thales overview oct 2013 v3

83
Extending the Boundaries Of Organic Synthesis with Flow Chemistry Heather Graehl, MS, MBA Director of Sales North America ThalesNano North America

Upload: hgraehl

Post on 11-May-2015

82 views

Category:

Technology


1 download

TRANSCRIPT

Page 1: Thales Overview oct 2013 v3

Extending the Boundaries Of Organic Synthesis with Flow Chemistry

Heather Graehl, MS, MBA Director of Sales North America ThalesNano North America

Page 2: Thales Overview oct 2013 v3

Who  are  we?  

•  ThalesNano  is  a  technology  company  that  gives  chemists  tools  to  perform  novel,  previously  inaccessible  chemistry  safer,  faster,  and  simpler.  

•  Based  Budapest,  Hungary  •  Market  leader:  800  customer  install  base  on  6  conFnents.  •  33  employees  with  own  chemistry  team.  

•  11  years  old-­‐most  established  flow  reactor  company.  •  R&D  Top  100  Award  Winner.

Page 3: Thales Overview oct 2013 v3

Customers (>800 worldwide)

Page 4: Thales Overview oct 2013 v3

What is flow chemistry?

Page 5: Thales Overview oct 2013 v3

What  is  flow  chemistry?  

•  Performing  a  reacFon  conFnuously,  typically  on  small  scale,  

•  through  either  a  coil  or  fixed  bed  reactor.  

OR  

Pump  Reactor   CollecFon  

Page 6: Thales Overview oct 2013 v3

Mixing  (batch  vs.  flow)  

Flow  reactors  can  achieve  homogeneous  mixing  and  uniform  hea6ng  in  microseconds  (suitable  for  fast  reac6ons)  

Page 7: Thales Overview oct 2013 v3

MiniaturizaFon:  Enhanced  temperature  control    Large  surface/volume  rate  

•  Microreactors  have  higher  surface-­‐to-­‐volume  raFo  than  macroreactors,  heat  transfer  occurs  rapidly  in  a  flow  microreactor,  enabling  precise  temperature  control.  

Yoshida,  Green  and  Sustainable  Chemical  Synthesis  Using  Flow  Microreactors,  ChemSusChem,  2010  

Page 8: Thales Overview oct 2013 v3

KineFcs  In  Flow  Reactors  

•  In  a  microfluidic  device  with  a  constant  flow  rate,  the  concentraFon  of  the  reactant  decays  exponenFally  with  distance  along  the  reactor.    

•  Thus  Fme  in  a  flask  reactor  equates  with  distance  in  a  flow  reactor  

X  

A  

dX/dt  >  0    

dA/dt  <  0    

Page 9: Thales Overview oct 2013 v3

Reactants

Products

By-products

Traditional Batch Method

Gas inlet

Reactants

Products

By-products

Batch vs. Flow

Better surface interaction Controlled residence time Elimination of the products

Flow Method

H-Cube Pro™

Page 10: Thales Overview oct 2013 v3

Catalyst screening

Parameter scanning: effect of residence time to the conversion and selectivity

Catalyst Flow rate / mL/

min

Residence time / sec

Conc. / mol/dm3

Conv. / %

Sel. / %

IrO2 2 9 0,2 52 69

Re2O7 2 9 0,2 53 73

(10%Rh 1% Pd)/C

2 9 0,2 79 60

RuO2 (activated)

2 9 0,2 100 100

1 18 0,2 100 99

0,5 36 0,2 100 98

Ru black 2 9 0,2 100 83

1% Pt/C doped with Vanadium

2 9 0,2 100 96

1 18 0,2 100 93

0,5 36 0,2 100 84

Conditions: 70 bar, EtOH, 25°C

Selective aromatic nitro reduction

Increase and decrease of residence time on the catalyst cannot be performed in batch

Page 11: Thales Overview oct 2013 v3

Heating Control

Lower reaction volume. Closer and uniform temperature control

Outcome:

Safer chemistry. Lower possibility of exotherm.

Batch

Flow

Larger solvent volume. Lower temperature control.

Outcome:

More difficult reaction control. Possibility of exotherm.

Page 12: Thales Overview oct 2013 v3

Heating Control

Lithium Bromide Exchange

Batch

Flow

•  Batch experiment shows temperature increase of 40°C. •  Flow shows little increase in temperature.

Ref: Thomas Schwalbe and Gregor Wille, CPC Systems

Page 13: Thales Overview oct 2013 v3

Survey  Conducted  

Small  scale:  §  Making  processes  safer  §  Accessing  new  chemistry  

§  Speed  in  synthesis  and  analysis  

§  AutomaFon  

Large  scale:  §  Making  processes  safer  §  Reproducibility-­‐less  batch  to  batch  variaFon  

§  SelecFvity  

   Why  move  to  flow?  

Page 14: Thales Overview oct 2013 v3

Reaction Line

150°C, 100 bar (1450 psi) H2, CO, O2, CO/H2, C2H4, CO2. Reactions in minutes. Minimal work-up.

