tgf beta 3

17
ARTICLE doi:10.1038/nature10152 Latent TGF-b structure and activation Minlong Shi 1 , Jianghai Zhu 1 , Rui Wang 1 , Xing Chen 1 , Lizhi Mi 1 , Thomas Walz 2 & Timothy A. Springer 1 Transforming growth factor (TGF)-b is stored in the extracellular matrix as a latent complex with its prodomain. Activation of TGF-b1 requires the binding of a v integrin to an RGD sequence in the prodomain and exertion of force on this domain, which is held in the extracellular matrix by latent TGF-b binding proteins. Crystals of dimeric porcine proTGF-b1 reveal a ring-shaped complex, a novel fold for the prodomain, and show how the prodomain shields the growth factor from recognition by receptors and alters its conformation. Complex formation between a v b 6 integrin and the prodomain is insufficient for TGF-b1 release. Force-dependent activation requires unfastening of a ‘straitjacket’ that encircles each growth-factor monomer at a position that can be locked by a disulphide bond. Sequences of all 33 TGF-b family members indicate a similar prodomain fold. The structure provides insights into the regulation of a family of growth and differentiation factors of fundamental importance in morphogenesis and homeostasis. The TGF-b family is key to specifying the body plan during metazoan development 1,2 . Members of this family, including nodal, activins, inhibins, bone morphogenetic proteins (BMPs) and growth differ- entiation factors (GDFs), specify the anterior/posterior and dorsal/ ventral axes, endoderm, mesoderm and ectoderm, left–right asym- metry and details of individual organs. TGF-b1, TGF-b2 and TGF-b3 are important in development, wound healing, immune responses and tumour-cell growth and inhibition 1,3 . Although TGF-b synthesis and expression of its receptors are wide- spread, activation is localized to sites where TGF-b is released from latency. TGF-b family members are synthesized with large amino- terminal prodomains, which are required for the proper folding and dimerization of the carboxy-terminal growth-factor domain 4 . Despite intracellular cleavage by furin, after secretion, noncovalent asso- ciation persists between the dimeric growth-factor domain and pro- domain of TGF-b, and of an increasingly recognized number of other family members. The prodomain is sufficient to confer latency on some family members and it also targets many members for storage in the extracellular matrix, in complex with latent TGF binding proteins (LTBPs) or fibrillins 5,6 . The prodomains of TGF-b1 and TGF-b3 contain an RGD motif that is recognized by a v integrins. Mice with the integrin-binding RGD motif mutated to RGE recapitulate all major phenotypes of TGF-b1-null mice, including multi-organ inflammation and defects in vasculogenesis, thus demonstrating the essential role of integrins in TGF-b activation 7 . Among a v integrins, the phenotypes of integrin b 6 -null and integrin b 8 -null mice demonstrate the particular import- ance of the a v b 6 and a v b 8 integrins for activation of TGF-b1 and TGF- b3 in vivo 8,9 . Integrin binding alone is not sufficient for TGF-b activation. Activation by a v b 6 integrin requires incorporation of TGF-b1 into the extracellular matrix, by association with LTBP, and association of the b 6 cytoplasmic domain with the actin cytoskeleton 5,10,11 . Furthermore, con- tractile force is necessary for TGF-b activation by myofibroblasts 8 . Thus, tensile force exerted by integrins across the LTBP–prodomain–TGF-b complex is hypothesized to change the conformation of the prodomain and to free TGF-b for receptor binding 5,8 . Here, we describe the struc- ture of latent TGF-b, mechanisms for latency and integrin-dependent activation, and broad implications for the regulation of bioactivity in the TGF-b family. Crystal structure The structure of pro-TGF-b1 at 3.05 A ˚ (Fig. 1a–c and Supplementary Table 1) was solved using multi- and single-wavelength anomalous diffraction. Electron density maps (Supplementary Fig. 1) were improved by multi-crystal, multi-domain averaging over four mono- mers per asymmetric unit. In a ring-like shape, two prodomain arm domains connect at the elbows to crossed ‘forearms’ formed by the two growth-factor monomers and by prodomain ‘straitjacket’ ele- ments that surround each growth-factor monomer (Fig. 1a–c and 4a). The centre of the ring contains solvent. The arms come together at the neck, where they are disulphide-linked in a bowtie, and RGD motifs locate to each shoulder (Fig. 1a). On the opposite side of the ring where the straitjacketed forearms cross, LTBP would be linked to straitjacket residue Cys 4, which is mutated to serine in the crystal- lization construct (Fig. 1a–c). The arm domain, residues 46–242, has a novel fold 12 with unusual features. Its two anti-parallel, four-stranded b-sheets bear extensive hydrophobic faces but these overlap only partially in the hydrophobic core (Fig. 1a, e). The hydrophobic faces are extended by long meanders between the two sheets and burial by the a2, a3 and a4 helices. b-strands b8 and b9 extend on the two-fold pseudo-symmetry axis to link the two arm domains in a bowtie at the neck (Fig. 1a). The bow is tied with reciprocal inter-prodomain disulphide bonds, Cys 194– Cys 196 and Cys 196–Cys 194, and by hydrophobic residues (Fig. 1a, e). Arg 215 of the RGD motif locates to a disordered loop (residues 209–215) following the bowtie b9 strand. Partially ordered Gly 216 and Asp 217 of the RGD motif (Fig. 1a, d) begin the long, 12-residue meander across the hydrophobic face of the neck-proximal b-sheet that connects to b10 in the forearm-proximal b-sheet. The straitjacket, residues 1–45, is formed by the a1 helix and the latency lasso (Fig. 1a–c and 2a). The latency lasso, an extended loop that connects the a1 and a2 helices, has little contact with the remainder of the prodomain while encircling the tip of each TGF-b monomer (Fig. 1a, b, f). Six proline residues and three aliphatic residues make hydrophobic contacts with an extensive array of growth-factor aro- matic and aliphatic residues, and help these to stabilize the conforma- tion of the latency lasso (Fig. 1f). A highly hydrophobic face of the amphipathic a1 helix, bearing isoleucine and leucine residues, interacts with Trp 279 and Trp 281 and with aliphatic side chains on one growth-factor monomer (Fig. 1f, 1 Immune Disease Institute, Children’s Hospital Boston and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA. 2 Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA. 16 JUNE 2011 | VOL 474 | NATURE | 343 Macmillan Publishers Limited. All rights reserved ©2011

