the adventures of a reactive intermediatestoltz2.caltech.edu/seminars/2006_tadross.pdf · the...

44
Pamela Tadross Stoltz Group Literature Presentation Noyes 147 8 PM, May 15, 2006 Benzyne The Adventures of a Reactive Intermediate

Upload: trankhuong

Post on 28-Feb-2018

229 views

Category:

Documents


5 download

TRANSCRIPT

Pamela TadrossStoltz Group Literature Presentation

Noyes 1478 PM, May 15, 2006

BenzyneThe Adventures of a

Reactive Intermediate

Cl

NaNH2

NH3 (l)

NH2NH2

+

Nearly 1:1 ratio!

History and Structure

Nu-

Nu

E

E+

Polar Reactions Pericyclic Reactions

O+ O

NPh

NN

Methods of Generation+N2

-O2C

TMS

OTf

Cl

Overview

Applications to Natural Product Synthesis

PhN3

Cl

NaNH2NH3 (l), -38 °C

NH2 OCH3

Cl

OCH3

NEt2

Cl LiNEt2NEt2

NEt2

+

Unusual Rearrangements of Substituted Benzenes

Gilman, Wittig, and Roberts observed strange behavior in reactions of halobenzenes in the 1940s and 1950s

F C6H5Li

Li

G. Wittig, Naturwissenschafter 1942, 30, 696.

LiNEt2

J. D. Roberts, H. E. Simmons Jr., L. A. Carlsmith, C. W. Vaughan, J. Am. Chem. Soc. 1953, 75, 3290.

H. Gilman, S. Avakian, J. Am. Chem. Soc. 1945, 67, 349.F. W. Bergstrom, C. H. Horning, J. Org. Chem. 1946, 11, 334.

NH3 (l), -38 °C

NH3 (l), -38 °C

THF, -78 °C

Wittig's ExplanationClose but no cigar...

FC6H5Li

F

Li

zwitterionic intermediate

C6H5Li

Li

G. Wittig, Naturwissenschafter 1942, 30, 696.

- LiF

THF, -78 °C

John D. Roberts: The Right Place at the Right Time

Cl LiNEt2NEt2

NEt2

+NH3 (l), -38 °C

Reactions are very rapid even at -38 °C

No reaction occurs when there is no hydrogen adjacent to the leaving halogen

The entering amino group is never more than one carbon away from the position occupied by the leaving halogen

no p-aminotoluene formed

The starting halides and the resulting anilines are not isomerized under reaction conditions

Br

LiNEt2NH3 (l), -38 °C

No Reaction

J. D. Roberts, H. E. Simmons Jr., L. A. Carlsmith, C. W. Vaughan, J. Am. Chem. Soc. 1953, 75, 3290.

ClNH3 (l), -38 °C

Cl NEt2 NH3 (l), -38 °C NEt2

Further Mechanistic Evidence...

NH2

NH2 NH2

Cl

Cl

Cl

% % %

45

40

none

55 none

52

62

8

38

substrate

product

J. D. Roberts, C. W. Vaughan, L. A. Carlsmith, D. A. Semenow, J. Am. Chem. Soc. 1956, 78, 611-14.

The Classic 14C Labeling Experiment

Cl

NaNH2

NH3 (l)

NH2

The Hypothesis: If one started with chlorobenzene-1-14C, equal amounts of aminobenzenes with the 14C at C-1 and C-2 would be formed.

NH2

+

Nearly 1:1 ratio!

Roberts' Proposed Intermediate:

BENZYNE!

"These facts as well as the orientation data for various substituents can be accomodated by an elimination-addition mechanism involving at least transitory existence of an electrically neutral "benzyne" intermediate."