-70 - +80C O3, Li, -N3, -NO2

Safe and simple to use. Multistep synthesis. 2 step independant T control. Coming: fluorinations, low T selectivity

450°C, 100 bar (1450 psi) New chemistry capabilities. Chemistry in seconds. Milligram-kilo scale Solve Dead-end chemistry. Heterocycle synthesis

H-Cube Pro & Gas Module: Reagent gases

Phoenix Flow Reactor: Endothermic chemistry

IceCube: Exothermic Chemistry

Page 15: Thales Overview oct 2013 v3

H-Cube Catalysis Platform: Making hydrogenations safe, fast, and selective

Page 16: Thales Overview oct 2013 v3

H-Cube Pro Overview

•  HPLC pumps continuous stream of solvent •  Hydrogen generated from water electrolysis •  Sample heated and passed through catalyst •  Up to 150°C and 100 bar. (1 bar=14.5 psi)

Hydrogenation reactions: § Nitro Reduction § Nitrile reduction § Heterocycle Saturation § Double bond saturation § Protecting Group hydrogenolysis § Reductive Alkylation § Hydrogenolysis of dehydropyrimidones § Imine Reduction § Desulfurization

Page 17: Thales Overview oct 2013 v3

No More Hydrogen Cylinders

•  Large cylinders contain 4360 litres of compressed H2

•  They are a severe safety hazard •  H-Cube doesn’t use gas cylinders •  Only water •  Clean •  No transportation costs •  Low energy •  Safe •  Just 2 mL H2 @ 1bar

Page 18: Thales Overview oct 2013 v3

Hydrogen generator cell §  Solid Polymer Electrolyte

High-pressure regulating valves

Water separator, flow detector, bubble detector

Page 19: Thales Overview oct 2013 v3

Catalyst System - CatCart®

• Benefits •  Safety •  No filtration necessary •  Enhanced phase mixing

• Over 100 heterogeneous and Immobilized homogeneous catalysts

10% Pd/C, PtO2, Rh, Ru on C, Al2O3 Raney Ni, Raney Co Pearlmans, Lindlars Catalyst Wilkinson's RhCl(TPP)3 Tetrakis(TPP)palladium Pd(II)EnCat BINAP 30

• Different sizes • 30x4mm • 70x4mm (longer residence time or scale up)

• Ability to pack your own CatCarts • CatCart Packer (with vacuum) • CatCart Closer (no vacuum)

Page 20: Thales Overview oct 2013 v3

New Software with H-Cube Pro

Timer Hydrogen Variability

Valve control Data saving Chemistry Guide

Page 21: Thales Overview oct 2013 v3

H-Cube Pro = higher throughput

2 cells for higher hydrogen production: 60 mL/min

Page 22: Thales Overview oct 2013 v3

H-Cube Pro: Higher temperature capability

Page 23: Thales Overview oct 2013 v3

H-Cube Pro: Selectivity with lower temp control

T (oC) p (bar) Flow rate (ml/min) Conversion (%) B Selectivity (%)

20 1, controlled 1 37 99 20 1, controlled 2 65 93 20 1, controlled 3 87 77

Solvent Conc. Temp. (°C) Pressure (bar)

Flow Rate (mL/min)

Product Distribution (%, GC-MS)

A B C EtOH 0.1 M 10 10 1 0 100 0

H-Cube

H-Cube Pro

Page 24: Thales Overview oct 2013 v3

Simple Validation Reactions (out of 5,000)

10% Pd/C, RT, 1 bar Yield: 86 - 89% Alternate reductions Ketone: Pt/C Aromatic: Ru/O2

Raney Ni, 70°C, 50 bar, 2M NH3 in MeOH, Yield: >85%

Page 25: Thales Overview oct 2013 v3

Simple Validation Reactions (out of 5,000)

10% Pd/C, 60˚C, 1 bar Yield: >90%

Batch reaction of {3-[(2-carbazol-9-yl-acetylamino)-methyl]-benzyl}-carbamic acid benzyl ester Reagent: H2, catalyst: 10% Pd/C, EtOH, 1 atm, Yield: 76 % Conn, M. Morgan; Deslongchamps, Ghislain; Mendoza, Javier de; Rebek, Julius; JACSAT; J. Am. Chem. Soc.; EN; 115; 9; 1993; 3548-3557.

Raney Ni, 80˚C, 80 bar Yield: 90%

Batch reference: Reagent: HCOONH4, catalyst: 10% Pd/C, solvent: MeOH, Reaction time: 30 min, 1 atm. Yield: 78 % Kaczmarek, Lukasz; Balicki, Roman; JPCCEM; J. Prakt. Chem/Chem-Ztg.; EN; 336; 8; 1994; 695-697

Page 26: Thales Overview oct 2013 v3

H-Cube® Reaction Examples

Batch: 200°C, 200 bar, 48 hours

Batch: 150°C, 80 bar, 3 days

Page 27: Thales Overview oct 2013 v3

Chemoselective hydrogenations

Selective reduction in presence of benzyl protected O or N 5% Pt/C, 75°C, 70 bar, 0,01M, ethanol,no byproduct Yield: 75%

Batch reference: Reagent: aq. NaBH4, Solvent: THF; 0°C, Yield: 76,1 % Nelson, Michael E.; Priestley, Nigel D.; JACSAT; J. Am.