Upload: chandra-budi-hartono

Post on 17-Feb-2016

252 views

Category:

Documents


3 download

DESCRIPTION

tgf beta

TRANSCRIPT

Page 1: tgf beta 3

ARTICLEdoi:10.1038/nature10152

Latent TGF-b structure and activationMinlong Shi1, Jianghai Zhu1, Rui Wang1, Xing Chen1, Lizhi Mi1, Thomas Walz2 & Timothy A. Springer1

Transforming growth factor (TGF)-b is stored in the extracellular matrix as a latent complex with its prodomain.Activation of TGF-b1 requires the binding of av integrin to an RGD sequence in the prodomain and exertion of forceon this domain, which is held in the extracellular matrix by latent TGF-b binding proteins. Crystals of dimeric porcineproTGF-b1 reveal a ring-shaped complex, a novel fold for the prodomain, and show how the prodomain shields thegrowth factor from recognition by receptors and alters its conformation. Complex formation between avb6 integrin andthe prodomain is insufficient for TGF-b1 release. Force-dependent activation requires unfastening of a ‘straitjacket’ thatencircles each growth-factor monomer at a position that can be locked by a disulphide bond. Sequences of all 33 TGF-bfamily members indicate a similar prodomain fold. The structure provides insights into the regulation of a family ofgrowth and differentiation factors of fundamental importance in morphogenesis and homeostasis.

The TGF-b family is key to specifying the body plan during metazoandevelopment1,2. Members of this family, including nodal, activins,inhibins, bone morphogenetic proteins (BMPs) and growth differ-entiation factors (GDFs), specify the anterior/posterior and dorsal/ventral axes, endoderm, mesoderm and ectoderm, left–right asym-metry and details of individual organs. TGF-b1, TGF-b2 and TGF-b3are important in development, wound healing, immune responsesand tumour-cell growth and inhibition1,3.

Although TGF-b synthesis and expression of its receptors are wide-spread, activation is localized to sites where TGF-b is released fromlatency. TGF-b family members are synthesized with large amino-terminal prodomains, which are required for the proper folding anddimerization of the carboxy-terminal growth-factor domain4. Despiteintracellular cleavage by furin, after secretion, noncovalent asso-ciation persists between the dimeric growth-factor domain and pro-domain of TGF-b, and of an increasingly recognized number of otherfamily members. The prodomain is sufficient to confer latency onsome family members and it also targets many members for storagein the extracellular matrix, in complex with latent TGF bindingproteins (LTBPs) or fibrillins5,6.

The prodomains of TGF-b1 and TGF-b3 contain an RGD motifthat is recognized by av integrins. Mice with the integrin-bindingRGD motif mutated to RGE recapitulate all major phenotypes ofTGF-b1-null mice, including multi-organ inflammation and defectsin vasculogenesis, thus demonstrating the essential role of integrins inTGF-b activation7. Among av integrins, the phenotypes of integrinb6-null and integrin b8-null mice demonstrate the particular import-ance of theavb6 and avb8 integrins for activation of TGF-b1 and TGF-b3 in vivo8,9.

Integrin binding alone is not sufficient for TGF-b activation.Activation by avb6 integrin requires incorporation of TGF-b1 into theextracellular matrix, by association with LTBP, and association of theb6

cytoplasmic domain with the actin cytoskeleton5,10,11. Furthermore, con-tractile force is necessary for TGF-b activation by myofibroblasts8. Thus,tensile force exerted by integrins across the LTBP–prodomain–TGF-bcomplex is hypothesized to change the conformation of the prodomainand to free TGF-b for receptor binding5,8. Here, we describe the struc-ture of latent TGF-b, mechanisms for latency and integrin-dependentactivation, and broad implications for the regulation of bioactivity in theTGF-b family.

Crystal structureThe structure of pro-TGF-b1 at 3.05 A (Fig. 1a–c and SupplementaryTable 1) was solved using multi- and single-wavelength anomalousdiffraction. Electron density maps (Supplementary Fig. 1) wereimproved by multi-crystal, multi-domain averaging over four mono-mers per asymmetric unit. In a ring-like shape, two prodomain armdomains connect at the elbows to crossed ‘forearms’ formed by thetwo growth-factor monomers and by prodomain ‘straitjacket’ ele-ments that surround each growth-factor monomer (Fig. 1a–c and4a). The centre of the ring contains solvent. The arms come togetherat the neck, where they are disulphide-linked in a bowtie, and RGDmotifs locate to each shoulder (Fig. 1a). On the opposite side of thering where the straitjacketed forearms cross, LTBP would be linked tostraitjacket residue Cys 4, which is mutated to serine in the crystal-lization construct (Fig. 1a–c).