J. D. Roberts, H. E. Simmons Jr., L. A. Carlsmith, C. W. Vaughan, J. Am. Chem. Soc. 1953, 75, 3290.

Further Support from Wittig and Huisgen

O+ O

Wittig finds that benzyne can participate in Diels-Alder reactions as a dienophile:

Huisgen reports that arynes generated from different precursors have identical reactivity:

F

Li

F

MgBr

N2+

CO2-

SO2

NN

O

O

k1

k2

k1/k2 = constant

G. Wittig, L. Pohmer, Angew. Chem. 1955, 67(13), 348.

R. Huisgen, R. Knorr, Tetrahedron Lett. 1963, 1017.

Cl

NaNH2

NH3 (l)

NH2NH2

+

Nearly 1:1 ratio!

History and Structure

Nu-

Nu

E

E+

Polar Reactions Pericyclic Reactions

O+ O

NPh

NN

Methods of Generation+N2

-O2C

TMS

OTf

Cl

Overview

Applications to Natural Product Synthesis

PhN3

Generation of BenzyneEarlier basic and harsh methods give way to recent neutral and mild methods of aryne generation

F

Li

F

MgBr

N2+

CO2-

SO2

NN

X

X1

X2

NN

N

NH2

TMS

OTf

I

TMS

Ph

X

OTf

Bu4NFstrong base

Pb(OAc)2

heat

n-BuLiBu4NF

Iodonium Triflate: T. Kitamura, M. Yamane, J. Chem. Soc., Chem. Commun. 1995, 983. Silyl Triflate: Y. Himeshima, T. Sonoda, H. Kobayashi, Chem. Lett. 1983, 1211. Benztriazole: C. D. Campbell, C. W. Rees, J. Chem. Soc. (C) 1969, 742. Halo Triflate: T. Matsumoto, T. Hosoya, M. Katsuki, K. Suzuki, Tet. Lett.

1991, 32, 6735. Diazonium Carboxylate: L. Friedman, F. M. Logullo, J. Am. Chem. Soc. 1963, 85, 1792. Fluoro Magnesium and Fluoro Lithium: R. W. Hoffmann, Dehydrobenzene and Cycloalkanes, Academic Press, New York, 1967. Benzothiadiazol-1,1-dioxide: G. Wittig, R. W. Hoffmann, Org. Synth., Coll. Vol.

V, 60, 1971.

0 °C

Mg orRMgX

0 °C

-20 °C

OTf

Cl

NaNH2

NH3 (l)

NH2NH2

+

Nearly 1:1 ratio!

History and Structure

Nu-

Nu

E

E+

Polar Reactions Pericyclic Reactions

O+ O

NPh

NN

Methods of Generation+N2

-O2C

TMS

OTf

Cl

Overview

Applications to Natural Product Synthesis

PhN3

Polar Reactions of BenzyneBenzyne reacts as both nucleophile and electrophile

Nu-

Nu NuE++ +

E E

Nu-

Nu

+ E+Nu

E

Regiochemistry of Nucleophilic Additions to BenzyneEWG

δ+

δ−

+ Nu-

EWG

Nu

EDG

δ+

δ−+ Nu-

EDGNu

Harold Hart; in Chemistry of Triple Bonded Functional Groups; Saul Patai, Ed.; The Chemistry of Functional Groups, Supplement C2; Wiley: Chichester, UK, 1994, 1017-1134.

Additions of Carbon Nucleophiles

MgBr

MgBr

E+E = H, CHO, CO2H, RX

Grignard reagents:

Organolithium reagents:

NORLi

NO LiR

E+NO

R

E

H+

OHO

R

E

Copper-lithium reagents:

NO

1. R2CuLi2. E+

NO

E

R

H+

OHO

E

R

H. Hart, A. Saednya, Synth. Commun. 1988, 18, 749.

E

P. D. Pansegrau, W. F. Rieker, A. I. Meyers, J. Am. Chem. Soc. 1988, 110, 7178.M. E. Jung, G. T. Lowen, Tetrahedron Lett. 1986, 27, 5319.

