)

Anacona Terrane

0 100 200 300 km50Subduction zone

Medellín

Figure 1. Tectonostratigraphic terranes of Colombia (after Restrepo & Toussaint, 2020).

Page 4: The Anacona Terrane: A Small Early Paleozoic Peri ...€¦ · The Anacona Terrane A Small Early Paleozoic Peri–Gondwanan Terrane in the Cauca–Romeral ault System Carboniferous

152

RESTREPO et al.

reviR níllede

M

kL ea e rCl Cara

reeC l keiM aL

La Romera Cre ek

San Jerónim

o Fault

Tablacita Fault

Caldas

5°58' N

6° 00' N

6° 02' N

6° 04' N

6° 06' N

6° 08' N

75°

38' W

75°

36' W

20 1 3 4 km0.5

Legend

Muscovite–Plagioclase–Quartz Schist

La Miel Orthogneiss

Caldas Amphibolite

Anacona Terrane

Tahamí Terrane

Alluvial and colluvial deposits

Ebéjico Terrane

Cretaceous? Tonalite

Probable Fault

Fault

River

Town

Medellín

Colombia

Venezuela

Ecuador

Perú

Brasil

Panamá

Cali

Bogotá

Medellín

Barranquilla

PacicOcean

Caribbean Sea

Figure 2. Geologic map of the Anacona Terrane, modified from Giraldo–Ramírez (2013).

Page 5: The Anacona Terrane: A Small Early Paleozoic Peri ...€¦ · The Anacona Terrane A Small Early Paleozoic Peri–Gondwanan Terrane in the Cauca–Romeral ault System Carboniferous

153

The Anacona Terrane: A Small Early Paleozoic Peri–Gondwanan Terrane in the Cauca–Romeral Fault System

Car

boni

fero

usD

evon

ian

0 1 mm0 1 mm

a

b

Sympl

GrtHbl + Pl + Op

0 2 mm

Figure 3. (a) Photographs of a polished slab of the Caldas Amphi-bolite (b) and La Miel Granitic Orthogneiss.

Figure 4. (a) Garnet replaced by a symplectite of plagioclase and hornblende; photomicrograph in plane light (Grt) garnet, (Sym-pl) symplectite, (Hbl) hornblende, (Pl) plagioclase, (Op) Opaque mineral. (b) Garnet with rotational structure and rims replaced by plagioclase and hornblende; photomicrograph in crossed–polar-ized light (from Restrepo, 1986).

orientation of feldspar is preserved (Figure 3b). Field relations clearly show that La Miel granitic protolith intruded the amphi-bolites and the associated metamorphic units.

U–Pb zircon geochronology of La Miel Orthogneiss has yielded Ordovician crystallization ages of approximately 445 Ma and 480 Ma in two different samples (Martens et al., 2014), implying an even older protolith age for the Caldas Amphibo-lite and their associated metasedimentites. 40Ar–39Ar white mica ages of the orthogneiss yielded an age of ca. 345 Ma (Vinasco et al., 2006), which is the best available age constraint for the timing of metamorphism in the Anacona Terrane. This age is consistent with the maximum age of ca. 360 Ma obtained from a U–shaped 40Ar–39Ar hornblende spectrum, which may reflect the incorporation of excess argon (Restrepo et al., 2008). Im-portantly, none of the 40Ar–39Ar step–heating experiments have revealed any Triassic component, indicating that the Anacona Terrane basement has not experienced the ubiquitous Triassic

1 cm

a

b

metamorphism characteristic of the Tahamí Terrane. It therefore seems unlikely that the Anacona Terrane was adjacent to the Tahamí Terrane during high–grade Triassic metamorphism or that it forms the basement to the Tahamí Terrane (Cajamarca Complex), as proposed by Villagómez et al. (2011).

Although less abundant, quartz + muscovite + garnet–bear-ing quartzites and mica schists are also present in the Anacona Terrane. They occur as metapelitic layers interbedded with the

Page 6: The Anacona Terrane: A Small Early Paleozoic Peri ...€¦ · The Anacona Terrane A Small Early Paleozoic Peri–Gondwanan Terrane in the Cauca–Romeral ault System Carboniferous

154

RESTREPO et al.

Sample (143Nd/144Nd) 0 (147Sm/144Nd) 0 (143Nd/144Nd) εNd (700 Ma) T dm (Ga)

MIG 1 0.513 0.152 0.512 2.612 1.192

MIG 2 0.513 0.172 0.512 5.799 0.891

WG 0.513 0.158 0.512 3.428 1.135

Source: Samples MIG 1 and 2 from Giraldo (2010); sample WG from Giraldo–Ramírez (2013). Note: Assumed values: (143Nd/144Nd)CHUR = 0.512638, (147Sm/144Nd)CHUR = 0.1967 (De Paolo, 1981). Present–day composition of the DM: 147Sm/144Nd = 0.222 and 143Nd/144Nd = 0.513114 (Michard et al., 1985).

Table 1. εNd and model ages for three samples of Caldas Amphibolite

Figure 5. (a) N–MORB (Hofmann, 1988) normalized analyses of the Caldas Amphibolite. Modified from Giraldo–Ramírez (2013). Samples CMK–50–B, JJ–316, JJ–1339 and JJ–1403 from Giraldo–Ramírez (2013) and COLC 35 and COLC 43 from Giraldo (2010). (b) Chondrite–normal-ized Caldas Amphibolite (Boynton, 1984; blue) in comparison with N–MORB, E–MORB and OIB (Sun & McDonough, 1989). Modified from Giraldo–Ramírez (2013).

100

10

1

Sam

ple

/Chondrite

N–MORB E–MORB OIB

b

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

a100

10

1

0.1

Sam

ple

/MO

RB

CMK–50–B

JJ–1403

COLC 35

JJ–1339

JJ–316

COLC 43

Th Ta Nb Ce P Zr Hf Sm Ti Y Yb

Caldas Amphibolite samples

Page 7: The Anacona Terrane: A Small Early Paleozoic Peri ...€¦ · The Anacona Terrane A Small Early Paleozoic Peri–Gondwanan Terrane in the Cauca–Romeral ault System Carboniferous

155

The Anacona Terrane: A Small Early Paleozoic Peri–Gondwanan Terrane in the Cauca–Romeral Fault System

Car

boni

fero

usD

evon

ian

amphibolites, and both are intruded by La Miel Orthogneiss. The paragenesis of the pelitic schist includes staurolite, kyanite, garnet, and chloritized biotite (Figure 6). This amphi-bolite–pelite association likely reflects a volcano–sedimentary sequence metamorphosed under medium pressure, lower–am-phibolite facies conditions. The microstructures of the pelitic schist more clearly show the polyphase metamorphic character of the unit (Figure 4b), which underwent at least three tectonic phases (Restrepo, 1986).

Porphyritic dikes of an intermediate composition locally in-trude the metamorphic basement of the Anacona Terrane, and range in thickness from 0.5–40 m; a tonalitic pluton also intrudes the metamorphic rocks on the western side. Their ages have yet to be determined. In fact, establishing whether the intrusions are related to magmatism in the Central Cordillera or to magmatic units east of the San Jerónimo Fault would be important in further constraining the geologic evolution of the Anacona Terrane.

3. Terrane Boundaries

To the east, the Santa Isabel Fault separates the Anacona Ter-rane from the Tahamí Terrane, whereas to the west, the San Jerónimo Fault, the easternmost fault of the Romeral Fault Sys-tem, separates the Anacona Terrane from the low–grade volca-nosedimentary rocks of the Quebradagrande Complex (Figure 2). Both faults run predominantly N–S in the region and define a narrow, near rhombic block at least 20 km long and only 4 km wide at its maximum extent. Mapping by González (1980) sug-gests that the Anacona Terrane may extend 60 km southwards. The NW–trending Tablacita Fault cuts the Santa Isabel Fault along the northern terrane boundary.

The San Jerónimo Fault, the easternmost strand of the Romeral Fault System, was initially described as an east–dip-ping reverse fault (Grosse, 1926). At present, most authors

regard the San Jerónimo as a dextral strike–slip fault with a reverse component (e.g., Maya & González, 1995). The San Jerónimo Fault exhibits fault–gouge zones up to 3 meters thick (Patiño & Noreña, 1984) along the extent of the Anacona Ter-rane and a variable trend ranging from N25ºW in the south-ern segment to N–S in the central and northern segments. The age of movement on the San Jerónimo Fault is constrained by the accretion of the Quebradagrande Complex to the Tahamí Terrane, which is estimated to have occurred at 117–107 Ma (Villagómez et al, 2011), 73–65 Ma (Jaramillo et al., 2017) or 70–58 Ma (Zapata & Cardona, 2017). The timing of accretion of the Anacona Terrane to the Tahamí Terrane is post–Triassic in age, probably occurring in the Late Cretaceous – Paleocene as a consequence of the northward displacement of the Ebéjico and Caribbean Terranes. The Santa Isabel Fault was first mapped by Sepúlveda & Saldarriaga (1980) and Patiño & Noreña (1984). The fault is a strike–slip, mainly ductile structure with a N–S trend and a vertical to 80°W dip. It can be traced from the Ver-salles–Montebello road in the south (Patiño & Noreña, 1984) to the north, where it ends against the Tablacita Fault. Locally, the fault is characterized by a brittle–ductile tectonic breccia with rock fragments ranging from 1–15 mm in size and embedded in a dark–gray schistose matrix. The breccia fragments include rocks typical of both the Anacona and Tahamí Terranes; some clasts belong to La Miel Orthogneiss, while others are andalu-site–bearing schist fragments that are likely derived from the Tahamí Terrane (Giraldo–Ramírez, 2013).

The Tablacita Fault was mapped by Maya & Escobar (1985) and was defined as a terrane boundary by Giraldo–Ramírez (2013). It is a ductile fault trending N55ºW. The fault sepa-rates units of the Anacona Terrane to the SW from those of the Tahamí Terrane to the NE. Kinematic indicators show sinistral strike–slip movement and possibly a younger phase of fault movement than that on the Santa Isabel Fault. The Santa Isabel

0 0.5 1 mm

GrtChl

St

Ky

Bt

0 0.5 mm

a b

Bt

Ky

Qtz

Pl

Figure 6. (a) Photomicrograph of pelitic schist interbedded within the Caldas Amphibolite, showing staurolite (St), kyanite (Ky), garnet (Grt), and chloritized (Chl) biotite (Bt). The garnet was partially replaced by biotite. (Mineral abbreviations following Siivola & Schmid, 2007). Taken from Restrepo (1986). (b) Kyanite (Ky) crystal with biotite (Bt), quartz (Qtz) and plagioclase (Pl).

Page 8: The Anacona Terrane: A Small Early Paleozoic Peri ...€¦ · The Anacona Terrane A Small Early Paleozoic Peri–Gondwanan Terrane in the Cauca–Romeral ault System Carboniferous

156

RESTREPO et al.