The arm domain, residues 46–242, has a novel fold12 with unusualfeatures. Its two anti-parallel, four-stranded b-sheets bear extensivehydrophobic faces but these overlap only partially in the hydrophobiccore (Fig. 1a, e). The hydrophobic faces are extended by long meandersbetween the two sheets and burial by the a2, a3 and a4 helices.b-strandsb8 andb9 extend on the two-fold pseudo-symmetry axis to

link the two arm domains in a bowtie at the neck (Fig. 1a). The bow istied with reciprocal inter-prodomain disulphide bonds, Cys 194–Cys 196 and Cys 196–Cys 194, and by hydrophobic residues (Fig. 1a, e).

Arg 215 of the RGD motif locates to a disordered loop (residues209–215) following the bowtie b9 strand. Partially ordered Gly 216and Asp 217 of the RGD motif (Fig. 1a, d) begin the long, 12-residuemeander across the hydrophobic face of the neck-proximal b-sheetthat connects to b10 in the forearm-proximal b-sheet.

The straitjacket, residues 1–45, is formed by the a1 helix and thelatency lasso (Fig. 1a–c and 2a). The latency lasso, an extended loop thatconnects the a1 and a2 helices, has little contact with the remainder ofthe prodomain while encircling the tip of each TGF-b monomer(Fig. 1a, b, f). Six proline residues and three aliphatic residues makehydrophobic contacts with an extensive array of growth-factor aro-matic and aliphatic residues, and help these to stabilize the conforma-tion of the latency lasso (Fig. 1f).

A highly hydrophobic face of the amphipathic a1 helix, bearingisoleucine and leucine residues, interacts with Trp 279 and Trp 281and with aliphatic side chains on one growth-factor monomer (Fig. 1f,

1Immune Disease Institute, Children’s Hospital Boston and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA. 2Howard Hughes Medical Institute and Department ofCell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.

1 6 J U N E 2 0 1 1 | V O L 4 7 4 | N A T U R E | 3 4 3

Macmillan Publishers Limited. All rights reserved©2011

Page 2: tgf beta 3

Y75Y74

R238

Y52V48

β2

β10

β3β6

β5

β4

β8

β7

α4

α3α2

β9

α5

β1

D217

β1

β2

β10β3β6

β5

β4

β7

TGF-β monomers

Fingers

Latencylasso

β8

Bowtie

Latency lasso

LTBP linkage

N N

Armdomain

Furin

α4β5

β4

α4 α3

α2

α3

α3

β9

RGD

Furin

a

C4S

C4S

α1

e

b

Y52

d

I221

D217

G216L218

L131

α1α5

Latency lasso

f

L30

P45 α2

W279

W281P34

P33

V347

E348

Y52

L28

L25

α1

g

W279

Y299Y307

I24I17

α1

E140H193

R189

D197

Y75

E348

R238

Y74

27

76

K27

S351

h

α5

Strait-jacket

C4S

αVβ6αVβ6

α1

Fastener

Fastener

90º

c

V338

Free TGF-β1

SS

SS

LTBP

SS

SS

Unfastened straitjacket

Arm Arm

RGD RGD

Cytoskeletal force

SS

SS

LTBP

TGF-β1

SS

SS

Arm Arm

Straitjacket

RGD RGD

αVβ6αVβ6

Figure 1 | Architecture of proTGF-b1. Arm, straitjacket and TGF-b1monomer segments are coloured differently. a, b, Overall structure. Spheresmark the last residue visible in density in the prodomain and the first residue ofthe growth factor. Disordered segments are dashed. Red arrows show thedirections of forces during activation by integrins. Key side chains are shown instick representation, including Asp of the RGD motif in cyan and CEDmutations in white. Disulphide bonds and the Cys 4 mutation to Ser are in

yellow. c, Schematic of the structure and activation mechanism. SS, disulphidebonds. d, Hydrophobic residues near Asp 217 of the RGD motif. e, Armdomain. Side chains for the hydrophobic core are shown in gold (also markedin Fig. 2 and Supplementary Fig. 2), conserved a2-helix residues that interactwith the growth factor are in pink, fastener residues are in silver and bowtieresidues are in light green for aliphatics and yellow for Cys. f–h, Straitjacket andfastener details.

RESEARCH ARTICLE

3 4 4 | N A T U R E | V O L 4 7 4 | 1 6 J U N E 2 0 1 1

Macmillan Publishers Limited. All rights reserved©2011

Page 3: tgf beta 3

g). The tryptophan residues are further covered by lasso residuesLeu 30, Pro 33 and Pro 34 (Fig. 1f). Notably, the a1 helix is burieddeeply in an interface between the two growth-factor monomers(Fig. 1a, b, g). The interface on the second monomer includes threetyrosine residues (Fig. 1g).

Together with the straitjacket, the arm domain completes the en-circlement of each growth-factor monomer. The a2 helix buriesVal 338 and Val 347 of the TGF-b finger (Fig. 1f). The a5 helix pro-jects from the base of the arm domain (Fig. 1a and e) and in it,prodomain residue Arg 238 forms a salt bridge to Glu 348 in TGF-b1 (Fig. 1f, h). These two residues are invariant in proTGF-b1,proTGF-b2 and proTGF-b3 (Supplementary Fig. 2).

The straitjacket is fastened to arm residues 74–76 (Fig. 1a, h). Abackbone hydrogen bond between the nitrogen of Ala 76 and theoxygen of Lys 27 caps the C-terminal end of the a1 helix (Fig. 1h).Moreover, the carbonyl oxygen of Ala 76 forms a hydrogen bond toArg 238 in the a5 helix (Fig. 1h). Lys 27 is a key fastener residue. Itsside chain forms a p-cation bond to the side chain of Tyr 74, a hydro-gen bond to the backbone of Tyr 74, and hydrogen bonds to thebackbone and sidechain of Ser 351 (Fig. 1h). Van der Waals contactsbetween the bulky side chains of the fastener residues Lys 27, Tyr 74

and Tyr 75 also secure the straitjacket. Notably, Lys 27, Tyr 74 andTyr 75 are invariant among TGF-b1, TGF-b2 and TGF-b3 (Sup-plementary Fig. 2). Fastening is reinforced by backbone hydrogenbonds between arm b1-strand residues 77 and 78 and growth-factorb-fingers, which join the prodomain and the growth factor in a super-b-sheet (Fig. 1a).