E = H, CHO, CO2H, RX

E = H, CHO, CO2H, RX

Synthesis of Substituted Indoles

FN

R

Br tBuLi, THF, -110 °C E+

NR

LiN

RN

R

E

R = Me, allyl

DIBAL[NiCl2(dppp)]PhMe, 20 °C N

H

E R E+ E YieldMe H2O H 75%Me PhCHO PhC(H)OH 69%allyl Bu3SnCl SnBu3 52%Me Bu3SnCl SnBu3 67%N

R

E

F

NBr

tBuLi, THF, -110 °C

N

E

E+

pTsOH, PhMe110 °C

N

E

E = Br: 59%E = CO2Et: 65%

J. Barluenga, F. J. Fananas, R. Sanz, Y. Fernandez, Chem. Eur. J. 2002, 8(9), 2034.

Stabilized Carbon Nucleophiles

OMe

R1

R2

Br+ R3 CN NaNH2

OMe

R1

R2

CN

R3

H3O+

O

R1

R2

R3

O

S. P. Khanapure, E. R. Biehl, J. Org. Chem. 1990, 55, 1471.

+R CN

CN

R

Li

Cl

Li R

N Li

CN

R

LiH+

CN

R

Alternative Pathway: C-C Insertion

J. H. Waggenspack, L. Tran, S. Taylor, L. K. Leung, M. Morgan, A. Deshmukh, S. P. Khanapure, E. R. Biehl, Synthesis, 1992, 765.

R = Ph: 40%R = 3-FC6H4: 80%R = 3-MeOC6H4: 70%

ROMe

Br

NC CO2Et

LDA

CNO

OEtR

OMeLi O-

OEt

CN

Li+

OEt

O

Li

CN

ROMe

More Stabilized Carbanions

ROMe OH

CN

OMe OMeRR R = H: 36%

R = OMe: 38%

B. M. Bahwal, S. P. Khanapure, H. Zhang, E. R. Biehl, J. Org. Chem. 1991, 56, 2846.

CO2H

RBr S

CN

LDA+

CO2H

R

Anthraquinone Synthesis:

S

CN

R

NHO

S

Basic Skeleton of Ergot and Aristolactam Alkaloids:

A. Wang, E. R. Biehl, J. Chem. Soc., Perkin Trans. 1 1998, 1461.R = OMe: 77%R = Me: 57%

OMeR

Reactions of Enolates with Arynes

OOO

Br

NaNH2t-BuONa+

O

O

OOOHO

AcOO

Li

NH3

O

Facile access to strained aromatic polycyclic compounds

83%

M. A. Zouaoui, A. Mouaddib, B. Jamart-Gregoire, S. Ianelli, M. Nardelli, P. Caubere J. Org. Chem. 1991, 56, 4078.

Br

+NHAr

O LiTMP

NAr

O-Li++

NAr

O-Li+Li

NAr

O-Li+

NHAr

O

NHAr

O

A. R. Deshmukh, T. Long, E. R. Biehl, J. Org. Chem. 1992, 57, 667.A. R. Deshmukh, H. Zhang, T. L. Duc, E. R. Biehl, J. Org. Chem. 1992, 57, 2485.