100 µm

1390

120015301535

1200

1310

525

1540

1660

12801130

1460

1240

914

1095

1230

1625

1210

1170

Figure 7. CL imaging of sample AC–1 zircon grains. The numbers are U–Pb ages in Ma. Arrows point to thin metamorphic rims.

and the Tablacita Faults are predominantly ductile in character. They likely formed at a depth greater than 10 km with minor brittle reactivations; there is no evidence for present–day seis-mic activity (Giraldo–Ramírez, 2013).

4. New Detrital Zircon Geochronology

U–Pb zircon ages were obtained from an Anacona Terrane quartzite collected at the junction between La Romera Creek and La Miel Creek (6° 5’ 54’’ N, 75° 36’ 52’’ W). Zircon grains in the sample are anhedral and rounded, and their sizes range from 50–200 μm along their longest dimension (Figure 7). The cathodoluminescence (CL) textures vary from grain to grain and include homogeneous luminescence, concentric zoning, sector zoning, and irregular zones of low luminescence, among others. The roundness and the variety in size and texture at-test to the variable nature of the detrital zircon population in the sample. Importantly, CL images reveal thin, luminous, ho-mogenous rims in many of the zircon grains (Figure 7). These rims were likely produced by Paleozoic metamorphism in the Anacona Terrane, but they were too thin to be dated by the method used.

U–Pb geochronology was conducted by LA–ICP–MS at the Laboratorio de Estudios Isotópicos, Centro de Geociencias, UNAM, following the methods described in Solari et al. (2010). Isotopic ratios were corrected for common Pb using the method of Andersen (2002). Ninety–eight grains were dated (Table 2), and they yielded Precambrian ages; hence, 207Pb/206Pb ages were

preferred. Eight analyses were disregarded because they yielded uncertainties greater than 5%, discordance greater than 4%, or reverse discordance greater than 2%. Hence, 90 analyses were used to construct the probability density diagram in Figure 8.

The detrital zircon signature of the quartzite sample is char-acterized by a spread in ages from 850 Ma to 1700 Ma. Most of the zircon ages range from 1575–1425 Ma and 1250–1125 Ma. The former population is mostly absent from Laurentian sources (Hoffman, 1989; Martens et al., 2010) but is abundant in Amazonia (Tassinari et al., 2000), a strong indication that the Anacona Terrane is of Gondwanan affinity. The mid–Me-soproterozoic population points to provenance from a Grenville source within Gondwana, such as the Oaxaquia microcontinent (Ortega–Gutiérrez et al., 1995), the Putumayo Orogen (Ibañez–Mejia et al., 2011), or the Arequipa Massif (Wasteneys et al., 1995). A similar feature has been previously observed in the xenocrystic zircon component of La Miel Orthogneiss (Martens et al., 2014, Figure 9).

An important constraint from the geochronology is the time of deposition of the sedimentary protolith of the quartzite. The youngest dated spot yielded an age of 540 ± 75 Ma. However, this age does not necessarily imply a Paleozoic depositional age, because it may correspond to a mixture between a detrital core and a Paleozoic metamorphic rim (see spot in Figure 7). Indeed, the analysis was conducted on an external zone involv-ing part of the detrital core, the metamorphic rim, and epoxy. Furthermore, the Th/U ratio is relatively low, suggestive of a metamorphic isotopic component. It is therefore plausible to in-

Page 9: The Anacona Terrane: A Small Early Paleozoic Peri ...€¦ · The Anacona Terrane A Small Early Paleozoic Peri–Gondwanan Terrane in the Cauca–Romeral ault System Carboniferous

157

The Anacona Terrane: A Small Early Paleozoic Peri–Gondwanan Terrane in the Cauca–Romeral Fault System

Car

boni

fero

usD

evon

ian

Cor

rect

ed r

atio

s2C

orre

cted

Age

s (M

a)C

hond

rite

–nor

mal

ized

REE

con

cent

ratio

ns

U

(ppm

)1Th

(ppm

)1Th

/U20

7 Pb/

206 P

b±2

s abs

207 P

b/23

5 U±2

s abs

206 P

b/23

8 U±2

s abs

208 P

b/23

2 Th

±2s a

bsR

ho20

6 Pb/

238 U

±2s

207 P

b/23

5 U±2

s20

7 Pb/

206 P

b ±2

sLa

Ce

PrN

dSm

EuG

dTb

Dy

Ho

ErY

bLu

Zirc

on_0

0194

538

10.

400.

0751

0.00

181.

715

0.05

10.

1640

0.00

250.

0493

30.

0008

10.

4597

914

1014

1910

8857

1.11

E+01

3.05

E+01

1.16

E+01

2.12

E+01

7.28

E+01

1.56

E+01

2.24

E+02

4.29

E+02

7.16

E+02

1.24

E+03

1.91

E+03

3.59

E+03

4.64

E+03

Zirc

on_0

0224

315

40.

630.

0782

0.00

062.

149

0.03

90.

1980

0.00

220.

0598

00.

0018

00.

5111

6512

1167

1211

5116

1.90

E+00

2.46

E+01

5.17

E+00

1.20

E+01

6.31

E+01

4.21

E+00

2.04

E+02

3.63

E+02

5.98

E+02

9.96

E+02

1.45

E+03

2.52

E+03

3.11

E+03

Zirc

on_0

0377

324

00.

310.

0859

0.00

072.

800

0.03

30.

2325

0.00

230.

0668

00.

0020

00.

2913

4712

1355

.58.

913

3616

6.92

E-01

2.63

E+01

2.30

E+00

3.54

E+00

1.28

E+01

7.99

E+00

5.33

E+01

1.12

E+02

2.04

E+02

3.52

E+02

5.28

E+02

9.66

E+02

1.27

E+03

Zirc

on_0

0411

135

0.31

0.07

950.

0041

2.23

00.

130

0.20

280.

0031

0.06

100

0.00

140

0.41

1190

1711

8841

1180

100

4.98

E-01

1.08

E+01

9.70

E-01

3.48

E+00

1.71

E+01

5.86

E+00

7.49

E+01

1.52

E+02

2.78

E+02

4.91

E+02

7.61

E+02

1.51

E+03

1.90

E+03

Zirc

on_0

0583

470.

570.

0833

0.00

572.

650

0.20

00.

2305

0.00

420.

0687

00.

0013

00.

6313

3722

1312

5712

6014

01.

86E+

008.

56E+

006.

90E+

001.

68E+

017.

30E+

011.

69E+

012.

35E+

023.

78E+

026.

02E+

029.

27E+

021.

27E+

032.

08E+

032.

52E+

03

Zirc

on_0

0643

118

20.

420.

0955

0.00

123.

466

0.05

40.

2650

0.00

310.

0789

00.

0024

00.

7615

1516

1519

1215

3723

1.43

E+02

1.27

E+02

7.87

E+01

7.09

E+01

8.58

E+01

9.06

E+00

2.65

E+02

4.69

E+02

8.20

E+02

1.40

E+03

2.09

E+03

3.74

E+03

4.52

E+03

Zirc

on_0

0715

245

0.29

0.08

730.

0019

2.65

00.

120

0.22

190.

0066

0.06

970

0.00

490

0.84

1291

3513

1333

1364

422.

32E-

019.

23E+

009.

48E-

012.

30E+

001.

51E+

014.

19E+

006.

98E+

011.

38E+

022.

51E+

024.

60E+

027.

29E+

021.

42E+

031.

85E+

03

Zirc

on_0

0824

310

20.

420.

0805

0.00

092.

293

0.05

70.

2051

0.00

220.

0617

00.

0016

00.

5412

0312

1209

1812

0822

1.73

E+01

3.30

E+01

2.35

E+01

4.05

E+01

1.22

E+02

3.14

E+01

4.27

E+02

6.95

E+02

1.13

E+03

1.80

E+03

2.45

E+03

3.80

E+03

4.79

E+03

Zirc

on_0

0913

659

0.44

0.07

600.

0013

1.93

50.

051

0.18

450.

0031

0.05

660

0.00

200

0.61

1091

1710

9218

1099

371.

77E-

018.

19E+

004.

25E+

001.

49E+

017.

16E+

011.

12E+

012.

36E+

023.

96E+

026.

51E+

021.

03E+

031.

46E+

032.

45E+

033.

09E+

03

Zirc

on_0

1017

6660

60.

340.

0780

0.00

062.

074

0.02

80.

1925

0.00

300.

0595

00.

0030

00.

6611

3516

1140

.29.

311

4716

6.96

E-01

4.40

E+01

3.20

E+00

1.22

E+01

8.24

E+01

4.07

E+00

2.79

E+02

5.72

E+02

9.92

E+02

1.70

E+03

2.61

E+03

4.75

E+03

5.69

E+03

Zirc

on_0

1174

429

50.

400.

0776

0.00

082.

082

0.03

00.

1941

0.00

180.

0578

00.

0007

40.

5511

4410

1142

.49.

911

3622

5.53

E+02

2.90

E+02

3.02

E+02

2.74

E+02

2.77

E+02

1.01

E+02

3.72

E+02

5.60

E+02

9.02

E+02

1.46

E+03

2.26

E+03

4.73

E+03

6.38

E+03

Zirc

on_0

1224

071

0.29

0.07

860.

0005

2.22

60.

027

0.20

420.

0021

0.06

100

0.00

170

0.29

1198

1111

88.9

8.6

1162

121.

35E-

012.

89E+

011.

64E+

006.

21E+

003.

76E+

013.

37E+

001.

46E+

022.

72E+

024.

88E+

028.

39E+

021.

26E+

032.

31E+

032.

83E+

03

Zirc

on_0

1345

120

30.

450.

0699

0.00

201.

562

0.04

00.

1654

0.00

340.

0503

00.

0012

00.

4598

719

955

1692

358

6.96

E-01

1.29

E+01

1.84

E+00

5.47

E+00

3.34

E+01

1.37

E+01

1.66

E+02

3.44

E+02

6.43

E+02

1.19

E+03

1.88

E+03

3.83

E+03

5.03

E+03

Zirc

on_0

1482

518

90.

230.

0708

0.00

151.

230

0.02

90.

1270

0.00

180.

0385

40.

0005

20.

1377

110

814

1394

944

1.56

E+01

3.12

E+01

1.45

E+01

1.95

E+01

4.21

E+01

3.43

E+01

7.49

E+01

1.43

E+02

2.60

E+02

4.33

E+02

7.55

E+02

1.97

E+03

3.12

E+03

Zirc

on_0

1571

911

00.

150.

0937

0.00

053.

363

0.02

80.

2610

0.00

250.

0761

00.

0021

00.

5614

9513

1496

.86.

215

029.

24.

60E-

015.

63E+

001.

62E+

005.

10E+

003.

80E+

011.

94E+

001.

80E+

024.

52E+

029.

51E+

021.

81E+

033.

04E+

036.

30E+

038.

15E+

03

Zirc

on_0

1622

579

0.35

0.07

340.

0009

1.75

10.

036

0.17

380.

0018

0.05

170

0.00

150

0.46

1033

1010

2713

1023

243.

46E-

011.

35E+

014.

22E+

001.

29E+

016.

68E+

011.

97E+

012.

56E+

024.

56E+

027.

46E+

021.

25E+

031.

77E+

032.

98E+

033.

81E+

03

Zirc

on_0

1729

162

0.21

0.07

430.