The TGF-b dimer forms the forearms, although TGF-b monomershave also been described as hand-like13–15 (Fig. 3). Each monomer hasno hydrophobic core, aside from the cystine knot motif in which onedisulphide passes between two polypeptide segments bridged by twoother disulphides.

Prodomain-bound TGF-b1 differs markedly from previous TGF-bstructures in both the orientation between monomers and the posi-tion of elements within monomers (Fig. 3 and Supplementary Fig. 3).The Ca root-mean-squared deviations over all 112 residues are 7 A,and 2 A over the most similar 85 residues. The largest differences areimposed by the prodomain a1 helix. It occupies a similar position tothe growth-factor a3 helix in mature TGF-b1 (Supplementary Fig. 3).Intercalation of the prodomain a1 helix between the growth-factormonomers reduces the total area buried between monomers from850 A2 to 335 A2. The large conformational changes in TGF-b1 are

BMP15

BMP3 GDF10 TGF-β1

GDF11

Inhibin-βCInhibin-βE

Inhibin-βB

Lefty1

Lefty2GDF15

GDF1 Inhibin-αGDF3GDF5GDF6

GDF7

GDF2BMP10

Nodal

BMP4BMP2

BMP5BMP7BMP6

BMP8A,B

GDF9

Inhibin-βA

Anti-Müllerian

hormone

TGF-β3TGF-β2

Myostatin

. .

. .

.

.

.

.

. .

.....

.

. ..

. . .

. .β2 β3 β4

β5 β6

α3

α5

α4 β7

β8 β9 β10

β1

α2α1 Latency lassoa

Fastener

b

α2

β7

TGF-β1 - - - - L ST CKT I DMEL VKRKR I EA I RGQI L SKL RL ASPPSQGDV- - - - - - - PPGPL PEAV 48

Myost ( 1 3 ) GL CNACTWRQNT KSSR I EA I K I QI L SKL RL ET APNI SKDV I RQL L - PKAPPL REL 67

Inh-α - - - - - - - - - CQGL EL AREL VL AKVRAL F L DAL - - - GPPAVT REGGD- - - - PG- - - - - - V 37

BMP4 ( 1 9 ) QGHAGGRRSGQ- SHEL L RDF EAT L L QMFGL RRRPQ- - - - - - - - - PSKSAV I PDYM 64

Lefty - - - - - - - - - - - - - - - - - - L T GEQL L GSL L RQL QL KEVPT L DRADMEEL VI PT HVRAQYV 41

TGF-β1 L AL YNST RDRVAGESVEPEPEPEADYYAKE VT RV LMV- - - ESGNQ I YDKF KGT - - - - - P 99

Myost I DQYDVQRDD- SSDGSL ED- - - - - DDYHAT TET I I TMPT ESDF LMQVD- - - - - - - - - - G 110

Inh-α RRL PRRHAL GGF T HRGSEP- - - - - - EEEEDVSQA I L F PA TDASCEDKSAARGLAQEAEE 90

BMP4 RDL YRLQSGEEEEEQ I HSTGLEYPERPASRANT VRSF HHEEHL EN I PGT SE- - - - - - - N 116

Lefty AL L QRSHGDRSRGKRFSQS- - - - - - - - - - F REVAGRF L AL E- - - - - - - - - - - - - - - - - A 73

TGF-β1 HSL YML FNT SEL REAVPEPVL L SRAEL RL L R- - - - - - - - - - - - - - L KL KVEQHVEL YQK 144

Myost KPKCCF FKF SSK I QYNK- - - - VVKAQLWI YL - - - - - - - - - - - - RPV ET PT T VF VQI L RL 153

Inh-α GL F RYMFRPSQHT RSRQ- - - - VT SAQLWFHT - - - - - - GL DRQGT AASNSSEPL L GL L A L 139

BMP4 SAF RF L FNL SS I PENEV- - - - I SSAEL RL F R- - - - - - EQVDQGPDWERGF - HR I N I YEV 164

Lefty S THL L V FGMEQRL PPNSE- - - L VQAVL RL F QEPVPKAAL HRHGRL SPRSARARVT VEWL 129

TGF-β1 YSND- - - - - - - - SWRYL SNRL L A- - - PSDSPEWLSF DVT GVVRQWLT RRE- - A I EGF RL 190

Myost I KPMKDG- - - - - - T RYT G I RSL KL DMNPGT GI WQS I DVKT VL QNWLKQPE- - SNL G I E I 204

Inh-α SPG- - - - - - - - - - GPVAVPMSL G- - - - HAPPHWAVL HLAT SAL SL LT HPV- - L VL L L RC 182

BMP4 MKPPAEVVPGHL I T RL L DT RL VH- - - - HNVTRWE TF DVSPAVL RWTREKQ- - PNYGL A I 217

Lefty RVRDDGS- - - - NRT SL I DSRL VS- - - - VHESGWKAF DVT EAVNF WQQLSRPRQPL L L QV 180

TGF-β1 SAHCSCDSKDNT L HVE I NGFNSGRRGDL AT I HGMNRPF L L LMATPL ERAQHL HSSRHRR 249

Myost KAL DENGHDL AVT F PG- - - - - - - - - - - - - PGEDGL NPF L EVKV TD- - - - - - - T PKRSRR 243

Inh-α PL CT CSA- - - - - - - - - - - - - - - - - - - - - - - - RPEAT PF L VAHTRT RPP- - - SGGERARR 214

BMP4 EVT HL HQT RT HQGQHVR I S- - - RSL PQGSGNWAQL RPL L VT F GHDGRG- - - HAL T RRRR 270

Lefty SVQREHL GPL ASGAHKL V- - - - - RF ASQGAPAGL GEPQL EL HTL DL GDYGAQGD- - - - - 229

Figure 2 | The TGF-b family. a, Sequence alignment of five representativeprodomains. Orange circles mark the core hydrophobic residues shown inFig. 1e. Inh-a, inhibin-a; Myost, myostatin. Black dots over TGF-b1 sequence