Chem. Soc.; EN; 124; 12; 2002; 2894-2902

Route A: Raney Ni, abs. EtOH, 0,01 M, 70 bar, 25°C. Yield: 80%

Route B: Raney Ni, abs. EtOH, 0,01 M, 70 bar, 100°C. Yield: 85%

No batch reference

Page 28: Thales Overview oct 2013 v3

Selective Hydrogenations

Conditions: 1% Pt/C, 70 bar, 100°C, residence time 17s Results: 100% conversion, 97% yield

Conditions: 1% Pt/C, 70 bar, 30°C, residence time 17s Results: 100% conversion, 100% yield

Conditions: Au/TiO2, 70 bar, 30°C, residence time 17s Results: 100% conversion, 100% yield

H-Cube® - Chemoselective hydrogenations

Ürge, L.et al. submitted for publication

Selective hydrogenation of the double-bond

Selective hydrogenation to afford oxime

Selective hydrogenation of the double-bond

Page 29: Thales Overview oct 2013 v3

Selective Hydrogenations

Conditions: 10% Pd/C, 70 bar, 0°C, residence time 16s Results: 100% conversion, 100% yield

Conditions: 1% Pt/C, 70 bar, 30°C, residence time 11-17s Results: 100% conversion, 100% yield

Conditions: 1% Pt/C, 70 bar, 100°C, residence time 17s Results: 100% conversion, 100% yield

Ürge, L.et al. submitted for publication

H-Cube® - Chemoselective hydrogenations

Nitro group reduction in the presence of a halogen

Nitro group reduction in the presence of Cbz-group

Nitro group reduction without retro-Henry as a

side-reaction

Page 30: Thales Overview oct 2013 v3

Selective dehydrochlorination

Flow rate

(mL/min)

Pressure (bar) Temperature (oC)

Bubdet Catalyst Amount A (%)

Amount B (%)

Amount C (%)

Amount D (%)

1 20 (∆p:5 bar) 110 50 10% Pd/C 26.7% 61.5% - 7% 1 20 (∆p:3 bar) 110 50 1% Pd/C 61,90% 29,40% - 2,50% 1 20 (∆p:13

bar) 110 50 5% Rh/C 78.9% 5.1% - 9.2%

1 20 (∆p:10 bar)

110 50 5% Pd/C 26.7% 60.9% - 6.7%

1 20 (∆p:5 bar) 110 50 5% Pd/C(S) 25% 63.4% - 6.6%

Objective: Match similar selectivity of 60% but without additives of CsF, S, K2CO3 and PPh3

Page 31: Thales Overview oct 2013 v3

Partial saturation of heterocycles

Optimised reaction parameters: -  H-Cube Pro -  Temperature: 100oC -  Pressure: 100 bar -  Hydrogen amount: Maximum

Results:

•  Generate new non-planar molecules from existing stocks. •  New molecules have new Log P and other characteristics.

•  Cheap •  Clean •  Quick •  Only on H-Cube: High P + Selective control.

Flow  rate  (ml/min)   Conversion  %  of  A  %  of  B  %  of  C  0.3   100%   100   0   0  0.5   100%   92   8   0  1.0   100%   86   14   0  

Page 32: Thales Overview oct 2013 v3

Deuteration

Substrate Product Deuterium content(%)

Isolated yield / %

99 99

97 98

93 97

96 98

96 99

Mándity, I.M.; Martinek, T.A.; Darvas, F.; Fülöp, F.; Tetrahedron Letters; 2009, 50, 4372–4374

Page 33: Thales Overview oct 2013 v3

H-Cube Autosampler™

Gilson 271 Liquid Handler §  402 single Syringe pump (10 mL) §  Direct GX injector (Valco) §  Low-mount fraction collection (Bio-Chem) §  Septum-piercing needle §  Static drain wash station §  Tubes, connectors, fittings

Open vial collection Collection through probe (into closed vial)

Page 34: Thales Overview oct 2013 v3

H-Cube Midi™ reactor for scale-up

Parameters: -  p= 1-100 bar -  T=10-150°C -  v=0.1-3 ml/min - c=0.01-0.1 M - H2 production = up to 60ml/min - CatCarts = 30x4mm or 70x4mm

Parameters: -  p= 1-100 bar -  T=25-150°C -  v=5-25 ml/min - c=0.05-0.25 M - H2 production = up to 125ml/min - CatCarts = 90x9.5mm

Milligram to Gram Scale

Half Kilogram Scale

Page 35: Thales Overview oct 2013 v3

Expanding H-Cube Beyond Hydrogenation

Page 36: Thales Overview oct 2013 v3

Conversion: 90-95% (TLC) Purity: 70% (LC-MS) without work-up

Batch parameters: K3PO4, TBA-Br, Pd(OAc)2, DMF, 2 hours, 130 °C Reference: (Zim, Danilo; Monteiro, Adriano L.; Dupont, Jairton; Tetrahedron Lett.; EN; 41; 43; 2000; 8199-8202)