0005

1.79

80.

040

0.17

660.

0027

0.05

390

0.00

190

0.80

1048

1510

4414

1049

121.

52E-

011.

57E+

011.

44E+

004.

27E+

002.

40E+

014.

14E+

008.

85E+

011.

79E+

023.

20E+

025.

72E+

028.

93E+

021.

77E+

032.

38E+

03

Zirc

on_0

1833

416

00.

480.

0939

0.00

063.

430

0.03

60.

2667

0.00

260.

0784

00.

0019

00.

6115

2413

1510

.98.

315

0613

4.85

E-01

1.51

E+01

1.89

E+00

5.05

E+00

2.37

E+01

3.61

E+00

1.08

E+02

2.07

E+02

3.70

E+02

6.45

E+02

9.64

E+02

1.66

E+03

2.02

E+03

Zirc

on_0

1913

397

0.73

0.10

050.

0007

3.98

20.

067

0.28

840.

0036

0.08

280

0.00

250

0.65

1633

1816

3014

1633

121.

81E-

015.

69E+

011.

07E+

003.

87E+

001.

97E+

019.

79E+

007.

31E+

011.

35E+

022.

46E+

024.

32E+

027.

06E+

021.

51E+

032.

05E+

03

Zirc

on_0

2030

210

00.

330.

0814

0.00

052.

292

0.02

20.

2063

0.00

180.

0615

00.

0015

00.

2612

09.3

9.7

1210

.86.

612

3012

7.55

E-01

2.07

E+01

1.22

E+00

4.16

E+00

2.38

E+01

3.57

E+00

1.02

E+02

2.01

E+02

3.72

E+02

6.58

E+02

1.01

E+03

1.93

E+03

2.44

E+03

Zirc

on_0

2138

616

40.

430.

0937

0.00

063.

396

0.03

50.

2634

0.00

280.

0783

00.

0012

00.

6115

0714

1503

.38

1501

131.

60E-

011.

40E+

011.

68E+

005.

84E+

003.

21E+

012.

97E+

001.

46E+

022.

82E+

024.

99E+

028.

94E+

021.

37E+

032.

44E+

033.

06E+

03

Zirc

on_0

2211

443

0.38

0.07

860.

0009

2.11

90.

047

0.19

830.

0027

0.05

870

0.00

190

0.38

1166

1511

5415

1162

221.

14E-

011.

52E+

011.

25E+

002.

98E+

001.

69E+

017.

99E+

007.

61E+

011.

49E+

022.

78E+

024.

96E+

028.

02E+

021.

63E+

032.

13E+

03

Zirc

on_0

2340

113

30.

330.

0962

0.00

063.

486

0.03

30.

2660

0.00

260.

0772

00.

0024

00.

3715

2013

1523

.87.

515

5111

3.29

E-01

7.13

E+00

1.08

E+00

4.09

E+00

2.33

E+01

2.86

E+00

1.19

E+02

2.57

E+02

4.80

E+02

8.74

E+02

1.35

E+03

2.58

E+03

3.35

E+03

Zirc

on_0

2419

513

40.

690.

0917

0.00

083.

144

0.05

70.

2505

0.00

240.

0733

00.

0021

00.

7014

4112

1443

1414

6117

4.22

E-01

1.98

E+01

5.18

E+00

1.84

E+01

8.85

E+01

1.71

E+01

2.91

E+02

4.88

E+02

7.63

E+02

1.23

E+03

1.74

E+03

2.82

E+03

3.51

E+03

Zirc

on_0

2550

511

90.

230.

0810

0.00

052.

298

0.02

50.

2067

0.00

200.

0644

00.

0024

00.

6812

1111

1212

.97.

312

2113

1.35

E-01

3.22

E+01

8.62

E-01

3.74

E+00

2.36

E+01

2.22

E+00

1.19

E+02

2.39

E+02

4.65

E+02

8.32

E+02

1.29

E+03

2.41

E+03

2.86

E+03

Zirc

on_0

2610

3115

80.

150.

0674

0.00

181.

089

0.03

30.

1173

0.00

390.

0358

00.

0014

00.

7471

523

748

1684

955

2.38

E+01

7.88

E+01

5.36

E+01

5.91

E+01

1.53

E+02

9.43

E+01

2.09

E+02

3.48

E+02

4.73

E+02

6.87

E+02

1.07

E+03

2.50

E+03

3.70

E+03

Zirc

on_0

2766

448

30.

730.

0935

0.00

402.

960

0.12

00.

2298

0.00

430.

0676

00.

0015

00.

6213

3323

1397

3014

9578

1.18

E+00

8.97

E+01

1.12

E+01

2.54

E+01

7.70

E+01

8.21

E+01

2.33

E+02

3.55

E+02

5.61

E+02

8.94

E+02

1.34

E+03

2.66

E+03

3.72

E+03

Zirc

on_0

2839

512

90.

330.

0995

0.00

063.

904

0.05

70.

2866

0.00

420.

0785

00.

0016

00.

7416

2421

1614

1216

1511

3.97

E-01

5.29

E+00

4.85

E+00

1.95

E+01

9.39

E+01

1.47

E+01

4.02

E+02

8.09

E+02

1.48

E+03

2.36

E+03

3.38

E+03

5.53

E+03

6.59

E+03

Zirc

on_0

2918

658

0.31

0.07

950.

0006

2.20

50.

036

0.20

180.

0020

0.06

000

0.00

180

0.45

1185

1111

8411

1185

161.

22E-

011.

05E+

011.

24E+

003.

57E+

002.

20E+

015.

42E+

001.

13E+

022.

20E+

024.

06E+

026.

94E+

021.

06E+

031.

90E+

032.

46E+

03

Zirc

on_0

3044

625

30.

570.

0960

0.00

123.

554

0.05

60.

2697

0.00

300.

0793

00.

0009

90.

7615

3915

1539

1215

4624

7.97

E-01

2.46

E+01

1.44

E+00

5.05

E+00

2.67

E+01

1.08

E+01

1.57

E+02

3.34

E+02

6.70

E+02

1.28

E+03

2.16

E+03

4.58

E+03

6.33

E+03

Zirc

on_0

3123

713

30.

560.

0776

0.00

222.

009

0.06

80.

1879

0.00

260.

0563

50.

0008

00.

6611

1014

1117

2311

5556

6.96

E-01

3.34

E+01

3.16

E+00

1.11

E+01

4.81

E+01

1.07

E+01

1.85

E+02

3.14

E+02

5.40

E+02

9.14

E+02

1.32

E+03

2.43

E+03

3.20

E+03

Zirc

on_0

3235

411

90.

340.

0951

0.00

093.

408

0.05

20.

2612

0.00

290.

0784

00.

0036

00.

3014

9615

1506

1215

2918

1.22

E+00

4.32

E+01

7.11

E+00

1.25

E+01

4.21

E+01

2.77

E+01

1.40

E+02

2.28

E+02

3.95

E+02

6.83

E+02

1.04

E+03

2.01

E+03

2.72

E+03

Zirc

on_0

3312

4039

80.

320.

0795

0.00

082.

152

0.03

80.

1974

0.00

210.

0602

00.

0031

00.

8711

6111

1168

1111

8420

8.73

E-01

4.18

E+01

2.41

E+00

5.80

E+00

2.73

E+01

6.96

E+00

1.16

E+02

2.26

E+02

4.54

E+02

8.65

E+02

1.52

E+03

3.47

E+03

4.74

E+03

Zirc

on_0

3427

190

0.33

0.08

050.

0006

2.26

10.

040

0.20

300.

0022

0.06

130

0.00

200

0.35

1191

1212

0012

1207

161.

14E-

012.

12E+

011.

09E+

004.

20E+

002.

18E+

012.

88E+

009.

20E+

011.

77E+

023.

27E+

025.

81E+

029.

01E+

021.

76E+

032.

31E+

03

Zirc

on_0

3540

810

30.

250.

0869

0.00

062.

664

0.04

90.

2249

0.00

300.

0677

00.

0023

00.

7713

0816

1324

1613

5813

1.47

E+00

2.18

E+01

1.52

E+00

5.16

E+00

1.85

E+01

4.26

E+00

6.43

E+01

1.47

E+02

2.65

E+02

4.71

E+02

7.32

E+02

1.44

E+03

1.91

E+03

Zirc

on_0

3676

430.

560.

0749

0.00

411.

850

0.11

00.

1816

0.00

350.

0553

00.

0014

00.

6310

7619

1061

4010

4012

01.

51E+

007.

78E+

004.

53E+

001.

37E+

016.

28E+

011.

99E+

011.

86E+

023.

16E+

025.

20E+

028.

15E+

021.

12E+

031.

91E+

032.

32E+

03

Zirc

on_0

3751

684

0.16

0.08

320.

0009

2.46

80.

043

0.21

670.

0023

0.06

453

0.00

061

0.71

1264

1212

6313

1272

219.

11E+

007.

55E+

004.

91E+

008.

75E+

003.

86E+

015.

06E+

001.

95E+

024.

09E+

026.

82E+

021.

05E+

031.

51E+

032.

80E+

033.

39E+

03

Zirc

on_0

3874

815

50.

210.

0784

0.00

351.

722

0.08

60.

1585

0.00

250.

0383

00.

0087

00.

6694

814

1016

3211

4989

3.76

E+00

2.14

E+01

1.56

E+01

2.91

E+01

9.39

E+01

5.68

E+01

1.79

E+02

3.16

E+02

5.73

E+02

8.75

E+02

1.34

E+03

2.88

E+03

3.78

E+03

Zirc

on_0

3995

200.

210.

0832

0.00

212.

550

0.09

60.

2228

0.00

450.

0680

00.

0034

00.

6012

9624

1285

2812

7149

3.59

E-01

7.72

E+00

1.19

E+00

2.60

E+00

1.66

E+01

3.61

E+00

6.73

E+01

1.15

E+02

2.17

E+02

3.62

E+02

5.73

E+02

1.06

E+03

1.37

E+03

Tabl

e 2.

Cor

rect

ed z

ircon

U–P

b is

otop

ic ra

tios,

age

s, a

nd c

hond

rite–

norm

aliz

ed R

EE c

once

ntra

tions

of s

ampl

e AC

–1 (a

n An

acon

a Te

rran

e qu

artz

ite).

Page 10: The Anacona Terrane: A Small Early Paleozoic Peri ...€¦ · The Anacona Terrane A Small Early Paleozoic Peri–Gondwanan Terrane in the Cauca–Romeral ault System Carboniferous

158

RESTREPO et al.

Cor

rect

ed r

atio

s2C

orre

cted

Age

s (M

a)C

hond

rite

–nor

mal

ized

REE

con

cent

ratio

ns

U

(ppm

)1Th

(ppm

)1Th

/U20

7 Pb/

206 P

b±2

s abs

207 P

b/23

5 U±2

s abs

206 P

b/23

8 U±2

s abs

208 P

b/23

2 Th

±2s a

bsR

ho20

6 Pb/

238 U

±2s

207 P

b/23

5 U±2

s20

7 Pb/

206 P

b ±2

sLa

Ce

PrN

dSm

EuG

dTb

Dy

Ho

ErY

bLu

Zirc

on_0

4031

410

70.