+

69:9

Total Synthesis of Dynemicin A

OMOM

OMOM

BrMeO2C CO2Me

Li

NLi

OMOM

OMOM

CO2Me

CO2MeCO2Me

O

OMe

MOMO

MOMO

MOMO

MOMO

CO2Me

OMeO

OMOM

OMOM

CO2Me

CO2Me

H+

71%

THF, -78 °C

OMOM

OMOM

CO2Me

CO2Me

stepsHNOH

OH

O

O OH

MeCO2H

OMeH

O

H

dynemicin A

M. D. Shair, T. Y. Yoon, K. K. Mosny, T. C. Chou, S. J. Danishefsky, J. Am. Chem. Soc. 1996, 118, 9509.

K. C. Nicolaou, S. A. Snyder, Dynemicin A. Classics in Total Synthesis II; Wiley-VCH: Weinheim, 2003; 75-108.

Total Synthesis of Fredericamycin AOMe

OMeMeO

Br

MeO2C CO2Me

NLi

OMe

MeOOMe

OMe

MeOOMe

CO2Me

CO2MeCO2Me

CO2Me

+

steps steps

OO

OMe

MeOOMe

OMe

MeOOMe

OMeO

O OMe

O

O

O

OMe

MeOOMe

OMeO

O

steps

HN

O HO O

O

OH

O

OMe

HO

O

fredericamycin A

Y. Kita, K. Higuchi, Y. Yoshida, K. Iio, S. Kitagaki, K. Ueda, S. Akai, H. Fujioka, J. Am. Chem. Soc. 2001, 123, 3214.

58%

C-C σ-Bond Insertion Reactions

TMS

OTfEtO

O O+

CsF (2.5 equiv)MeCN (0.2 M)80 °C, 1.5 h EtO

O O

Ph

+

O

O OEt

EtO

O O Cs+

EtO2C

OO

OOEt

Cs+

H+H+

U. K. Tambar, B. M. Stoltz, J. Am. Chem. Soc. 2005, 127, 5340.

R R

O OTMS

OTf+

KF (3 equiv)18-crown-6 (3 equiv)

THF, room temp.

R

R

O

O

R = OEt: 71%R = Ph: 68%R = Me: 56%R, R = —O(CH2)8O—: 61%

H. Yoshida, M. Watanabe, J. Ohshita, A. Kunai, Chem. Commun. 2005, 3292.

Averufin

O

OOR

RO

BrOR

O

O+ LiTMPO

O OR

O

O

RO

OR

O

O

O

O

OR

RO

ORsteps

O

O

O

O

OH

HO

OH

averufinC. A. Townsend, S. G. Davis, S. B. Christensen, J. C. Link, C. P. Lewis, J. Am. Chem. Soc. 1981, 103, 6885.

Cephalotaxine

O

ON

OMe

H

HOH

O

O Cl

N

OMeO

DME, 50 °C

O

O

N

OMeO

cephalotaxine

O

ON

OMe

H

O

DIBALPhH, 25 °C

16%

R = CH2OCH3

M. F. SemmeIhack, B. P. Chong, L. D. Jones, J. Am. Chem. Soc. 1972, 94, 8629.

35%

KCPh3

Additions of Nitrogen NucleophilesPreparation of alkylated anilines:

Cl LiNH3

NH2

Preparation of indoles:

N

Ph HPh+ N Ph

HPh

N

PhHPh

NH

Ph

Ph

N

Ph+ N

Ph

HN

Ph

50%

A. G. Giumanini, J. Org. Chem. 1971, 37, 513.

F. W. Bergstrom, C. H. Horning, J. Org. Chem. 1946, 11, 334.

V. Nair, K. H. Kim, J. Org. Chem. 1975, 40, 3784.

HN Ph

14%

Preparation of Acridones

N

OMe

O

Li+

N

CO2Me

N

O

M. Watanabe, A. Kurosaki, S. Furukawa, Chem. Pharm. Bull. 1984, 32, 1264.

CO2Me

NLi

O

BrOMe

+ LiICA

N

O

O

LiICA = NLi

acronycine, 41%

M. Watanabe, A. Kurosaki, S. Furukawa, Chem. Pharm. Bull. 1984, 32, 1264.

Total Synthesis of γ-Licorane

MeOCl

NH2MeO

NH2 NHMeO

NO

Br

OO

NLi

NO

OO

O

O N

O

O

O N

H HH

γ-licorane

40%

Two benzyne cyclization reactions complete the skeleton...

H. Ilda, S. Aoyagi, C. Kibayashi, J. Chem. Soc. Perkin Trans. 1, 1975, 2502.N. Ueda, T. Tokuyama, T. Sakan, Bull. Chem. Soc. Japan, 1966, 39, 2012.