Suzuki-Miyaura C-C cross coupling:

Sample reactions

Br

N O 2 B

O H O H

N O 2 CatCart TM 70*4 mm Pd EnCat TM BINAP 30, 2-propanol, TBAF, 80°C, 20 bar, 0.05M, 0.5 ml/min

+

Page 37: Thales Overview oct 2013 v3

Selective Suzuki coupling (Cl, Cl)

The  condiFons  were:  

1  equivalent  of  2,6-­‐dichloroquinoxaline  with  1.2  equivalent  of  o-­‐Tolylboronic  acid    

ConcentraFon  set  to  0.02M  

Solvent:  Methanol  

Base:  NaOH  

AnalyFcs:  GC-­‐MS  

Flow  rate  (ml/min)  

Pressure   Temperature  Catalyst   Base  

Result  (bar)   (oC)   LC-­‐MS,  220nm  

0.8   20   100  Fibrecat  1007  

(70mm)  3  ekv  

Conversion:  82%  SelecFvity:  48%  

0.3   20   100  Fibrecat  1007  

(70mm)  3  ekv  

Conversion:  99%  SelecFvity:  48%  

0.8   20   100  Fibrecat  1035  

2.5  ekv  Conversion:  16%  

(30mm)   SelecFvity:  100%  

0.8   20   100  Fibrecat  1029  

(30mm)  2.5  ekv  

Conversion:  18%  SelecFvity:  100%  

0.8   20   100  Fibrecat  1048  

(30mm)  2.5  ekv  

Conversion:  40%  SelecFvity:  100%  

0.8   20   100  10%  Pd/C  

2.5  ekv  Conversion:  89%  

(30mm)   SelecFvity:  14%  

0.5   20   50  Fibrecat  1048  

2.5  ekv  Conversion:17%  

(30mm)   SelecFvity:  ~100%  

0.5   20   100  Fibrecat  1048  

2.5  ekv  Conversion:  35%  

(30mm)   SelecFvity:  ~100%  

0.2   20   100  Fibrecat  1007  

2.5  ekv  Conversion:  93%  

(70mm)   SelecFvity:  73%  

0.2   20   100  Fibrecat  1007  

2.5  ekv  Conversion:  93%  

(70mm)   SelecFvity:  80%  

0.2   20   100  Fibrecat  1029  

2.5  ekv  Conversion:  12%  

(30mm)   SelecFvity:  100%  

Page 38: Thales Overview oct 2013 v3

Purity (LCMS): 63%

Batch parameters: Pd(OAc)2, PPh3, TEA, DMF, 3 days, 110°C, yield: 70% Reference: J. Chem. Soc. Dalton Trans., 1998, 1461-1468 J. Chem. Soc. Dalton Trans., 1998, 1461-1468

Heck C-C cross coupling:

Sample reactions

CatCartTM: Pd (PPh3)4, TBAF, 2-propanol, 0.05M, 100oC, 1 bar, 0.2 ml/min.

Page 39: Thales Overview oct 2013 v3

Gas  Module  

•   Versa6le:    Compressed  Air,  O2,  CO,  C2H4,  SynGas,  CH4,  C2H6,  He,  N2,  N2O,  NO,  Ar.  

•   Fast:    ReacFons  with  other  gases  complete  in  less  than  10  minutes  

•   Powerful:    Up  to  100  bar  capability.  

•   Robust:    All  high  quality  stainless  steel  parts.  

•   Simple:    3  bulon  stand-­‐alone  control  or  via  simple  touch  screen  control  on  H-­‐Cube  Pro™.  

Page 40: Thales Overview oct 2013 v3

Use of Gas Module Attached to the H-Cube Pro™

Gas Module HPLC pump H-Cube Pro™

Filter included Check valve included

Page 41: Thales Overview oct 2013 v3

Problems with Oxidation

Page 42: Thales Overview oct 2013 v3

Alcohol oxidation: Optimization

Pressure Temp. (oC) CatCart Conversion Selectivity

40 25 1 % Au/TiO2 0 – 40 65 1 % Au/TiO2 6.5 >85 40 25 1 % Au

/Fe2O3 0 – 40 65 1 % Au

/Fe2O3 12.7 0 40 25 5 % Ru

/Al2O3 2.8 ~100 40 65 5 % Ru

/Al2O3 3.6 ~100 100 65 5 % Ru

/Al2O3 2.7 ~100 100 100 5 % Ru

/Al2O3 8.5 ~100 100 140 5 % Ru

/Al2O3 15.5 ~100 100 65 1 % Au/TiO2 5.6 84 100 100 1 % Au/TiO2 47.2 93 100 140 1 % Au

/TiO2 ~100 93 100 65 1 % Au

/Fe2O3 4 0 100 100 1 % Au

/Fe2O3 31 7 100 • Area% of desired product in GC-MS / (100 – Area% of reactant in GC-MS)

General conditions: H-Cube Pro with Gas Module, 50 mL/min oxygen gas, 1 mL/min liquid flow rate (0.05M in acetone, 20 mL sample volume), CatCart: 70mm., 1 % Au/TiO2 (cartridge: 70mm, THS 01639),

Batch ref.: Oxygen; perruthenate modified mesoporous silicate MCM-41 in toluene T=80°C; 24 h; Bleloch, Andrew; et al. Chemical Communications, 1999 , 8,1907 - 1908

Very fast addition of alcohol to gold surface. Alkoxide formation.