340.

0928

0.00

133.

144

0.07

50.

2471

0.00

330.

0725

00.

0014

00.

8014

2317

1443

1914

9130

1.73

E-01

1.95

E+01

1.14

E+00

2.80

E+00

1.50

E+01

1.01

E+01

5.98

E+01

1.16

E+02

2.26

E+02

4.34

E+02

7.67

E+02

2.13

E+03

3.17

E+03

Zirc

on_0

4129

156

0.19

0.07

190.

0007

1.60

50.

027

0.16

160.

0018

0.04

880

0.00

140

0.49

966

1097

211

981

181.

27E-

019.

72E+

007.

33E-

013.

33E+

001.

77E+

015.

84E+

006.

93E+

011.

29E+

022.

26E+

023.

70E+

025.

39E+

029.

43E+

021.

21E+

03

Zirc

on_0

4234

215

30.

450.

0955

0.00

073.

443

0.03

50.

2642

0.00

290.

0775

00.

0025

00.

5015

1115

1515

.88.

415

3814

5.02

E-01

1.54

E+01

5.55

E+00

1.93

E+01

1.07

E+02

2.08

E+01

4.15

E+02

7.15

E+02

1.22

E+03

2.00

E+03

2.82

E+03

4.42

E+03

5.36

E+03

Zirc

on_0

4369

751

0.07

0.09

290.

0023

3.26

00.

110

0.25

470.

0046

0.07

490

0.00

130

0.79

1462

2414

7226

1485

471.

31E+

002.

46E+

003.

02E+

004.

88E+

004.

59E+

013.

75E+

002.

31E+

024.

28E+

027.

21E+

029.

73E+

021.

28E+

032.

09E+

032.

50E+

03

Zirc

on_0

4487

748

0.05

0.09

330.

0007

3.13

10.

028

0.24

740.

0035

0.07

240

0.00

190

0.42

1425

1814

40.3

6.9

1493

14-8

.08E

-05

1.96

E+00

8.30

E-01

3.61

E+00

1.89

E+01

3.91

E+00

8.19

E+01

1.44

E+02

2.34

E+02

4.01

E+02

6.98

E+02

2.09

E+03

3.04

E+03

Zirc

on_0

4510

1833

40.

330.

0856

0.00

112.

345

0.03

60.

1992

0.00

200.

0589

50.

0007

70.

5811

7111

1226

1113

3024

3.84

E+01

7.50

E+01

4.20

E+01

5.51

E+01

1.09

E+02

5.63

E+00

3.95

E+02

6.98

E+02

1.16

E+03

2.00

E+03

2.86

E+03

4.57

E+03

5.78

E+03

Zirc

on_0

4652

962

0.12

0.09

370.

0004

3.43

60.

042

0.26

570.

0040

0.07

530

0.00

320

0.77

1519

2015

12.3

9.6

1501

8.3

1.81

E-01

3.23

E+00

1.44

E+00

6.13

E+00

6.75

E+01

2.86

E+00

3.04

E+02

5.24

E+02

6.61

E+02

7.20

E+02

7.53

E+02

8.94

E+02

9.67

E+02

Zirc

on_0

4744

784

0.19

0.07

890.

0028

1.75

10.

074

0.16

090.

0032

0.04

819

0.00

094

0.44

962

1810

2727

1168

706.

46E+

003.

08E+

022.

37E+

013.

44E+

011.

36E+

029.

77E+

015.

85E+

021.

14E+

031.

93E+

033.

04E+

034.

48E+

037.

71E+

039.

53E+

03

Zirc

on_0

4838

419

30.

500.

0791

0.00

042.

160

0.02

50.

1993

0.00

220.

0569

00.

0015

00.

5611

7212

1168

.18.

111

7311

8.52

E-01

2.10

E+01

4.91

E+00

1.39

E+01

6.28

E+01

9.79

E+00

2.13

E+02

3.85

E+02

6.26

E+02

1.03

E+03

1.49

E+03

2.56

E+03

3.08

E+03

Zirc

on_0

4936

110

20.

280.

0801

0.00

062.

306

0.03

70.

2083

0.00

230.

0623

00.

0019

00.

6912

2012

1214

1112

0015

7.59

E-02

1.92

E+01

8.84

E-01

2.95

E+00

1.61

E+01

1.47

E+00

6.65

E+01

1.30

E+02

2.44

E+02

4.29

E+02

6.96

E+02

1.38

E+03

1.74

E+03

Zirc

on_0

5037

517

60.

470.

0804

0.00

062.

243

0.03

60.

2039

0.00

230.

0615

00.

0020

00.

8011

9612

1194

1112

0913

4.10

E+00

2.43

E+01

4.62

E+00

1.15

E+01

5.91

E+01

1.03

E+01

2.67

E+02

4.85

E+02

8.46

E+02

1.40

E+03

2.05

E+03

3.55

E+03

4.33

E+03

Zirc

on_0

5136

722

30.

610.

1001

0.00

103.

857

0.07

70.

2798

0.00

290.

0821

00.

0022

00.

3915

9115

1604

1616

2519

3.25

E-01

4.32

E+01

3.13

E+00

1.15

E+01

5.20

E+01

2.79

E+01

1.58

E+02

2.97

E+02

4.94

E+02

8.52

E+02

1.29

E+03

2.48

E+03

3.31

E+03

Zirc

on_0

5215

347

0.31

0.07

940.

0015

2.26

00.

068

0.20

520.

0025

0.06

310

0.00

280

0.88

1203

1311

9821

1189

361.

43E-

018.

91E+

009.

59E-

013.

39E+

001.

95E+

014.

09E+

008.

94E+

011.

69E+

022.

97E+

025.

18E+

027.

93E+

021.

50E+

031.

91E+

03

Zirc

on_0

5331

710

70.

340.

0806

0.00

052.

363

0.03

20.

2112

0.00

210.

0625

00.

0020

00.

2612

3511

1231

.29.

512

1212

1.18

E-01

2.77

E+01

1.41

E+00

4.79

E+00

2.55

E+01

2.63

E+00

1.23

E+02

2.39

E+02

4.22

E+02

7.45

E+02

1.13

E+03

2.15

E+03

2.77

E+03

Zirc

on_0

5424

193

0.39

0.08

130.

0009

2.30

00.

047

0.20

630.

0021

0.06

210

0.00

150

0.39

1209

1112

1513

1229

224.

89E+

002.

12E+

014.

09E+

005.

71E+

001.

97E+

013.

32E+

008.

04E+

011.

50E+

022.

80E+

025.

02E+

027.

86E+

021.

60E+

032.

08E+

03

Zirc

on_0

5542

978

0.18

0.07

600.

0006

1.88

70.

022

0.18

120.

0019

0.05

490

0.00

160

0.39

1073

1010

76.3

7.9

1095

152.

15E-

011.

72E+

011.

48E+

003.

79E+

002.

05E+

014.

51E+

009.

50E+

011.

87E+

023.

54E+

026.

17E+

029.

58E+

021.

76E+

032.

24E+

03

Zirc

on_0

5629

251

0.17

0.09

540.

0007

3.54

80.

057

0.27

080.

0036

0.08

270

0.00

270

0.78

1545

1815

3713

1536

152.

36E-

017.

81E+

001.

57E+

004.

27E+

002.

78E+

015.

35E+

001.

18E+

022.

30E+

024.

04E+

027.

16E+

021.

07E+

031.

95E+

032.

52E+

03

Zirc

on_0

5755

918

90.

340.

0803

0.00

062.

210

0.04

20.

2033

0.00

250.

0614

00.

0021

00.

2511

9313

1184

1312

0516

-7.5

9E-0

53.

61E+

012.

03E+

005.

03E+

003.

82E+

014.

26E+

001.

71E+

023.

45E+

026.

26E+

021.

10E+

031.

70E+

033.

07E+

033.

63E+

03

Zirc

on_0

5999

041

90.

420.

0884

0.00

102.

706

0.04

60.

2220

0.00

340.

0657

00.

0015

00.

9612

9218

1330

1313

9120

8.10

E+00

5.22

E+01

3.01

E+01

5.58

E+01

1.74

E+02

1.44

E+02

4.02

E+02

6.79

E+02

1.13

E+03

1.82

E+03

2.61

E+03

4.88

E+03

6.79

E+03

Zirc

on_0

6030

510

60.

350.

0951

0.00

083.

606

0.04

70.

2728

0.00

290.

0810

00.

0023

00.

3915

5515

1551

1015

3315

4.22

E-01

7.10

E+00

2.66

E+00

9.45

E+00

5.28

E+01

1.08

E+01

1.97

E+02

3.45

E+02

5.72

E+02

9.38

E+02

1.38

E+03

2.48

E+03

3.21

E+03

Zirc

on_0

6116

6574

0.04

0.09

100.

0007

2.97

90.

031

0.23

890.

0032

0.06

920

0.00

180

0.84

1381

1714

02.3

814

4514

9.11

E+00

9.74

E+00

1.02

E+01

1.41

E+01

4.35

E+01

2.82

E+01

1.37

E+02

3.47

E+02

7.22

E+02

1.30

E+03

2.22

E+03

5.02

E+03

6.90

E+03

Zirc

on_0

6216

358

0.35

0.08

020.

0012

2.34

90.

053

0.21

080.

0031

0.06

470

0.00

210

0.29

1233

1612

2716

1202

315.

91E-

021.

53E+

018.

30E-

012.

78E+

001.

50E+

012.

68E+

005.

93E+

011.

13E+

022.

11E+

023.

66E+

025.

88E+

021.

14E+

031.

54E+

03

Zirc

on_0

6379

052

0.07

0.05

840.

0020

0.69

70.

038

0.08

460.

0035

0.02

620

0.00

110

0.75

524

2153

723

541

741.

98E+

021.

68E+

021.

26E+

021.

16E+

021.

12E+

026.

71E+

011.

34E+

022.

22E+

022.

93E+

024.

36E+

026.

19E+

021.

43E+

032.

41E+

03

Zirc

on_0

6431

598

0.31

0.09

680.

0013

3.66

00.

054

0.27

480.

0035

0.08

120

0.00

220

0.42

1565

1815

6312

1563

262.

36E+

015.

22E+

014.

31E+

015.

03E+

018.

31E+

013.

46E+

012.

15E+

023.

38E+

025.

34E+

028.

70E+

021.

25E+

032.

35E+

033.

12E+

03

Zirc

on_0

6531

178

0.25

0.08

470.

0014

2.68

30.

055

0.22

950.

0032

0.06

830

0.00

270

0.09

1332

1713

2315

1309

321.

35E-

011.

86E+

012.

06E+

009.

39E+

003.

56E+

013.

91E+

001.

78E+

023.

04E+

025.

29E+

028.

90E+

021.

27E+

032.

17E+

032.

86E+

03

Zirc

on_0

6628

583

0.29

0.08

000.

0005

2.33

00.

032

0.21

040.

0024

0.06

330

0.00

220

0.27

1231

1312

21.4

9.7

1197

121.

43E+

013.

25E+

012.