mark decadal residues. Vertical dashed lines mark cleavage sites.b, Phylogenetic tree of the TGF-b family, based on the alignment inSupplementary Fig. 2.

ARTICLE RESEARCH

1 6 J U N E 2 0 1 1 | V O L 4 7 4 | N A T U R E | 3 4 5

Macmillan Publishers Limited. All rights reserved©2011

Page 4: tgf beta 3

driven by an intimate interaction between the growth-factor andprodomain dimers, which buries a total area of 2,440 A2.

Implications for biosynthesisFolding and secretion of active TGF-b1 and activin A requires the co-expression of their prodomains4, whereas the TGF-b1 prodomain canbe biosynthesized in the absence of the growth-factor domain16. Thesefindings suggest that the C-terminal growth-factor domain folds eitherconcomitantly with, or subsequently to, the N-terminal prodomain.The kinetics of biosynthesis of TGF-b1, activin and anti-Mullerianhormone are slow and for anti-Mullerian hormone, folding of thegrowth-factor domain is rate-limiting17. Regions of the prodomain thatmay be particularly important in templating the folding of the growth-factor domain include the b1 strand that forms a supersheet with theTGF-b fingers and the a1 and a2 helices, which pack against extensivehydrophobic interfaces on opposite sides of the growth-factor fingers(Fig. 1a, f, g). Residues Ile 17, Ile 24, Leu 25 and Leu 28 in the a1-helixinterface, and Leu 30 in the lasso interface (Fig. 1f, g), have been spe-cifically identified as important for TGF-b1 association18. The embraceof the fingers of each growth-factor monomer may complement thecorrect formation of the cystine knot and inter-monomer disulphidebonds in TGF-b. The structure of proTGF-b1 makes these disulphidesaccessible to disulphide isomerases during biosynthesis (Fig. 1b).

A definitive assignment of which growth-factor and prodomainmonomers derive from the same polypeptide chain is not possiblebecause of intracellular cleavage by furin and lack of density for resi-dues 243–249. However, cleavage is incomplete and the small amountof uncleaved proTGF-b that is present in protein preparations co-crystallizes with cleaved proTGF-b (Supplementary Fig. 1d), indi-cating that there is no major conformational change after cleavage.A long prodomain–growth-factor connection through the centre ofthe ring, spanning ,50 A, would require substantial conformationalchange and would limit access to furin. Therefore, we have assigned theshorter ,30 A connection, between the C terminus of the prodomainand the N terminus of the growth factor, located on the same side of thering (for example, the magenta and gold spheres in Fig. 1a, b).

This assignment indicates a swap in the growth-factor monomerthat each prodomain monomer embraces, with the intimate interac-tions described above occurring between prodomains and growth-factor domains that are present on different polypeptide chains inthe precursor in the endoplasmic reticulum (for example, the goldand green domains in Fig. 1). Thus, the surface area buried betweenthe growth-factor domains and prodomains of different precursormonomers (900 A2) is substantially larger than that within the sameprecursor monomer (370 A2) and adds substantially to the inter-monomer interfaces of the growth factor (330 A2) and prodomain(600 A2). Swapping may be important in regulating the proportion ofgrowth-factor heterodimers, which have unique functions in settingssuch as dorsoventral patterning19.

Complex with LTBP and activationIn the large latent complex, a single LTBP molecule is disulphide-bonded to two proTGF-b monomers. We confirmed this unusual 1:2

α5

α1

β3

β10

β1

R type II

Latency lasso

Mature TGF-β monomer

Latent TGF-βmonomer

R type I

TGF-β α3

Prodomain monomer

Figure 3 | Shielding from receptor binding. ProTGF-b1 and TGF-b1 incomplex with its receptors (R type I and II) (ref. 15) were superimposed on theTGF-b dimers. For clarity, only one monomer of each is shown. The receptorsare shown as transparent molecular surfaces. Elements of the prodomain thatclash with the receptors are labelled.