Competitive Cyclization Reactions

NHO

RO

Br

ROOR

NaHDMSO

NO

RO

ROOR

N

RO

HO

ROOR

20%

N

RO

HOOR

OR30%

ortho cyclizationamine cyclization

ORO

N

ROOR

2%

N

ROOR

HOOR

CH2SOMe

para cyclization

S. V. Kessar, S. Batra, S. S. Ghandi, Indian J. Chem. 1970, 8, 468. S. V. Kessar, R. Randhawa, S. S. Ghandi, Tetrahedron Lett. 1973, 2923. S. V. Kessar, S. Batra, U. K. Nadir, S. S. Ghandi, Indian J. Chem. 1975, 13, 1109.

T. Kametani, S. Shibuya, K. Kigasawa, M. Hiiragi, O. Kusama, J. Chem. Soc. C 1971, 2712. T. Kametani, K. Fukumoto, T. Nakano, Tetrahedron 1972, 28, 4667.M. S. Gibson, G. W. Prenton, J. M. Walthew, J. Chem. Soc. C 1970, 2234. I. Ahmad, M. S. Gibson, Can. J. Chem. 1975, 53, 3660.

CH2SOMe

aporphine

dibenzindolizine

morphinandienone

Ortho Cyclizations of Imines and Anilines

Cl N NH2

NH2

N N

NH2

N

S. V. Kessar, D. Pal, M. Singh, Tetrahedron 1973, 29, 177.S. V. Kessar, Acc. Chem. Res. 1978, 11, 283.

> 90%

NMeO

OMe

O

O

chlerythrine

NMeO

MeO

OH

OMe

fagaronineS. V. Kessar, M. Singh, P. Balakrishnan, Indian J. Chem. 1974, 12, 323. J. P. Gillespie, L. G. Amros, F. R. Stermitz, J. Org. Chem. 1974, 39, 3239

Synthesis of Benzophenanthridine Alkaloids

Cl HN NH2 N NH

S. V. Kessar, Acc. Chem. Res. 1978, 11, 283.

Cl

NaNH2

NH3 (l)

NH2NH2

+

Nearly 1:1 ratio!

History and Structure

Nu-

Nu

E

E+

Polar Reactions Pericyclic Reactions

O+ O

NPh

NN

Methods of Generation+N2

-O2C

TMS

OTf

Cl

Overview

Applications to Natural Product Synthesis

PhN3

Diels-Alder Reactions of Arynes

O+ O

G. Wittig, L. Pohmer, Angew. Chem. 1955, 67, 348.

+ O

PhPh

PhPh

Ph

Ph Ph

Ph

O

PhPh

PhPh

-CO

95%

C. D. Campbell, C. W. Rees, Proc. Chem. Soc. 1964, 296.

88%

O

O+ O

O

36%

-CO2

G. Wittig, R. W. Hoffmann, Chem. Ber. 1962, 95, 2718.

+

R

R

R = H, CH3, CO2Me, NO2, CH2Cl, CH2OH, CH(OMe)2, CN, etc.

Yields 6-75%

E. C. Kornfeld, P. Barney, J. Blankley, W. Faul, J. Med. Chem. 1965, 8, 342.

Total Synthesis of the Gilvocarcins

OOBn

OBn

H MeOBn

TfO

IOBn

O OMe+ n-BuLi

OOBn

OBn

H MeOBn

OBn

O

OMe

OOBn

OBn

H MeOBn

OBnOMe

OH OOH

OH

H MeOH

OHOMe

O

O

OMe

R

gilvocarcin M: R = Megilvocarcin V: R = vinylgilvocarcin E: R = Et

THF, -78 °C10 min

88%

O

OMe

OR OH OR

OMe

O

OR OMe OR

OH

OMe

Head-to-head Product Head-to-tail Product

T. Matsumoto, T. Hosoya, K. Suzuki, J. Am. Chem. Soc, 1992, 114, 3568.T. Hosoya, E. Takashiro, T. Matsumoto, K. Suzuki, J. Am. Chem. Soc. 1994, 116, 1004.