11E+

013.

26E+

017.

30E+

011.

99E+

012.

13E+

023.

60E+

026.

30E+

021.

04E+

031.

57E+

032.

71E+

033.

37E+

03

Zirc

on_0

6771

419

70.

280.

0690

0.00

141.

369

0.03

50.

1442

0.00

220.

0438

10.

0005

00.

6686

912

876

1589

643

7.22

E+00

3.13

E+01

2.45

E+01

4.73

E+01

1.80

E+02

1.05

E+02

4.19

E+02

7.29

E+02

1.15

E+03

1.72

E+03

2.40

E+03

4.11

E+03

5.08

E+03

Zirc

on_0

6810

573

0.70

0.06

900.

0012

1.48

70.

040

0.15

640.

0022

0.04

710

0.00

140

0.37

937

1292

416

896

355.

15E-

012.

76E+

017.

06E+

002.

24E+

018.

68E+

015.

15E+

012.

56E+

023.

77E+

025.

62E+

028.

15E+

021.

08E+

031.

66E+

032.

04E+

03

Zirc

on_0

6919

3010

560.

550.

0790

0.00

032.

164

0.02

60.

1984

0.00

210.

0622

00.

0017

00.

7711

6711

1169

.28.

211

71.6

7.6

1.05

E+02

1.66

E+02

6.90

E+01

6.56

E+01

1.51

E+02

1.85

E+01

5.78

E+02

1.09

E+03

1.95

E+03

3.32

E+03

4.95

E+03

8.11

E+03

9.63

E+03

Zirc

on_0

7096

392

0.10

0.08

350.

0007

2.56

20.

039

0.22

160.

0027

0.06

790

0.00

250

0.81

1290

1412

8911

1281

162.

56E+

002.

23E+

011.

15E+

012.

23E+

018.

11E+

015.

52E+

011.

87E+

022.

96E+

024.

11E+

025.

07E+

026.

13E+

028.

45E+

029.

35E+

02

Zirc

on_0

7139

012

0.03

0.07

010.

0004

1.57

40.

028

0.16

110.

0016

0.05

140

0.00

290

0.80

962.

98.

896

011

931

121.

52E-

012.

79E+

004.

09E-

011.

20E+

004.

46E+

006.

75E+

001.

98E+

013.

17E+

014.

65E+

016.

28E+

018.

09E+

011.

18E+

021.

43E+

02

Zirc

on_0

7285

521

50.

250.

0766

0.00

041.

996

0.02

40.

1881

0.00

170.

0566

00.

0016

00.

6311

11.2

911

148.

111

1111

4.39

E-01

1.44

E+01

1.61

E+00

2.19

E+00

8.31

E+00

1.12

E+01

3.39

E+01

8.28

E+01

1.89

E+02

4.18

E+02

8.05

E+02

2.27

E+03

3.28

E+03

Zirc

on_0

7315

0312

10.

080.

0933

0.00

063.

131

0.03

80.

2458

0.00

360.

0748

00.

0053

00.

8514

1718

1444

1114

9313

8.82

E+00

1.56

E+01

1.50

E+01

2.39

E+01

7.77

E+01

4.80

E+01

2.65

E+02

6.10

E+02

1.23

E+03

2.09

E+03

3.19

E+03

6.16

E+03

7.67

E+03

Zirc

on_0

7456

719

10.

340.

0784

0.00

102.

204

0.04

10.

2041

0.00

210.

0605

00.

0018

00.

1711

9811

1182

1311

5625

1.48

E-01

3.18

E+01

9.38

E-01

3.35

E+00

2.77

E+01

1.33

E+00

1.32

E+02

2.70

E+02

4.72

E+02

8.33

E+02

1.29

E+03

2.47

E+03

3.11

E+03

Zirc

on_0

7514

3720

00.

140.

0688

0.00

031.

457

0.02

00.

1521

0.00

190.

0393

00.

0011

00.

6291

210

912.

58.

289

3.9

8.6

2.53

E-01

5.02

E+00

1.10

E+00

6.08

E+00

3.92

E+01

8.88

E+00

1.63

E+02

2.78

E+02

3.82

E+02

4.76

E+02

5.51

E+02

6.99

E+02

7.92

E+02

Zirc

on_0

7636

213

00.

360.

0788

0.00

062.

111

0.03

00.

1956

0.00

190.

0578

00.

0011

00.

5411

5210

1151

.99.

711

6514

3.04

E-01

2.42

E+01

1.64

E+00

4.22

E+00

2.30

E+01

3.23

E+00

1.05

E+02

2.04

E+02

3.73

E+02

6.55

E+02

1.04

E+03

2.02

E+03

2.56

E+03

Zirc

on_0

7796

225

20.

260.

0733

0.00

121.

663

0.02

00.

1652

0.00

200.

0497

00.

0008

50.

1698

611

994.

47.

710

2132

9.54

E-01

2.89

E+01

4.63

E+00

1.14

E+01

6.42

E+01

1.35

E+01

2.77

E+02

5.01

E+02

8.62

E+02

1.54

E+03

2.36

E+03

4.32

E+03

5.49

E+03

Zirc

on_0

7940

513

40.

330.

0788

0.00

082.

267

0.04

80.

2067

0.00

260.

0609

00.

0019

00.

2812

1114

1202

1511

6719

1.39

E-01

2.88

E+01

1.06

E+00

4.20

E+00

2.76

E+01

2.01

E+00

1.28

E+02

2.62

E+02

4.67

E+02

8.14

E+02

1.24

E+03

2.42

E+03

3.01

E+03

Zirc

on_0

8060

513

80.

230.

0779

0.00

032.

103

0.01

50.

1953

0.00

180.

0585

00.

0017

00.

6611

509.

711

49.8

511

46.1

9.1

9.28

E-02

2.71

E+01

8.41

E-01

2.54

E+00

1.16

E+01

4.44

E+00

5.83

E+01

1.26

E+02

2.59

E+02

4.82

E+02

8.25

E+02

1.92

E+03

2.63

E+03

Tabl

e 2.

Cor

rect

ed z

ircon

U–P

b is

otop

ic ra

tios,

age

s, a

nd c

hond

rite–

norm

aliz

ed R

EE c

once

ntra

tions

of s

ampl

e AC

–1 (a

n An

acon

a Te

rran

e qu

artz

ite) (

cont

inue

d).

Page 11: The Anacona Terrane: A Small Early Paleozoic Peri ...€¦ · The Anacona Terrane A Small Early Paleozoic Peri–Gondwanan Terrane in the Cauca–Romeral ault System Carboniferous

159

The Anacona Terrane: A Small Early Paleozoic Peri–Gondwanan Terrane in the Cauca–Romeral Fault System

Car

boni

fero

usD

evon

ian

Cor

rect

ed r

atio

s2C

orre

cted

Age

s (M

a)C

hond

rite

–nor

mal

ized

REE

con

cent

ratio

ns

U

(ppm

)1Th

(ppm

)1Th

/U20

7 Pb/

206 P

b±2

s abs

207 P

b/23

5 U±2

s abs

206 P

b/23

8 U±2

s abs

208 P

b/23

2 Th

±2s a

bsR

ho20

6 Pb/

238 U

±2s

207 P

b/23

5 U±2

s20

7 Pb/

206 P

b ±2

sLa

Ce

PrN

dSm

EuG

dTb

Dy

Ho

ErY

bLu

Zirc

on_0

8130

077

0.26

0.07

740.

0009

2.21

30.

043

0.20

470.

0027

0.05

530

0.00

160

0.18

1201

1411

8514

1132

225.

49E-

011.

45E+

011.

13E+

003.

17E+

001.

07E+

011.

79E+

005.

06E+

011.

05E+

022.

14E+

023.

97E+

026.

28E+

021.

30E+

031.

70E+

03

Zirc

on_0

8217

263

0.36

0.09

170.

0008

3.20

50.

057

0.25

210.

0042

0.07

480

0.00

230

0.70

1449

2214

6115

1461

161.

39E+

013.

03E+

012.

16E+

012.

69E+

013.

31E+

017.

82E+

001.

09E+

021.

95E+

023.

60E+

026.

20E+

029.

29E+

021.

74E+

032.

24E+

03

Zirc

on_0

8334

977

0.22

0.06

960.

0012

1.47

20.

030

0.15

290.

0017

0.04

642

0.00

059

0.37

917.

49.

591

912

914

357.

17E-

027.

83E+

004.

74E-

018.

75E-

013.

18E+

006.

20E+

001.

67E+

013.

57E+

016.

79E+

011.

33E+

022.

26E+

025.

78E+

029.

31E+

02

Zirc

on_0

8421

374

0.35

0.08

190.

0030

2.19

70.

066

0.19

860.

0038

0.05

928

0.00

086

0.28

1168

2111

8021

1238

702.

24E-

011.

90E+

011.

65E+

004.

81E+

002.

85E+

018.

35E+

001.

08E+

022.

14E+

023.

94E+

027.

01E+

021.

10E+

032.

17E+

032.

80E+

03

Zirc

on_0

8526

586

0.32

0.08

170.

0014

2.34

80.

063

0.20

820.

0024

0.06

220

0.00

250

0.43

1219

1312

2619

1237

331.

10E-

011.

58E+

011.

13E+

003.

33E+

001.

91E+

012.

42E+

008.

99E+

011.

87E+

023.

24E+

025.

51E+

028.

53E+

021.

64E+

032.

11E+

03

Zirc

on_0

8625

143

0.17

0.08

880.

0007

3.00

50.

060

0.24

480.

0029

0.08

060

0.00

390

0.06

1412

1514

0815

1399

163.

80E-

021.

76E+

019.

27E-

013.

54E+

002.

45E+

011.

49E+

019.

35E+

011.

82E+

023.

26E+

025.

71E+

029.

04E+

021.

86E+

032.

68E+

03

Zirc

on_0

8714

136

0.26

0.08

350.

0012

2.64

00.

063

0.22

850.

0031

0.06

680

0.00

230

0.23

1326

1613

1117

1279

293.

29E+

001.

47E+

013.

23E+

004.

16E+

001.

01E+

011.

08E+

003.

77E+

017.

98E+

011.

61E+

023.

16E+

025.

39E+

021.

19E+

031.

67E+

03

Zirc

on_0

8830

717

70.

580.

1020

0.00

173.

412

0.06

90.

2442

0.00

400.

0712

00.

0016

00.

7114

0821

1507

1616

5930

1.73

E+00

3.37

E+01

4.59

E+00

9.02

E+00

2.77

E+01

1.71

E+01

8.59

E+01

1.45

E+02

2.78

E+02

5.11

E+02

8.99

E+02

2.25

E+03

3.43

E+03

Zirc

on_0

8911

459

0.51

0.09

050.

0012

3.16

10.

061

0.25

100.

0031

0.07

340

0.00

210

0.41

1443

1614

4715

1435

242.

57E-

011.

08E+

011.

06E+

004.

70E+

002.

78E+

015.

63E+

001.

21E+

022.

26E+

024.

00E+

027.

07E+

021.

06E+

031.

92E+

032.

56E+

03

Zirc

on_0

9017

066

0.39

0.09

640.