ba

c d

e

αV

β6

LAP

dimer

TGF-β1

dimer

f

Lucifera

se a

ctivity

Anti-LAP

Mo

ck

WT

K27C

/

Y75C

Y75C

L28C

K27C

LAP

Mo

ck

Y75C

L28C

K27C

/Y

75C

WT

h i

1 2 3

ProTGF-βLAP

gαVβ6Mock2,000

1,500

1,000

500

0

Moc

k

Moc

kW

T

WT

K27C/Y

75C

Y74A

Y74T

Y74F

Y74K

Y75A

Y75S

K27C/Y

75C

Y75F

Y75T

Y75C

L28C

Biotin labelled

Figure 4 | ProTGF-b1 complexes with LTBP and avb6 integrin, andactivation of TGF-b. a–d, Representative negative-stain electron microscopyclass averages of proTGF-b (a), the complex of proTGF-b with a fragment ofLTBP1 containing TGF-binding domain 3–EGF–EGF–TGF-binding domain 4(b) and complexes of proTGF-b1 with avb6 integrin, prepared with an excess ofproTGF-b1 (c) or an excess of avb6 integrin (d). Scale bars, 100 A. e, Non-reducing SDS–PAGE of the complex peak from S200 gel filtration used forelectron microscopy in d (lane 1), avb6 integrin (lane 2) and proTGF-b (lane 3).LAP, latency-associated protein (prodomain). f, Activation of TGF-b1. 293Tcells stably transfected with avb6 integrin or a mock control were additionallytransfected with the indicated wild-type (WT) or mutant proTGF-b1constructs, or with empty vector (mock), and co-cultured with TGF-b indicatorcells5. g, Material made by the indicated mutants in 293T cells was heated at80 uC and assayed with indicator cells. Error bars in f and g show the s.e.m. of3–9 samples from 1–3 representative experiments. h, i, Western blots ofproTGF-b1 secreted by the indicated transfectants, using an antibody to theprodomain (h) or streptavidin to detect biotinylated cysteines (i).

RESEARCH ARTICLE

3 4 6 | N A T U R E | V O L 4 7 4 | 1 6 J U N E 2 0 1 1

Macmillan Publishers Limited. All rights reserved©2011

Page 5: tgf beta 3

stoichiometry by multi-angle light-scattering mass measurements ofthe complex with an LTBP fragment. The LTBP-crosslinking Cys 4residues in each monomer (serines in our construct) are 40 A apart(Fig. 1b). Their linkage to LTBP will reinforce the straitjacket byfastening together the forearms (Fig. 1c). The large 40 A separationmay represent a mechanism for preventing disulphide linkagebetween the two Cys 4 residues. In contrast, the two cognate cysteinesin TGF-binding domain 3 of LTBP become linked to one another in theabsence of complex formation. These cysteines are surface-exposedand surrounded by acidic residues that interact with proTGF-b (refs20, 21). In agreement with this, the straitjacket a1-helices bear basicresidues (Fig. 1b). Moreover, between the two prodomain a1-helices, aconcave growth-factor surface that bears numerous hydrophobic resi-dues, including proline and disulphide-linked cysteine, is available forinteraction with LTBP (Fig. 1b).

Negative-stain electron microscopy class averages of proTGF-b arein excellent agreement with our crystal structure (Fig. 4a and Sup-plementary Fig. 4). A complex with an LTBP fragment that containsTGF-b-binding domains 3 and 4 and two intervening EGF domainsshows no major conformational change in the proTGF-b moiety(Fig. 4b). An additional density corresponding to the LTBP fragmentis present on the periphery of the ring, as expected from our crystalstructure, and causes the ring to lie at an angle to the substrate in someclass averages (Fig. 4b, middle panel and Supplementary Fig. 4c).

The RGD motifs in the shoulders of proTGF-b are highly accessiblefor integrin binding (Fig. 1a). In contrast to many RGD motifs that arepresent in extended loops, the position of Asp 217 is stabilized byburial of Leu 218 and by a 218–131 backbone hydrogen bond(Fig. 1d). Exposed hydrophobic side chains that are nearby on thebody of the arm domain (Fig. 1d) may increase affinity for integrins.

The integrin avb6 ectodomain, with a C-terminal clasp, formedcomplexes with proTGF-b1 in Ca21 and Mg21 that could be isolatedby gel filtration, demonstrating unusually tight binding for an integrin(Fig. 4c–e and Supplementary Fig. 4a). Different input ratios ofproTGF-b1 and avb6 integrin yielded 1:1 (Fig. 4c) and 1:2 (Fig. 4d,e) complexes. Binding to ligand stabilized extension of the integrinlegs and the open conformation of the avb6 headpiece22 (Fig. 4c, d andSupplementary Fig. 4d, e). Integrins were bound to proTGF-b at theinterface between a large density, corresponding to the av b-propellerdomain, and a small density, corresponding to the b6 bI domain, withtheir legs extending away from proTGF-b. The spacing between thebinding sites on the ring seen by electron microscopy (40–50 A) wasappropriate for that between the two RGDs in the crystal structure(45 A). No major conformational change in proTGF-b1 was apparent,even with two integrins bound (Fig. 4d), and SDS–polyacrylamide gelelectrophoresis (SDS–PAGE) confirmed the presence of TGF-b1 inthe complex (Fig. 4e). These biochemical and structural studies dem-onstrate that integrin binding to proTGF-b1 is not sufficient forrelease of TGF-b1, consistent with previous cell-biological assays5,8,10.The requirements of (1) attachment of proTGF-b through LTBP tothe extracellular matrix; (2) integrin attachment to the cytoskeletonand (3) cellular contraction indicate that the generation of tensileforce across proTGF-b1 is required for activation of TGF-b5,8,10,11.

The structure enables the overall mechanism of TGF-b1 activationby applied force to be readily predicted (Fig. 1c). Tensile force appliedto the RGD motifs in the shoulders by av integrins attached to theactin cytoskeleton will be resisted at the opposite end of the ring,where the Cys 4 residues in the straitjacket are disulphide-linked toLTBP, which is tightly associated with the extracellular matrix. Pullingforce will be applied in the directions shown by red arrows in Fig. 1a.