Application to the Synthesis of Aporphinoid Natural Products

N

O

MeO

MeO

lysicamine

N

O

O

O

duguenaine

N

O

MeO

OMeO

alkaloid PO-3

NH

OOMeO

MeO

norcepharadione B

N

OOMeO

MeO

cepharadione B

N

OOMeO

MeO

MeOOMe

pontevedrine

N. Atanes, L. Castedo, E. Guitian, C. Saa, J. M. Saa, R. Suau, J. Org. Chem. 1991, 56, 2984.H. Guinaudeau, M. Lebouef, A. Cave, J. Nat. Prod. 1983, 46, 761.

M. Shamma, The Isoquinoline Alkaloids; Academic Press: New York, 1972.

Norcepharadione B, Cepharadione B, and Pontevedrine

NR3

OOMeO

MeO

R1

R2

+

NR3

OOMeO

MeONR3

OOMeO

MeOaromatization

R1

R2R1

R2

NR3

OOMeO

MeO

R1

R2

R1 = R2 = R3 = H: norcepharadione BR1 = R2 = OMe, R3 = Me: pontevedrineR1 = R2 = H, R3 = Me: cepharadione B

N. Atanes, L. Castedo, E. Guitian, C. Saa, J. M. Saa, R. Suau, J. Org. Chem. 1991, 56, 2984.

Yields 20% - 68%

Total Syntheses of Nitidine and Fagaronine

N

O

O

OR3

CO2R4

R5O

R5O

+

O

ON

R1

R2

R5O

R5OO

R3

R1

R2-CO2

CO2R4

N

CO2R4

R1

R2R5O

R5OO

R3

Δ

N

MeO

MeO

R1

R2R1 = OH, R2 = OMe: fagaronineR1 + R2 = -OCH2O-: nitidine

D. Perez, E. Guitian, L. Castedo, J. Org. Chem. 1992, 57, 5911.

40%

Total Synthesis of Protoberberines: Corydaline

N

MeO

MeOOMe

OMe

H

H

N

O

OMeO

MeO

+OMe

N

O

OMeO

MeO

OMe

OMe

N

O

OMeO

MeO

OMe

N O

OMe

OMe-CO

MeO

MeO

OMe

OMe

32% corydaline

C. Saa, E. Guitian, L. Castedo, R. Suau, J. M. Saa, J. Org. Chem. 1986, 51, 2781.A. Cobas, E. Guitian, L. Castedo, J. Org. Chem. 1992, 57, 6765.

single regioisomer

Total Synthesis of the Lycorines: Intramolecular Aryne Diels-Alder Reactions

O

HN

Br LDA

N

OLi

N

OH

N

O

Yields 61% - 91%

N

O

O

HOOH

H H

lycorine

N

O

O

O

hippadine

N

O

O

O

OHkalbretorine

N

Cl

O

O

anhydrolycorinium chloride

N

Cl

O

O

OH

ungeremineC. Gonzalez, D. Perez, E. Guitian, L. Castedo, J. Org. Chem. 1995, 60, 6318.

N

NH

Br

O

N

NO

HOOCOOC N

NH

O

HOOCN

NH

HOOCH

Intramolecular Diels-Alder: Lysergic Acid

LDA-30 °C

lysergic acid30%B. Gomez, E. Guitian, L. Castedo, Synlett, 1992, 903.