0007

3.61

30.

041

0.27

240.

0027

0.08

130

0.00

250

0.38

1553

1415

52.1

9.1

1556

131.

90E-

011.

77E+

011.

37E+

003.

94E+

002.

15E+

016.

77E+

008.

67E+

011.

70E+

023.

09E+

025.

26E+

028.

14E+

021.

49E+

031.

93E+

03

Zirc

on_0

9155

171

0.13

0.09

560.

0011

3.58

30.

045

0.27

120.

0026

0.09

340

0.00

520

0.59

1547

1315

46.9

9.6

1543

212.

36E-

021.

52E+

008.

84E-

012.

67E+

002.

68E+

011.

28E+

001.

62E+

024.

18E+

028.

38E+

021.

55E+

032.

43E+

034.

52E+

035.

72E+

03

Zirc

on_0

9229

098

0.34

0.07

920.

0006

2.21

80.

039

0.20

290.

0025

0.06

170

0.00

160

0.70

1191

1311

8612

1177

165.

44E-

012.

15E+

011.

70E+

005.

73E+

002.

96E+

016.

16E+

001.

27E+

022.

34E+

024.

10E+

027.

10E+

021.

08E+

032.

02E+

032.

57E+

03

Zirc

on_0

9374

519

90.

270.

0919

0.00

253.

150

0.13

00.

2489

0.00

460.

0730

00.

0014

00.

8314

3324

1443

3114

6451

3.76

E-01

1.18

E+01

1.52

E+00

3.61

E+00

2.09

E+01

1.01

E+01

1.26

E+02

2.54

E+02

5.00

E+02

8.81

E+02

1.42

E+03

2.77

E+03

3.69

E+03

Zirc

on_0

9461

664

01.

040.

1024

0.00

044.

051

0.04

20.

2885

0.00

280.

0839

00.

0025

00.

7816

3414

1644

.38.

316

67.3

6.7

7.51

E+00

1.16

E+02

1.77

E+01

3.06

E+01

1.09

E+02

5.81

E+01

3.77

E+02

6.68

E+02

1.20

E+03

2.05

E+03

3.08

E+03

5.98

E+03

7.98

E+03

Zirc

on_0

9570

711

80.

170.

0787

0.00

042.

134

0.02

50.

1973

0.00

200.

0618

00.

0022

00.

7311

6111

1159

.78.

111

63.3

9.3

-6.2

1E-0

59.

89E+

004.

42E-

017.

88E-

013.

85E+

004.

83E+

001.

85E+

013.

82E+

018.

50E+

011.

70E+

023.

25E+

029.

53E+

021.

59E+

03

Zirc

on_0

9628

913

90.

480.

0883

0.00

092.

935

0.05

20.

2400

0.00

250.

0693

00.

0021

00.

4613

8713

1391

1313

8919

3.92

E-01

1.76

E+01

4.09

E+00

1.54

E+01

8.63

E+01

2.63

E+01

3.81

E+02

7.03

E+02

1.24

E+03

2.14

E+03

3.15

E+03

5.29

E+03

6.62

E+03

Zirc

on_0

9752

423

30.

440.

0951

0.00

202.

845

0.05

30.

2170

0.00

240.

0637

10.

0007

60.

7312

6613

1367

1415

2939

2.83

E+00

3.94

E+01

7.87

E+00

1.37

E+01

4.39

E+01

2.82

E+01

1.63

E+02

2.76

E+02

5.18

E+02

8.53

E+02

1.35

E+03

2.64

E+03

3.44

E+03

Zirc

on_0

9822

754

0.24

0.07

880.

0008

2.16

10.

064

0.20

070.

0037

0.06

320

0.00

320

0.40

1179

2011

6820

1166

191.

39E-

011.

49E+

011.

23E+

004.

25E+

001.

68E+

014.

80E+

009.

10E+

011.

80E+

023.

38E+

025.

99E+

028.

69E+

021.

78E+

032.

31E+

03

Zirc

on_0

9917

536

0.21

0.08

530.

0014

2.63

70.

077

0.22

560.

0040

0.06

880

0.00

370

0.85

1311

2113

1421

1319

321.

90E-

016.

36E+

005.

06E-

012.

54E+

001.

22E+

013.

52E+

006.

48E+

011.

24E+

022.

33E+

024.

21E+

026.

49E+

021.

25E+

031.

69E+

03

Zirc

on_1

0099

272

20.

730.

0882

0.00

332.

840

0.11

00.

2335

0.00

360.

0691

00.

0013

00.

3913

5319

1366

2813

8772

1.52

E-01

1.70

E+02

3.57

E+00

1.20

E+01

7.50

E+01

5.88

E+01

2.43

E+02

4.38

E+02

8.20

E+02

1.39

E+03

2.29

E+03

5.18

E+03

7.07

E+03

Tabl

e 2.

Cor

rect

ed z

ircon

U–P

b is

otop

ic ra

tios,

age

s, a

nd c

hond

rite–

norm

aliz

ed R

EE c

once

ntra

tions

of s

ampl

e AC

–1 (a

n An

acon

a Te

rran

e qu

artz

ite) (

cont

inue

d).

Note

: 207 P

b/20

6 Pb

ratio

s, a

ges,

and

err

ors

are

calc

ulat

ed a

ccor

ding

to P

etru

s &

Kam

ber (

2012

). An

alyz

ed s

pots

wer

e 23

mic

rom

eter

s, u

sing

an

anal

ytic

al p

roto

col m

odifi

ed fr

om S

olar

i et a

l. Da

ta m

easu

red

empl

oyin

g a

Ther

mo

Xser

ies

QIC

PMS

coup

led

to a

Res

onet

ics,

Res

olut

ion

M05

0 ex

cim

er la

ser w

orks

tatio

n.1 U

and

Th

conc

entr

atio

ns a

re c

alcu

late

d em

ploy

ing

an e

xter

nal s

tand

ard

zirc

on a

s in

Pat

on e

t al.

(201

0).

2 2 s

igm

a un

cert

aint

ies

prop

agat

ed a

ccor

ding

to P

aton

et a

l., 2

010.

Page 12: The Anacona Terrane: A Small Early Paleozoic Peri ...€¦ · The Anacona Terrane A Small Early Paleozoic Peri–Gondwanan Terrane in the Cauca–Romeral ault System Carboniferous

160

RESTREPO et al.

Sam

ple/

Cho

ndrit

e

0.01

0.1

1

10

500 750 1000 1250 1500 1750 2000

Age (Ma)

Th

/U

d

10000

1000

100

10

1

0.1

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Yb Lu

aM 698

aM4 98

aM 139

c

0

2

4

6

8

10

12

14

16

18

20

250 500 750 1000 1250 1500 1750 2000

Age (Ma)

Re

lative

pro

ba

bili

ty

Nu

mb

er

b

0.02

0.06

0.10

0.14

0.18

0.22

0.26

0.30

0 1 2 3 4 5207 235Pb/ U

20

62

38

Pb

/U

200

600

1000

1400

da

ta–

po

int

err

or

elli

pse

s a

re 2sa

Figure 8. (a) Wetherill concordia diagram of dated zircon spots; dark, filled ellipses correspond to analyses selected for the probability density diagram. (b) Probability density plot. (c) Chondrite–normalized REE patterns of youngest zircon grains, used to constrain the protolith age. (d) Th/U versus age (Ma) diagram; filled symbols correspond to analyses selected for the probability density diagram.

terpret this analysis as reflecting an isotopic mixture between an inherited core and the Paleozoic metamorphism of the sample. A more robust constraint on the depositional age is the youngest population of zircon, which includes three grains that yielded near–identical ages with a mean of 894 ± 8 Ma (MSWD = 0.01). It is therefore likely that the sedimentary protolith of the quartzites and the basic protolith of the interbedded amphib-olites of the Anacona Terrane may be Neoproterozoic in age.

5. Comparison with Adjacent Terranes

The main characteristics that allow differentiating the Anacona Terrane from the neighboring Ebéjico and Tahamí Terranes are presented in Table 3. In terms of the basement, the Anacona Ter-rane is characterized by pre–Carboniferous metamorphic rocks (e.g., the Caldas Amphibolite and its associated metasedimen-

tites); no rocks as old as these are present in the predominantly Permian – Triassic basement of the Tahamí Terrane, while the volcano–sedimentary Ebéjico Terrane lacks medium– or high–grade metamorphic basement. The Ordovician granites present in the Anacona Terrane (e.g., La Miel Orthogneiss) are also ab-sent in the Tahamí and Ebéjico Terranes (Restrepo et al., 2009).

Triassic metamorphic rocks are widespread in the Tahamí Terrane (e.g., Las Palmas Gneiss) but are unknown or not pres-ent in either the Cretaceous–aged Ebéjico Terrane or Anacona Terrane. The Tahamí Terrane has well–documented Cretaceous sedimentary cover units (e.g., the Abejorral, San Luis, and San Pablo Formations), and the Ebéjico Terrane is composed of Cretaceous volcano–sedimentary successions. In contrast, no such sedimentary sequences are present in the Anacona Ter-rane. Finally, the presence of spilites and other low–grade mafic rocks is only reported in the Ebéjico Terrane (Table 3).

Page 13: The Anacona Terrane: A Small Early Paleozoic Peri ...€¦ · The Anacona Terrane A Small Early Paleozoic Peri–Gondwanan Terrane in the Cauca–Romeral ault System Carboniferous

161

The Anacona Terrane: A Small Early Paleozoic Peri–Gondwanan Terrane in the Cauca–Romeral Fault System

Car

boni

fero

usD

evon

ian

Figure 9. Comparison of probability density plots of quartzite AC–1 and the xenocrystic component in granites of the Acatlán Complex in México, the Marañón Complex in Perú, and the Anacona Terrane in Colombia (modified from Martens et al., 2014 and references therein).

2

4

6

8

10

12

14

16

2

4

6

8

10

12

2

4

6

8

10

2

4

6

8

10

12

14

16

18

Acatlán Complex, México

Northern Marañón, Perú

La Miel OrthogneissAnacona Terrane, Colombia

Caldas QuartziteAnacona Terrane, Colombia

500 750 1000 1250 1500 1750 2000

Age (Ma)

Rela

tive p

robability

6. Correlatives of the Anacona Terrane in Perú and MéxicoPrevious work has correlated the Anacona Terrane with peri–Gondwanan terranes containing relics of an Ordovician mag-matic belt that fringed Gondwana (Martens et al., 2014). This Famatinian Orogen is present in South America from Argenti-na to Venezuela (Ramos, 2018). Potential correlatives are the Mixteca Terrane and the Acatlán Complex in southern México, which initially made part of Gondwana, the early Paleozoic

component of the western Marañón Complex in Perú, and the Famatinian magmatic rocks found on the islands off the coast of Perú (Romero et al., 2013). This correlation is supported by the similarity in the ages of xenocrystic zircons from these Ordovician granites in each of these terranes (Figure 9). In the case of the Mexican terranes, the Gondwanan origin has been shown paleontologically (Robison & Pantoja–Alor, 1968; Sán-chez–Zavala et al., 1999; Stewart et al., 1999).