Page 43: Thales Overview oct 2013 v3

Aromatization of heterocycles

Reaction parameters were tested: -  H-Cube Pro with and without GasModule -  Oxidizing agent: Hydrogen-peroxide and Oxygen -  Catalyst: MnO2, Amerlyst 36, Au/TiO2 -  Solvent: Acetone/H2O2, Acetone -  Temperature 60-150oC, pressure 20-50 bar, flow rate 1 ml/min, concentration: 0.05 mmol/ml

Oxidizing  agent   Solvent   Catalyst  

Temperature  (oC)  

Pressure  (bar)   Conversion   Comment  

MnO2   Acetone   MnO2   60   20   82%   Blockage  aner  10  minutes  

H2O2  Acetone  -­‐  H2O2  

(4-­‐1)   Au/TiO2   70   20  68%  aner  1  run  78%  aner  2  run  

H2O2  Acetone  -­‐  H2O2  

(4-­‐1)   Au/TiO2   100   30  68%  aner  1  run  98%  aner  2  run  

The  catalyst  was  reacFvated  with  H2O2  between  the  runs.  

O2  (10  ml/min)   Acetone   Au/TiO2   75   11   8%  

O2  (10  ml/min)   Acetone   Au/TiO2   150   11   95%  

Aner  10  minutes  the  conversion  was  dropped  to  

50%  

O2  (50  ml/min)   Acetone   Au/TiO2   150   20   >  98%  

Page 44: Thales Overview oct 2013 v3

Ø  Conditions: 100oC, 30 bar, CO gas, 0.5 ml/min liquid flow rate, 0.01 M in THF Ø  Catalyst: Polymer supported Pd(PPh3)4 Ø  Reference test was managed on X-Cube Ø  Reaction was repeated Ø  Different gas flow rates were tested

Results

Aminocarbonylation

ReacFon  HC-­‐Pro  with  gas  module  (CO  flow  rate)  

XC  reference  

10  ml/min  

30  ml/min  

60  ml/min  

30  ml/min  

30  ml/min  

60  ml/min  

60  ml/min  

60  ml/min  

Conversion  %   60   65   79   66   62   79   79   82   0  

Page 45: Thales Overview oct 2013 v3

Accessing New Molecules or Chemical Space

Page 46: Thales Overview oct 2013 v3

Heterocyclic rings of the future, J. Med. Chem., 2009, 52 (9), pp 2952–2963.

•  3000 potential bicyclic systems unmade • Many potential drug like scaffolds Why? • Chemists lack the tools to expand into new chemistry space to access these new compounds. •  Time • Knowledge

The quest for novel heterocycles

Page 47: Thales Overview oct 2013 v3

•  Standard benzannulation reaction •  Good source of:

•  Quinolines •  Pyridopyrimidones •  Naphthyridines

→ Important structural drug motifs

Disadvantages: • Harsh conditions • High b.p. solvents • Selectivity • Solubility

W. A. Jacobs, J. Am. Chem. Soc.; 1939; 61(10); 2890-2895

High T Chemistries – in Batch

Page 48: Thales Overview oct 2013 v3

• Replacement of diphenyl ether (b.p: 259°C) with THF (b.p.: 66 °C)

Cyclization conditions: a: 360 °C, 130 bar, 1.1 min b: 300 °C, 100 bar, 1.5 min c: 350 °C, 100 bar, 0.75 min

Pyridopyrimidinone Quinoline

No THF polymerization!

Batch conditions: 2 hours

Gould-Jacobs Reaction – in Flow

Page 49: Thales Overview oct 2013 v3

The nature of the substituents is critical because they increase or decrease the nucleophilicity of the ring: Electron donating groups increase yields, Electron withdrawing groups decrease yields.

49

Process exploration

• Meldrum’s acidic route to pyridopyrimidones and to hydroxyquinolines

Cyclization conditions: a: 300 °C, 160 bar, 0.6 min b: 300 °C, 100 bar, 0.6 min c: 360 °C, 100 bar, 1 min d: 350 °C, 130 bar, 4 min e: 300 °C, 100 bar, 1.5 min

Lengyel L., Nagy T. Zs., Sipos G., Jones R., Dormán Gy., Ürge L., Darvas F., Tetrahedron Lett., 2012; 53; 738-743

Page 50: Thales Overview oct 2013 v3

New Scaffold Generation

5 novel bicyclic scaffolds generated-fully characterized. Many more to follow

Page 51: Thales Overview oct 2013 v3

Phoenix Flow Reactor: High temperature synthesis

Powerful: Up to 450°C

Versatile: Heterogeneous and homogeneous capabilities.