The direction of the pulling force and fold topology strongly influ-ence the unfolding pathway and resistance to force23. b-Sheet proteinsare the most force-resistant and thus the arm domain will be the mostforce-resistant portion of the prodomain. Pulling against the RGDmotif will be transmitted through the long meander to the b10 strand.Force transmitted from the Cys 4 residues through the straitjacket will

be resisted by the b1 strand. The b1 and b10 strands are each parallelto applied force and adjacent in a b-sheet (Fig. 1) and are thus in themost force-resistant structural geometry known, the hydrogen-bondclamp23. By contrast, the topologies and geometries of the a-helicesand the long latency lasso of the straitjacket are ill-suited to resistforce. Force on Cys 4 will apply leverage to the C-terminal end ofthe a1 helix and weaken interactions with fastener residues. Afterunfastening, the long latency lasso, which has no stabilizing hydro-gen-bond interactions, will be easily elongated and straightened by theapplied tensile force. Thus, freed by opening of its straitjacket, TGF-bwill be released from the prodomain and activated for receptor bind-ing (Fig. 1c).

The prodomain not only holds TGF-b in a markedly differentconformation from when it is free or bound to receptors, it also blocksreceptor access completely. TGF-b family members are recognized bytwo type I receptors and two type II receptors that surround thegrowth-factor dimer (Supplementary Fig. 3e)15. Binding of the typeII receptor to the finger-tips of the growth factor is blocked by thelatency lasso, and binding of the type I receptor to the body of thegrowth-factor domain is blocked by the prodomain a1 helix, a5 helix,the fastener and the ends of b-strands 1, 3 and 10 (Fig. 3). Althoughstraitjacket removal might be sufficient to allow binding of type IIreceptors, type I receptor interactions overlap with so many interac-tions between TGF-b and the arm domain (Fig. 3) that completerelease from the prodomain would be required for receptor binding.The structure thus shows that integrins could not expose TGF-bsufficiently for receptor activation if it remained bound to the prodo-main, and that other explanations should be sought for the greateractivity of integrin-activated TGF-b on neighbouring cells than ondistant cells10.

To test the importance of unfastening in TGF-b activation, keyresidues were mutated. Non-conservative substitutions of the fastenerresidues Tyr 74 and Tyr 75 resulted in spontaneous, non-integrin-dependent TGF-b activation (Fig. 4f). Among the different aminoacids to which Tyr 74 and Tyr 75 were mutated, only phenylalaninewas not activating. As a control, mutation of nearby Leu 28, in ahydrophobic interface with TGF-b, was not activating (Fig. 4f).These results are consistent with the importance to fastening ofp-bonding and of van der Waals interactions of the aromatic tyrosineside chains.

In the fastener, the Ca carbons of Lys 27 and Tyr 75 are only 4.1 Aapart, permissive for disulphide bond formation in a K27C/Y75Cmutant, as confirmed by free-cysteine labelling of the Y75C mutantbut not the K27C/Y75C mutant (Fig. 4h, i). The K27C mutationgreatly reduced expression (Fig. 4h). Similarly, a K27A mutationgreatly reduces expression, and also releases free TGF-b1 (ref. 18).The Y75C mutant was constitutively active (Fig. 4f). The K27C/Y75Cdouble mutation rescued expression compared to K27C, preventedthe spontaneous release of TGF-b that was seen with Y75C and, com-pared to wild type, made proTGF-b completely resistant to integrin-avb6-dependent activation (Fig. 4f, h). Denaturants such as heat canunfold proteins by pathways distinct from applied force23. Heat releasedcomparable amounts of active TGF-b from wild type and the K27C/Y75C mutant (Fig. 4g). Thus, a disulphide bond can fasten the strait-jacket permanently and prevent integrin-dependent activation. Theseresults support the hypothesis that tensile force applied to the prodo-main by integrins can release TGF-b, and emphasise the importance ofstraitjacket unfastening in integrin-dependent activation.

Mutations in diseaseCamurati–Engelmann disease (CED), which is characterized bythickening of the shafts of the long bones with pain in muscle andbone, is caused by mutations in the prodomain of TGF-b1 thatincrease its release18,24. Among CED mutations, Y52H disrupts ana2-helix residue that cradles the TGF-b fingers (Fig. 1a, f). Thecharge-reversal E140K and H193D mutations disrupt a pH-regulated

ARTICLE RESEARCH

1 6 J U N E 2 0 1 1 | V O L 4 7 4 | N A T U R E | 3 4 7

Macmillan Publishers Limited. All rights reserved©2011

Page 6: tgf beta 3

salt bridge between Glu 140 and His 193 in the dimerization interfaceof the prodomain (Fig. 1a). ‘Hotspot’ residue Arg 189 is substantiallyburied: it forms a cation-p bond with Tyr 142 and salt bridges acrossthe dimer interface with bowtie residue Asp 197 (Fig. 1a). Moreover,CED mutations in Cys 194 and Cys 196 demonstrate the importanceof the bowtie disulphide bonds.

Implications for the large TGF-b familyThe TGF-b family consists of 33 members (Fig. 2b)2. Althoughgrowth-factor domains are highly conserved, prodomains vary inlength from 169 to 433 residues, and are variously described as unre-lated in sequence or low in homology. However, alignment shows thatall prodomains have a similar fold (Fig. 2a and Supplementary Fig. 2).Deeply buried hydrophobic residues in core secondary-structure ele-ments of the arm domain, that is, the a2 helix and b-strands 1–3, 6, 7and 10, are conserved in all members (gold side chains in Fig. 1e andorange circles in Fig. 2 and Supplementary Fig. 2).

Most family members also contain clear sequence signatures for theamphipathic C-terminal portion of the a1 helix that inserts intimatelybetween the two growth-factor monomers (Fig. 2 and SupplementaryFig. 2). A similar insertion in inhibin-a and inhibin-bA has beendemonstrated by mapping disruptive mutations to the equivalentsof Ile 24 and Leu 28 in TGF-b (Fig. 1f, g)25. Many family membersalso contain proline-rich latency lasso loops with lengths that arecompatible with encirclement of the growth-factor b-finger (Fig. 2and Supplementary Fig. 2). Thus, a prodomain structure similar tothat of proTGF-b, including a portion of the straitjacket, is widespreadin the TGF-b family. However, the low sequence identity and manyinsertions and deletions indicate substantial specializations.