Given that no basement rocks similar to those in the Anacona Terrane are known from Ecuador and that the general

Page 14: The Anacona Terrane: A Small Early Paleozoic Peri ...€¦ · The Anacona Terrane A Small Early Paleozoic Peri–Gondwanan Terrane in the Cauca–Romeral ault System Carboniferous

162

RESTREPO et al.

Units Ebéjico Anacona Tahamí

Pre–Carboniferous metamorphic rocks

Absent Present Absent

Ordovician granites Absent Present Absent

Triassic metamorphic rocks Absent Absent Present

Cretaceous sedimentary rocks Present Absent Present

Spilites and other mafic rocks Present Absent Absent

Table 3. Comparison between the main characteristics of the Anacona, Ebéjico, and Tahamí Terranes.

Tahamí Terranes is thought to have occurred during the Late Cretaceous – Paleogene, dated at 73–65 Ma by Jaramillo et al. (2017) and 70–58 Ma by Zapata & Cardona (2017).

8. Conclusion

The recognition of the Anacona Terrane is significant, despite its relatively small size. It lies along the eastern Cauca–Romeral Fault Zone, a major tectonic boundary in the Colombian Andes that separates a domain of predominantly oceanic affinity in the west from a continental–dominated domain in the east. The terrane is unlike others in the Western or Central Cordilleras, comprising basement rocks with a geologic history spanning the Neoproterozoic – Ordovician. Its medium–pressure meta-morphism, xenocrystic and detrital zircon age spectra, and early Paleozoic metamorphism contrast with the low–pressure, Tri-assic metamorphic basement of the adjacent and much larger Tahamí Terrane. The closest correlative Gondwanan terranes of the Anacona Terrane are in México and Perú. The initial accretion of the Anacona and the Tahamí Terranes occurred in the latest Triassic or later, and we surmise that from a southerly position, the Anacona Terrane was pushed northwards along the Cauca–Romeral Fault by the oblique convergence of the Caribbean Plate located to the northwest.

Acknowledgments

We are grateful to David M. CHEW and Victor A. RAMOS, who improved the manuscript considerably with their sugges-tions and corrections as reviewers.

References

Andersen, T. 2002. Correction of common lead in U–Pb analyses that do not report 204Pb. Chemical Geology, 192(1–2): 59–79. https://doi.org/10.1016/S0009-2541(02)00195-X

Botero, G. 1963. Contribución al conocimiento de la geología de la zona central de Antioquia. Universidad Nacional de Colombia, Anales de la Facultad de Minas, 57, 101 p. Medellín.

Boynton, W.V. 1984. Cosmochemistry of the rare earth elements: Meteorite studies. Developments in Geochemistry, 2: 63–114. https://doi.org/10.1016/B978-0-444-42148-7.50008-3

Bustamante, A. 2003. Definição das trajetórias P–T–t em rochas metamórficas do flanco ocidental da Cordilheira Central da Colômbia, nas regiões de Caldas e El Retiro. Master thesis, Universidade de São Paulo, 107 p. São Paulo. https://doi.org/10.11606/D.44.2003.tde-26012011-135543

Coney, P.J., Jones, D.L. & Monger, J.W.H. 1980. Cordilleran sus-pect terranes. Nature, 288(5789): 329–333. https://doi.org/10.1038/288329a0

Correa–Martínez, A.M., Martens, U., Restrepo, J.J., Ordóñez–Car-mona, O. & Martins–Pimentel, M. 2005. Subdivisión de las

trend of tectonic transport by the collision of the Caribbean with the South American margin was northward, it is likely that the Anacona Terrane formed further south (in present–day Perú) during the Ordovician, being transported by the north–moving transcurrent faults related to the Cauca–Romeral Fault System. Amalgamation with the Tahamí Terrane occurred at some time between the Jurassic and the end of the Cretaceous (Martens et al., 2014). Given its allochthonous or parautochthonous nature in relation to the Central and Eastern Colombian Andes, all the blocks west of the Anacona Terrane are also necessarily alloch-thonous or parautochthonous.

7. History of Accretion

The Anacona Terrane does not record a Triassic thermal per-turbation of the 40Ar–39Ar hornblende or biotite systems. This result indicates that during the main stage of Triassic orogenesis that substantially reworked the Tahamí Terrane, the Anacona Terrane was not nearby. This constraint provides an upper tem-poral limit on the juxtaposition of the two terranes. Based on the geochronological and field data, we conclude that the Ordovi-cian intrusion of La Miel granite occurred when the amphibolite and biotite schists had already undergone a phase of regional metamorphism as shown by xenoliths of foliated amphibolite within the gneiss. A second phase of metamorphism resulted in the formation of a gneissic foliation in La Miel unit. The timing of this second metamorphic phase has not yet been constrained by U–Pb geochronology, but a 40Ar–39Ar hornblende age yields a maximum age constraint of 360 Ma (Restrepo et al., 2008), along with an 40Ar–39Ar white mica age of ca. 345 Ma (Vinasco et al., 2006); these mineral ages are currently the best constraints for the onset of cooling following this second metamorphic event. These ages imply that the Anacona Block was not adja-cent to the Tahamí Terrane during regional Permian – Triassic metamorphism, and so the terrane docking is post–Triassic.

The Ebéjico Terrane is formed by mafic volcanic rocks in-terbedded with sedimentary rocks (González, 2001; Jaramillo et al., 2017). The accretion of this block to the Anacona and

Page 15: The Anacona Terrane: A Small Early Paleozoic Peri ...€¦ · The Anacona Terrane A Small Early Paleozoic Peri–Gondwanan Terrane in the Cauca–Romeral ault System Carboniferous

163

The Anacona Terrane: A Small Early Paleozoic Peri–Gondwanan Terrane in the Cauca–Romeral Fault System

Car

boni

fero

usD

evon

ian

metamorfitas básicas de los alrededores de Medellín–cordillera Central de Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 29(112): 325–344.

De Paolo, D.J. 1981. Trace element and isotopic effects of combined wallrock assimilation and fractional cristallization. Earth and Planetary Science Letters, 53(2): 189–202. https://doi.org/10.1016/0012-821X(81)90153-9

Echeverría, L.M. 1973. Zonación de las rocas metamórficas del valle de Aburrá y sus alrededores. Bachelor thesis, Universidad Na-cional de Colombia, 124 p. Medellín.

Giraldo, M.I. 2010. Esquema geodinámico de la parte noroccidental de la cordillera Central de Colombia. Master thesis, Universidad Nacional de Colombia, 146 p. Medellín.

Giraldo–Ramírez, W. 2013. Caracterización estructural y geoquímica del bloque Anacona. Bachelor thesis, Universidad Nacional de Colombia, 91 p. Medellín.

González, H. 1980. Geología de las planchas 167 Sonsón y 187 Sala-mina. Scale 1:100 000. Ingeominas, Internal report 1760, 262 p. Medellín.

González, H. 2001. Memoria explicativa: Mapa geológico del depar-tamento de Antioquia. Scale 1:400 000. Ingeominas, 240 p. Medellín.

Grosse, E. 1926. Estudio geológico del terciario carbonífero de An-tioquia en la parte occidental de la cordillera Central de Co-lombia, entre el río Arma y Sacaojal, ejecutado en los años de 1920–1923. Dietrich Reimer, 361 p. Berlin.

Hoffman, P.F. 1989. Precambrian geology and tectonic history of North America. In: Bally, A.W. & Palmer, A.R. (editors), The geol-ogy of North America–An overview. Geological Society of America, A: 447–511. Boulder, USA. https://doi.org/10.1130/DNAG-GNA-A.447

Hofmann, A.W. 1988. Chemical differentiation of the Earth: The rela-tionship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(3): 297–314. https://doi.org/10.1016/0012-821X(88)90132-X

Ibañez–Mejia, M., Ruiz, J., Valencia, V.A., Cardona, A., Gehrels, G.E. & Mora, A. 2011. The Putumayo Orogen of Amazonia and its implications for Rodinia reconstructions: New U–Pb geochronological insights into the Proterozoic tectonic evolution of northwestern South America. Precambrian Re-search, 191(1–2): 58–77. https://doi.org/10.1016/j.precam-res.2011.09.005

Jaramillo, J.S., Cardona, A., León, S., Valencia, V. & Vinasco, C. 2017. Geochemistry and geochronology from Cretaceous magmatic and sedimentary rocks at 6° 35’ N, western flank of the Central Cordillera (Colombian Andes): Magmatic record of arc growth and collision. Journal of South American Earth Sciences, 76: 460–481. https://doi.org/10.1016/j.jsames.2017.04.012

Jones, D.L., Howell, D.G., Coney, P.J. & Monger, J.W.H. 1983. Recog-nition, character and analysis of tectonostratigraphic terranes in western North America. Journal of Geological Education, 31(4): 295–303.

Martens, U., Weber, B. & Valencia, V. 2010. U/Pb geochronology of Devonian and older Paleozoic beds in the southeastern Maya Block, Central America: Its affinity with peri–Gondwanan terranes. Geological Society of America Bulletin, 122(5–6): 815–829. https://doi.org/10.1130/B26405.1

Martens, U., Restrepo, J.J., Ordóñez–Carmona, O. & Correa–Martínez, A.M. 2014. The Tahamí and Anacona Terranes of the Co-lombian Andes: Missing links between South American and Mexican Gondwana margins. The Journal of Geology, 122(5): 507–530. https://doi.org/10.1086/677177

Maya, M. & Escobar, A. 1985. Estudio de las rocas metamórficas entre el Ancón sur y la quebrada La Miel, Caldas, Antioquia. Bache-lor thesis, Universidad Nacional de Colombia, 160 p. Medellín.

Maya, M. & González, H. 1995. Unidades litodémicas en la cordillera Central de Colombia. Boletín Geológico, 35(2–3): 43–57.

Michard, A., Gurriet, P., Soudant, M. & Albarede, F. 1985. Nd isotopes in French Phanerozoic shales: External vs. internal aspects of crustal evolution. Geochimica et Cosmochimica Acta, 49(2): 601–610. https://doi.org/10.1016/0016-7037(85)90051-1

Ortega–Gutiérrez, F., Ruiz, J. & Centeno–García, E. 1995. Oaxaquia: A Proterozoic microcontinent accreted to North America during the late Paleozoic. Geology, 23(12): 1127–1130. https://doi.org/10.1130/0091-7613(1995)023<1127:OAPMAT>2.3.CO;2

Patiño, J.J. & Noreña, J.A. 1984. Estudio de las rocas metamórficas en la parte sur del municipio de Caldas, Antioquia. Bachelor thesis, Universidad Nacional de Colombia, 154 p. Medellín.