Fast: Reactions in seconds or minutes.

Innovative: Validated procedure to generate novel bicyclic compounds

Simple: 3 button stand-alone control or via simple touch screen control on H-Cube Pro™.

Page 52: Thales Overview oct 2013 v3

Phoenix loop-reactor possibilities

•  Materials - sizes §  Stainless steel (1 – 16 mL) –

up to 450oC and 100bar •  Coil (1/16” 4-16 ml) •  Short coil (1/16” 1-4ml) •  Static mixer (3/8”, 32ml)

§  PTFE coil (4 – 16 ml) – up to 150oC or 20bar

§  Hastelloy (4 – 16 ml) – up to 450oC and 100bar

•  Easy to recoil •  Versatile

Page 53: Thales Overview oct 2013 v3

Phoenix packed bad reactor possibilities

• CatCart (30, 70 mm) – up to 250°C and 100 bar •  MidiCart – up to 150°C and 100bar •  Special high temperature cartridge – up to 450°C and 100bar

90 × 9.5 mm

Page 54: Thales Overview oct 2013 v3

Cartridge Volumes and Packing Type   Volume   Max.  T/p  (100  bar  

unFl  it  is  indicated  otherwise)  

Comment  

H-­‐Cube  Pro  Type  CatCarts  30  mm     0.38  mL   250°C   Packed  by  

ThalesNano  70  mm     0.76  mL   250°C   Packed  by  

ThalesNano  Phoenix  Metal-­‐Metal  Sealing  High  T  CatCarts  

125  mm  (1/4  SS  id  3  mm)   0.9  mL   450  °C   User  can  fill  125  mm  (1/4  SS  id  3.8  mm)   1.3  mL   450  °C   User  can  fill  125  mm  (1/2  SS  id  9.4mm)   9  mL   450  °C   User  can  fill,  filters  

are  needed  250  mm  (1/4  SS  id  3mm)   1.8  mL   450  °C   User  can  fill,  filters  

are  needed  250  mm  (1/4  SS  id  3.8  mm)   2.6  mL   450  °C    User  can  fill,  filters  

are  needed  250  mm  (1/2  SS  id  9.4mm)   18  mL   450  °C   User  can  fill,  filters  

are  needed  H-­‐Cube  Midi  Type  MidiCarts  

MidiCart   7.6  mL   150  °C   Packed  by  ThalesNano  

Page 55: Thales Overview oct 2013 v3

Ring closure on aryl NH : key step •  Mitsunobu reaction or traditional heating with T3P did not

furnish the bicyclic heterocycle. •  Reaction proceeded smoothly in Phoenix reactor at 300oC with

65% yield despite requirement for the cis amide conformer in transition state.

Mitsunobu Reaction Application Note

Page 56: Thales Overview oct 2013 v3

N-Alkylation Application Note

RaNi 70mm 200C, 80bar 0.5ml/min

Page 57: Thales Overview oct 2013 v3

57

Reaction pathway using Raney-Ni catalyst

Advantages of Raney-Nickel: •  Cheaper than Pd, Pt containing catalysts •  Differently preactivated Raney-Ni catalyst can give more

flexibility – selectivity issues

But: Pyrophoric!

Page 58: Thales Overview oct 2013 v3

58

Optimizing the reaction conditions:

•  0.1M Indole solution in ethanol, RaNi 4200 Catalyst, GC-MS results

Reach higher selectivity: Protect the N-atom with TMS-Cl Result: 90% conversion with 80%

selectivity (300 °C, 100 bar, 0.5 mL/min,

isolated yield: 76.5%)

Page 59: Thales Overview oct 2013 v3

59

Alkylation of 2-methyl-indoline

The total amount of dialkylated products was 18%.

Alkylation coupled with dehydrogenation

Page 60: Thales Overview oct 2013 v3

60

Ring closuring of 2-methyl-indole with 1,3-butanediol

Ring closure is coupled with hydrogenation of double bond

Page 61: Thales Overview oct 2013 v3

Fischer-Indole Synthesis: Scale Out

cf. MW reaction: Bagley, M. C.; et al. J. Org. Chem. 2005, 70 , 7003

In AcOH/2-propanol (3:1) (0.5M) 150 °C, 60 bars,

1.0 mL min-1 (4 min res. time) 88% isolated yield

Continuous Flow Results (4 mL or 16 mL Coil) Scale-up

200 °C, 75 bars, 5.0 mL min-1 (~3 min res. time)

96% isolated yield

25 g indole/hour

Page 62: Thales Overview oct 2013 v3

High temperature reactions

Conditions: p = 70 bar T = 270°C v = 0.4 mL/min c = 0.04 M (NMP) Result: 82% yield

Kappe, O. C. et al. Eur. J. Org. Chem., 2009, 9, 1321-1325.

X-Cube FlashTM – Kolbe Synthesis Conditions: p = 60 bar T = 180°C v = 4 mL/min Residence time: 440 s c = 0.49 M (H2O) Best result: 51% conversion

Kappe, O. et al. Chem. Eng. Technol. 2009, 32(11), 1-16.