Pseudopterosin A and E Aglycon

OMeOMe

Me

O

OBr

O

OMe

OMeOMe

Me

O

OMe

OMeOMe

Me

+

58

42

Me Me

MeH

Me OHOH

Me

pseudopterosin A and E aglycon

K. R. Buszek, D. L. Bixby, Tetrahedron Lett. 1995, 36, 9129.

71%

Mansonone I and F

O

BrBr

MeO

Me

O

OO

Me

O

MeO

Me

O

OO

Me

n-BuLi

O

O

O

O

MeMe

MeO

61%

O

OO

Me

Me

Me

OH O

OO

Me

Me

Me

mansonone I mansonone F

W. Best, D. Wege, Aust. J. Chem. 1986, 39, 647.

H2SO4EtOH

[2 + 2] Cycloadditions of Arynes

R

R+

N2+

CO2-

In the absence of a reactive partner:

apparent [2 + 2] cycloaddition product

R

R

With other olefins:biphenylene also seen as side product in most aryne reactions!

R

RR

R

Proposed Mechanism

Problem: [2 + 2] cycloadditions are not allowed thermally!

R

R

+ R

RR

RR

R

R

R

R R

stepwise addition

Best yields and regiochemical control with R = electron-donating groups

Facile Access to Benzocyclobutenes

R1

R2

Br

OMeMeO+ NaNH2

R1

R2OMe

OMe

R1 R2 YieldH

OMeOMe

HCl

HH

OMeOMe

H

63%76%68%56% (+8% other regioisomer)76%

Rationalizing RegiochemistryOMe

MeO δ−

δ+

OMeMeO

δ−δ+

OMeMeO

OMe

OMe

OMeMeO

OMeOMe

R. V. Stevens, G. S. Bisacci, J. Org. Chem. 1982, 47, 2393.L. S. Liebeskind, L. J. Lescosky, C. M. McSwain Jr., J. Org. Chem. 1989, 54, 1435.

R1

R2OMe

OMeH3O+

R1

R2 O

Hydrolysis to benzocyclobutenones:

OMeMeO

Br

Total Synthesis of Taxodione

MeO OMe+

1. NaNH2

2. H3O+

OMeMeO

OO

O

HO

HH

taxodioneR. V. Stevens, G. S. Bisacchi, J. Org. Chem. 1982, 47, 2396.

Li

OMeOMe

OH

OMeOMe

O

XylopinineCO2

-

N2+

OAc+

OAc

N

MeO

MeOΔ

NMeO

MeO

N

MeO

MeO

T. Kametani, T. Kato, K. Fukumoto, Tetrahedron 1974, 30, 1043.

OMe

OMe

OMe

OMe OMeOMe

N

MeO

MeO

OMeOMe

xylopinine

t-BuOKt-BuOH

Δ

[2 + 2] Aryne Cycloadditions in Steroid Synthesis

OMeOMe

I O

O

MeO2C+

K2CO3, Me2CO

> 93%

OMeO2C

O

Δ> 85%

OMeO2C

O

OO H

HMeO2C

O

H H

HMeO2C

O

Steroids obtained in 5 steps from 1,3-butadiene in overall yields of 27-33%

P. Y. Michellys, P. Maurin, L. Toupet, H. Pellissier, M. Santelli, J. Org. Chem. 2001, 66, 115.

single diastereomer

1,3-Dipolar Cycloadditions of Arynes

NO

NNN

NO

ONN

O

diazoalkanes

nitrile oxides

azides

nitrones

+

O N

N NN

NO

NN

EtO2C

F. Minisci, A. Quilico, Chimica e Industria 1964, 46, 428

R. Huisgen, R. Knorr, Naturwiss. 1961, 48, 716.

55%

G. A. Reynolds, J. Org. Chem. 1964, 29, 3733.G. Wittig, R. W. Hoffmann, Chem. Ber. 1962, 95, 2718.

88%

R. Huisgen, R. Knorr, Naturwiss. 1961, 48, 716.

92%

Some early examples...

Regiochemical Controlor the lack thereof...