Paton, C., Woodhead, J.D., Hellstrom, J.C., Hergt, J.M., Greig, A. & Maas, R. 2010. Improved laser ablation U–Pb zircon geochro-nology through robust downhole fractionation correction. Geo-chemistry, Geophysics, Geosystems, 11(3): 1–36. https://doi.org/10.1029/2009GC002618

Petrus, J.A. & Kamber, B.S. 2012. VizualAge: A novel approach to laser ablation ICP–MS U–Pb geochronology data reduction. Geostandards and Geoanalytical Research, 36(3): 247–270. https://doi.org/10.1111/j.1751-908X.2012.00158.x

Ramos, V.A. 2018. The Famatinian orogen along the protomargin of western Gondwana: Evidence for a nearly continuous Ordo-vician magmatic arc between Venezuela and Argentina. In: Folguera, A., Contreras–Reyes, E., Heredia, N., Encinas, A., Iannelli, S.B., Oliveros, V., Dávila, F.M., Collo, G., Giam-biagi, L., Maksymowicz, A., Iglesia–Llanos, M.P., Turienzo, M., Naipauer, M., Orts, D., Litvak, V., Alvarez, O., Arriagada, C. (editors), The evolution of the Chile–Argentinean Andes. Springer Earth System Sciences. Springer, p. 133–161. https://doi.org/10.1007/978-3-319-67774-3_6

Restrepo, J.J. 1986. Metamorfismo en el sector norte de la cordille-ra Central de Colombia. Universidad Nacional de Colombia, Trabajo presentado como requisito parcial para la promoción a Profesor Titular. Unpublished report, 195 p. Medellín.

Restrepo, J.J. 2008. Obducción y metamorfismo de ofiolitas triásicas en el flanco occidental del Terreno Tahamí, cordillera Central de Colombia. Boletín Ciencias de la Tierra, (22): 49–100.

Page 16: The Anacona Terrane: A Small Early Paleozoic Peri ...€¦ · The Anacona Terrane A Small Early Paleozoic Peri–Gondwanan Terrane in the Cauca–Romeral ault System Carboniferous

164

RESTREPO et al.

Restrepo, J.J. & Toussaint, J.F. 1977. Anfibolitas granatíferas de Cal-das, Antioquia. Boletín Ciencias de la Tierra, (2): 147–154.

Restrepo, J.J. & Toussaint, J.F. 1978. Ocurrencia de Precámbrico en las cercanías de Medellín, cordillera Central de Colombia. Publi-caciones Especiales de Geología, 12: 1–11.

Restrepo, J.J. & Toussaint, J.F. 1984. Unidades litológicas de los alrededores de Medellín. Primera conferencia sobre riesgos geológicos del valle de Aburrá. Sociedad Colombiana de Geología. Memoirs, p. 1–26. Medellín.

Restrepo, J.J. & Toussaint, J.F. 2020. Tectonostratigraphic terranes in Colombia: An update. First part: Continental terranes. In: Gómez, J. & Mateus–Zabala, D. (editors), The Geology of Colombia, Volume 1 Proterozoic – Paleozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Espe-ciales 35, p. 37–63. Bogotá. https://doi.org/10.32685/pub.esp.35.2019.03

Restrepo, J.J., Toussaint, J.F., González, H., Cordani, U., Kawashita, K., Linares, E. & Parica, C. 1991. Precisiones geocronológicas sobre el occidente colombiano. Simposio sobre magmatismo andino y su marco tectónico, Programa Internacional de Cien-cias Geológicas. Memoirs, I, p. 1–21. Manizales.

Restrepo, J.J., Dunlap, W.J., Martens, U., Ordóñez–Carmona, O. & Correa–Martínez, A.M. 2008. Ar–Ar ages of amphibolites from the Central Cordillera of Colombia and their implications for tectonostratigraphic terrane evolution in the northwestern Andes. VI South American Symposium on Isotope Geology. Proceedings CD ROM, p. 1–6. Bariloche, Argentina.

Restrepo, J.J., Ordóñez–Carmona, O., Martens, U. & Correa–Martínez, A.M. 2009. Terrenos, complejos y provincias en la cordillera Central de Colombia. Ingeniería, Investigación y Desarrollo, 9(2): 49–56.

Robison, R.A. & Pantoja–Alor, J. 1968. Tremadocian trilobites from the Nochixtlán region, Oaxaca, Mexico. Journal of Paleontol-ogy, 42(3): 767–800.

Romero, D., Valencia, K., Alarcón, P., Peña, D. & Ramos, V.A. 2013. The offshore basement of Perú: Evidence for different igne-ous and metamorphic domains in the forearc. Journal of South American Earth Sciences, 42: 47–60. https://doi.org/10.1016/j.jsames.2012.11.003

Sánchez–Zavala, J.L., Centeno–García, E. & Ortega–Gutiérrez, F. 1999. Review of Paleozoic stratigraphy of México and its role in the Gondwana–Laurentia connections. In: Ramos, V.A. & Keppie, J.D. (editors), Laurentia–Gondwana connec-tions before Pangea. Geological Society of America, Special Paper 336, p. 211–226. https://doi.org/10.1130/0-8137-2336-1.211

Sepúlveda, R.D. & Saldarriaga, S.M. 1980. Metamorfismo de las ro-cas del oriente del municipio de Caldas, Antioquia. Bachelor thesis, Universidad Nacional de Colombia, 115 p. Medellín.

Siivola, J. & Schmid, R. 2007. List of mineral abbreviations. In: Fettes, D. & Desmons, J. (editors), Metamorphic rocks: A classification and glossary terms. Cambridge University Press, p. 93–110.

Solari, L., Gómez–Tuena, A., Bernal, J.P., Pérez–Arvizu, O. & Tan-ner, M. 2010. U–Pb zircon geochronology with an integrat-ed LA–ICP–MS microanalytical workstation: Achievements in precision and accuracy. Geostandards and Geoanalyti-cal Research, 34(1): 5–18. https://doi.org/10.1111/j.1751-908X.2009.00027.x

Stewart, J.H., Blodgett, R.B., Boucot, A.J., Carter, J.L. & López, R. 1999. Exotic Paleozoic strata of Gondwanan provenance near Ciudad Victoria, Tamaulipas, México. In: Ramos, V.A. & Kep-pie, J.D. (editors), Laurentia–Gondwana connections before Pangea. Geological Society of America, Special Paper 336, p. 227–252. https://doi.org/10.1130/0-8137-2336-1.227

Sun, S.S. & McDonough, W.F. 1989. Chemical and isotopic systemat-ics of oceanic basalts: Implications for mantle composition and processes. In: Saunders, A.D. & Norry, M.J. (editors), Mag-matism in the ocean basins. Geological Society of London, Special Publication 42, p. 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

Tassinari, C.C.G., Bettencourt, J.S., Geraldes, M.C., Macambira, M.J.B. & Lafon, J.M. 2000. The Amazonian Craton. In: Cordani, U.G., Milani, E.J., Thomaz–Filho, A. & Campos, D.A. (editors), Tec-tonic evolution of South America. 31st International Geological Congress. Proceedings, p. 41–95. Rio de Janeiro, Brazil.

Toussaint, J.F. & Restrepo, J.J. 1989. Acreciones sucesivas en Colombia: Un nuevo modelo de evolución geológica. V Congreso Colom-biano de Geología. Memoirs, I, p. 127–146. Bucaramanga.

Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W. & Beltrán, A. 2011. Geochronology, geochemistry and tectonic evolution of the Western and Central Cordilleras of Colom-bia. Lithos, 125(3–4): 875–896. https://doi.org/10.1016/j.lith-os.2011.05.003

Vinasco, C.J., Cordani, U.G., González, H., Weber, M. & Peláez, C. 2006. Geochronological, isotopic, and geochemical data from Permo–Triassic granitic gneisses and granitoids of the Colom-bian central Andes. Journal of South American Earth Sciences, 21(4): 355–371. https://doi.org/10.1016/j.jsames.2006.07.007

Wasteneys, H.A., Clark, A.H., Farrar, E. & Langridge, R.J. 1995. Gren-villian granulite–facies metamorphism in the Arequipa Massif, Peru: A Laurentia–Gondwana link. Earth and Planetary Sci-ence Letters, 132(1–4): 63–73. https://doi.org/10.1016/0012-821X(95)00055-H

Zapata, J.P. & Cardona, A. 2017. Unidades miloníticas asociadas a eventos colisionales del Cretácico Superior en el margen occidental de la cordillera Central. XVI Congreso Colombiano de Geología and III Simposio de Exploradores. Memoirs, p. 1889–1891. Santa Marta.

Page 17: The Anacona Terrane: A Small Early Paleozoic Peri ...€¦ · The Anacona Terrane A Small Early Paleozoic Peri–Gondwanan Terrane in the Cauca–Romeral ault System Carboniferous

165

The Anacona Terrane: A Small Early Paleozoic Peri–Gondwanan Terrane in the Cauca–Romeral Fault System

Car

boni

fero

usD

evon

ian

Explanation of Acronyms, Abbreviations, and Symbols:

CL CathodoluminescenceE–MORB Enriched mid–ocean ridge basaltLA–ICP–MS Laser ablation inductively coupled plasma mass spectrometryLow–P Low pressureMORB Mid–ocean ridge basalt

MSWD Mean square weighted deviationN–MORB Normal mid–ocean ridge basaltOIB Ocean island basaltPT Pressure and temperature REE Rare earth elementUNAM Universidad Nacional Autónoma de México

Authors’ Biographical Notes

Jorge Julián RESTREPO obtained a degree in mining engineering and met-allurgy at the Universidad Nacional de Colombia in 1968 and a Master of Sci-ence degree in geology at the Colorado School of Mines in 1973. He was a fac-ulty member of the Universidad Nacio-nal de Colombia Sede Medellín, for over 40 years and currently holds the titles of Emeritus Professor and “Maestro Uni-

versitario”. He taught Mineralogy, Metamorphic Petrology, Regional Geology, Field Geology, and Geochronology. His research focused on plate tectonics applied to the geology of Colombia, tectonostratigraph-ic terranes, geochronology, and the geologic evolution of metamorphic and mafic/ultramafic complexes of the Central Cordillera. Other inter-ests are photography, genealogy, and the study of passifloras.

Uwe MARTENS graduated with a de-gree in geological engineering from the Universidad Nacional de Colombia, Sede Medellín, and a PhD in geological and environmental science from Stan-ford University. He has taught at the Universidad Nacional de Colombia, San Carlos National University in Guatema-la, and Stanford University. He currently is a visiting researcher at Centro de Geo-

ciencias, UNAM, México and works as an independent consultant in the field of source–to–sink analysis.

Wilmer E. GIRALDO–RAMÍREZ is a geological engineer who graduated from the Universidad Nacional de Colombia Sede Medellín (2014) and has a Master of Science degree in basins and mobile belt analysis from the Universidade do Estado do Rio de Janeiro (2017). He has worked at institutions such as the Uni-versidad Nacional de Colombia, Uni-

versidad Católica de Oriente, Corporación Autónoma Regional de las Cuencas de los Ríos Negro y Nare “Cornare” and city of Marinilla. His main interests are the geodynamic evolution of the northern Andes, and he has secondary interests in the land use planning of eastern An-tioquia, biology of Passiflora and sports including rugby and Brazilian jiu–jitsu.

Page 18: The Anacona Terrane: A Small Early Paleozoic Peri ...€¦ · The Anacona Terrane A Small Early Paleozoic Peri–Gondwanan Terrane in the Cauca–Romeral ault System Carboniferous