X-Cube FlashTM – SNAr reaction

Page 63: Thales Overview oct 2013 v3

Versatile Catalysis Platform

• Reactions from 10-450C and 1-100bar (1450 psi) • Up to 13 different reagent gases • Heterogeneous or homogeneous catalysis

Fully Automated system now available

Page 64: Thales Overview oct 2013 v3

High  Energy  

Reac6ons  

Page 65: Thales Overview oct 2013 v3

IceCube  

Safe:  Low  reacFon  volume,  excellent  temperature  control,  SW  controlled  –  including  many  safety  control  points  

Simple  to  use:  easy  to  set  up,  default  reactor  structures,  proper  system  construcFon  

Powerful:  Down  to  -­‐50°C/-­‐70°C,  up  to  80°C  

Versa6le  chemistry:  Ozonolysis,  nitraFon,  lithiaFon,  azide  chemistry,  diazoFzaFon  

Versa6le  reactors:  Teflon  loops  for  2  reactors  with  1/16”  and  1/8”  loops  

Chemical  resistance:  Teflon  weled  parts  

Mul6step  reac6ons:  2  reacFon  zones  in  1  system  Modular:  OpFon  for  Ozone  Module,  more  pumps  

Size:  Stackable  to  reduce  footprint  

Page 66: Thales Overview oct 2013 v3

Flexible  and  modular  for  variety  of  chemistry  

•   2pcs  rotary  piston  pumps    

•   2pcs  3-­‐way  inlet  valves  

•   Flow  rate:  0.2  –  4.0  mL/min  

•   Max  pressure:  6.9  bar  

•   Main  reactor  block  temp:    -­‐70/50°C  –  +80°C    

•   Main  reactor  volume  up  to  8  mL  

•   Tubing:  1/16”  or  1/8”  OD  PTFE  

•   Secondary  reactor  block  temp.:    -­‐  30  –  +80°C  

•   Secondary  reactor  volume  up  to  4  mL  

Cooling  Module  

•   ConFnuous  ozone  producFon  

•   Controlled  oxygen  introducFon  

•   Max.  100  mL/min  gas  flow  

•   14%  Ozone  producFon  

Pump  Module   Ozone  Module  

Page 67: Thales Overview oct 2013 v3

ReacFon  zones  

First  ReacFon  Zone  

Secondary  ReacFon  Zone  

Right  hand  side:    Water  inlet  and  outlet  

Reactor  plate  coiled  with  Teflon  tube  (1/16”)  

Page 68: Thales Overview oct 2013 v3

Single  or  mulFstep  reacFons  

A  

B  C  

A  B  

C  

D  

Pre-­‐cooler/Mixer   Reactor  

-­‐70-­‐+80ºC  

-­‐70-­‐+80ºC   -­‐30-­‐+80ºC  

Applica6ons:  Azide,  Lithia6on,  ozonolysis,  nitra6on,  Swern  oxida6on  

Azide,  nitra6on,  Swern  oxida6on  

Ideal for reactive intermediates or quenching

Page 69: Thales Overview oct 2013 v3

Control  –  Graphical  User  Interface  

Welcome  screen  of  the  IceCube  

Ozonolysis  set-­‐up   3  pump  –  2  reactor  set-­‐up  

Page 70: Thales Overview oct 2013 v3

?   Halogena6on  

Nitra6on  Azides  

Mul6step  reac6ons  

Modular  

Lithia6on  

Ozonolysis  

Swern  Oxida6on  

IdenFfied  ApplicaFons  

Page 71: Thales Overview oct 2013 v3

Why  ozonolysis  is  neglected?  

•  Highly  exothermic  reacFon,  high  risk  of  explosion    

•  Normally  requires  low  temperature:  -­‐78°C.  •  In  addiFon,  the  batchwise  accumulaFon  of  ozonide  is  associated  again  with  risk  of  explosion  

•  There  are  alternaFve  oxidizing  agents/systems:  •  Sodium  Periodate  –  Osmium  Tetroxide  (NaIO4-­‐OsO4)  

•  Ru(VIII)O4    +  NaIO4  

•  Jones  oxidaFon  (CrO3,  H2SO4)  

•  Swern  oxidaFon  •  Most  of  the  listed  agents  are  toxic,  difficult,  and/or    expensive  to  use.  

Page 72: Thales Overview oct 2013 v3

What  is  ozonolysis?  

•  Ozonolysis  is  a  technique  that  cleaves  double  and  •  triple  C-­‐C  bonds  to  form  a  C-­‐O  bond.  

Page 73: Thales Overview oct 2013 v3

How  does  it  work?  