R2

R1

OTf

Br

NPh

t-Bu

O

n-BuLiTHF

+

ON t-Bu

PhR1

R2

+ NO

Ph

R1

R2t-Bu

A B

R1 R2 %A %BOMOM

Met-BuTMSTBS

HHH

MeMe

9123765

12

063148982

T. Matsumoto, T. Sohma, S. Hatazaki, K. Suzuki, Synlett, 1993, 843.

R

N

Ph

t-BuO+

R

δ+

δ−

R

δ+

δ−

N

Ph

t-BuO

N

Ph

t-BuO ON t-Bu

PhR

NO

Ph

R

t-Bu

R = EWG

R = EDG

Regiochemical rationale:

Steric effects also influence the regiochemistry!

EWG

EDG

Food for Thought...

Arynes are highly reactive intermediates that can participate in a wide variety of polar and pericyclic reactions

Since their discovery in 1953, the synthetic power of arynes has barely been explored - there is an immense amount of uncharted territory!

C-C (and maybe even C-H) σ-bond insertions seem to hold the most potential

Insertion into strained ring systems (e.g. β-lactams, β-oxonitriles)

Transition metal catalyzed reactions of arynes (especially Pd and Ni) have only recently been investigated - opportunity to control aryne reactivity

There is a need for better control of regiochemistry in aryne reactions

There is a need for better understanding and control of aryne reactivity pathways (e.g. [2 + 2] vs. ene vs. Diels-Alder)

M. A. Bennett, E. Wenger, Chem. Ber. 1997, 130, 1029.D. Pena, S. Escudero, D. Perez, E. Guitian, L. Castedo, Angew. Chem. Int. Ed. Engl. 1998, 37, 2659.D. Pena, D. Perez, E. Guitian, L. Castedo, Org. Lett. 1999, 1, 1555.K. V. Radhakrishnan, E. Yoshikawa, Y. Yamamoto, Tetrahedron Lett. 1999, 121, 5827.D. Pena, D. Perez, E. Guitian, L. Castedo, J. Org. Chem. 2000, 65, 6944.D. Pena, D. Perez, E. Guitian, L. Castedo, Synlett 2000, 7, 1061.E. Yoshikawa, Y. Yamamoto, Angew. Chem. Int. Ed. Engl. 2000, 39, 173.E. Yoshikawa, K. V. Radhakrishnan, Y. Yamamoto, Tetrahedron Lett. 2000, 41, 729.

Handy Reviews and Books

Books: R. W. Hoffmann; Dehydrobenzene and Cycloalkynes; Academic Press: New York, 1967. J. D. Roberts; The Right Place at the Right Time; J. I. Seeman, Ed.; Profiles, Pathways, and Dreams Series; American Chemical Society: Washington, DC, 1990.

Review Articles: T. L. Gilchrist; Arynes. In The Chemistry of Triple-bonded Functional Groups, Supplement C; S. Patai and Z. Rappoport, Eds.; The Chemistry of Functional Groups Series; John Wiley and Sons: New York, 1983; Volume 1, pp. 383-419. H. Hart; Arynes and Heteroarynes. In The Chemistry of Triple-bonded Functional Groups, Supplement C; S. Patai, Ed.; The Chemistry of Functional Groups Series; John Wiley and Sons: New York, 1983; Volume 2, pp. 1017-1134. L. Castedo; E. Guitian; Synthesis of Natural Products via Arynes. In Studies in Natural Products Chemistry; Atta-ur- Rahman, Ed.; Stereoselective Synthesis (Part B) Series; Elsevier: Amsterdam,1989; Volume 3, pp. 417-454. M. Winkler; H. H. Wenk; W. Sander; Arynes. In Reactive Intermediate Chemistry; R. A. Moss, M. S. Platz, M. Jones Jr., Eds.; Wiley-Interscience: New York, 2004; pp. 741-794. H. Pellissier, M. Santelli; The Use of Arynes in Organic Synthesis, Tetrahedron 2003, 59, 710-730.