SM1  /  Reactant  or  Solvent  

SM2  /  Quench  or  Solvent  

Product  or  Waste  

Page 74: Thales Overview oct 2013 v3

Flow  Ozonolysis  of  Styrenes  

M.  Irfan,  T.  N.  Glasnov,  C.  O.  Kappe,  Org.  Lel.,  

Page 75: Thales Overview oct 2013 v3

Oxida6on  of  alkynes  

Oxida6on  of  amines  to  nitro  groups  

Flow  Ozonolysis  

M.  Irfan,  T.  N.  Glasnov,  C.  O.  Kappe,  Org.  Lel.,  

Page 76: Thales Overview oct 2013 v3

Flow  Ozonolysis  Of  Thioanisole  

M.  Irfan,  T.  N.  Glasnov,  C.  O.  Kappe,  Org.  Lel.,  

Page 77: Thales Overview oct 2013 v3

Batch  reac6on:  Max.  -­‐60°C  to  avoid  side  reacFon  

In  Flow:  

Even  at  -­‐10°C  without  side  product  formaFon  

0.45  M  in  DCM,  0.96  mL/min  

0.45  M  alcohol,  0.14  M  DMSO  in  DCM  0.94  mL/min  

3.6  M  in  MeOH,  0.76  mL/min  

*  Aner  purificaFon  

ApplicaFon  Note:  Swern  OxidaFon  

When  compared  to  batch  condiFons,  IceCube  can  sFll  control  reacFons  at  warmer  temperatures  due  to  beler  mixing  and  more  efficient  heat  transfer.  

Page 78: Thales Overview oct 2013 v3

DiazoFzaFon  and  azo-­‐coupling  in  the  IceCube  

Entry   Vflow  (ml/min)  A  -­‐  B  -­‐  C  

T  (°C)   τ  (1.  loop,  min)  

τ  (2.  loop,  min)  

Isolated  Yield  (%)  

1   0.4   0   2.12   3.33   91  

2   0.9   0   0.94   1.48   91  

3   0.6   0   1.42   2.22   85  

4   0.9   10   0.94   1.48   85  

5   1.5   10   0.56   0.88   86  

6   1.5   15   0.56   0.88   98  

7   1.2   15   0.71   1.11   84  

8   1.8   15   0.47   0.74   86  

Aniline  HCl  sol.   Pump  A  

Pump  B  NaNO2    sol.  

Pump  C  

Phenol    NaOH  sol.   •  Most  aromaFc  diazonium  salts  

are  not  stable  at  temperatures  above  5°C  •  Produces  between  65  and  150  kJ/mole  and  is  usually  run  industrially  at  sub-­‐ambient  temperatures  •  Diazonium  salts  decompose  exothermically,  producing  between160  and  180  kJ/mole.    •  Many  diazonium  salts  are  shock-­‐sensiFve  

Page 79: Thales Overview oct 2013 v3

Safe reaction of azides using Ice-Cube

•  2 Step Azide Reaction in flow •  No isolation of DAGL •  Significantly reduced hazards

TKX50

Page 80: Thales Overview oct 2013 v3

Novel  scaffold  synthesis  from  explosive  intermediates  

NitraFon  of  AromaFc  Alcohols  

Pump  A   Pump  B   Temperature  (oC)  

Loop  size  (ml)  

Conversion  (%)  

SelecFvity  (%)  

SoluFon  Flow  rate  (ml/

min)   SoluFon  Flow  rate  (ml/

min)  

ccHNO3   0.4  1g  PG/15ml  ccH2SO4   0.4   5  -­‐  10   7   100  

0  (different  products)  

1.48g  NH4NO3/15ml  ccH2SO4   0.7  

1g  PG/15ml  ccH2SO4   0.5     5  -­‐  10   13   100   100  

1.48g  NH4NO3/15ml  ccH2SO4   0.5  

1g  PG/15ml  ccH2SO4   0.5     5  -­‐  10   13   50   80  (20%  dinitro)  

70%  ccH2SO4  30%  ccHNO3   0.6  

1g  PG/15ml  ccH2SO4   0.5     5  -­‐  10   13  (3  bar)   100   100  

70%  ccH2SO4  30%  ccHNO3   0.6  

1g  PG/15ml  ccH2SO4   0.5     5  -­‐  10   13  (1  bar)   80  

70  (30%  dinitro  and  nitro)  

Currently  invesFgaFng  selecFvity  at  lower  temperatures  on  IceCube  

Page 81: Thales Overview oct 2013 v3

Coming  soon…  

•  LithiaFon  experiments  (collaboraFons)  

•  FluorinaFon  experiments  (collaboraFons)  

•  Low  temperature  selecFve  reacFons,  not  certainly  from

 exothermic  nature  

•  Very  low  temperature  experiments,  where  batch

 condiFons  required  liquid  nitrogen  temperature  or

 below  

Page 82: Thales Overview oct 2013 v3

Free Chemistry Services

Thalesnano has own chemistry team

We try to solve your challenging chemistry in flow

Low Temperature • reactive intermediates, selectivity, dangerous, exothermic chemistry

High Temperature & Pressures • dead end chemistry, flash heating, rearrangements, alkylations, reactions with gases (hydrogenation, oxidation, carbonylation), catalysis

Email the group: [email protected]

Page 83: Thales Overview oct 2013 v3

THANK YOU FOR YOUR ATTENTION!!

ANY QUESTIONS