Differences in prodomain dimerization among family members areindicated by variations in cysteine positions. The bowtie (b-strands 8and 9) and its disulphides are specializations. Inhibin-a and -b sub-units have cysteines in similar positions, whereas other family mem-bers either have cysteine residues in the b7 strand or lack cysteinesaltogether in this region (Fig. 2 and Supplementary Fig. 2).

The interface between the two arm domains in the b4 and b5strands is modest in size and lacks hydrophobic and conserved resi-dues. GDF1 and GDF15 specifically lack the b4 and b5 strands, whichare adjacent in sequence and structure, on the edge of a b-sheet(Fig. 1a and Supplementary Fig. 2). Therefore, arm-domain dimeriza-tion seems to be variable or absent in some family members.

The close relatives of TGF-b, myostatin and GDF11, which are alsolatent, show conservation of the fastener residues Lys 27 and Tyr 75(Fig. 2a and Supplementary Fig. 2). Myostatin regulates muscle massand is stored in the extracellular matrix, bound to LTBP3. Release ofmyostatin and GDF11 from latency requires cleavage of the prodo-main between Arg 75 and Asp 76 by BMP1/tolloid metalloproteinases(reviewed in ref. 26). This cleavage is between the a2 helix and thefastener (Fig. 2a). Thus at least two different methods of unfasteningthe straitjacket, force and proteolysis, can release family membersfrom latency.

An increasingly large number of TGF-b family members are recog-nized to remain associated with their prodomains after secretion,including BMP4, BMP7, BMP10, GDF2, GDF5 and GDF8 (ref. 27).Furthermore, many of these prodomains bind with high affinity tofibrillin-1 and fibrillin-2. Targeting by the prodomain to the extra-cellular matrix may be of wide importance in regulating bioactivity inthe TGF-b family6. Moreover, binding to LTBPs or fibrillins seems tostrengthen the prodomain–growth-factor complex6. Thus, althoughonly a limited number of TGF-b family members are latent asprodomain–growth-factor complexes, the concept of latency mayextend to other members when their physiologically relevant com-plexes with LTBPs and fibrillins are considered.

The signalling range of BMP4 in vivo is increased by extracellularcleavage of the prodomain by furin-like proteases at a second siteupstream of the prodomain–growth-factor cleavage site28. Notably,

the second site is in the disordered loop bearing the arginine of RGDin TGF-b1 (Fig. 2a). Loss of the central b10 strand between the twocleavage sites results in loss of binding of the BMP4 prodomain to itsgrowth factor27.

The prodomain of Nodal, which binds to Cripto, targets Nodal forcleavage by proteases secreted by neighbouring cells29. Anti-Mullerianhormone is secreted largely uncleaved and association with the pro-domain greatly potentiates its activity in vivo30. Lefty protein, which isinvolved in establishing bilateral asymmetry, is not cleaved betweenthe arm and growth-factor domains, and is cleaved instead betweenthe a2 helix and the fastener31 (Fig. 2). Notably, release of the strait-jacket should be sufficient to enable access of type II receptors togrowth-factor domains.

Concluding perspectiveWe have described the structure of latent TGF-b1 and a force-dependentmechanism for its activation by av integrins. It is notable that so manymembers of the TGF-b family associate with fibrillins or with LTBPs,which co-assemble in the elastic fibres of connective tissues6. Forcesacting on elastic fibres would extend fibrillins and LTBPs, and wespeculate that this could weaken their association with TGF-b familymembers, enabling release and activation. It is thus possible that force-dependent regulation of TGF-b family activation could extend beyondintegrin-dependent mechanisms and could be important in a widevariety of contexts, including regulation of bone and tissue growth.Although prodomains in the TGF-b family are diverse, their sequencesare highly conserved between species2. Further studies are required toaddress the diversity of mechanisms by which prodomains regulatelatency and activation in the TGF-b family.

METHODS SUMMARYPorcine proTGF-b1 with an N-terminal tag, C4S and N147Q mutations wasexpressed in CHO-Lec 3.2.8.1 cells. The protein was purified, treated with 3Cprotease to remove tags and then crystallized. Diffraction-quality crystals wereobtained in 6.5–7.5% (w/v) polyethylene glycol 3500, 17–18% isopropanol, 4–5%glycerol and 0.1 M sodium citrate, pH 5.6. Structures were solved by Se multi-wavelength anomalous dispersion and Hg single-wavelength anomalous disper-sion. Maps were improved by multi-crystal averaging. The structure was builtmanually and refined to Rwork and Rfree factors of 27.4% and 31.1%, respectively.The avb6 ectodomain was expressed using C-terminal a-helical coiled-coils andtags, purified and subjected to negative-stain electron microscopy. TGF-b assaysused 293T cells stably transfected with avb6 integrin and transiently transfectedwith mutant human proTGF-b1, then co-cultured with indicator cells expressinga luciferase gene under the control of a TGF-b1-inducible promoter.

Full Methods and any associated references are available in the online version ofthe paper at www.nature.com/nature.

Received 20 December 2010; accepted 27 April 2011.

1. Wu, M. Y. & Hill, C. S. TGF-b superfamily signaling in embryonic development andhomeostasis. Dev. Cell 16, 329–343 (2009).

2. Derynck,R. & Miyazono,K. in The TGF-b Family (edsDerynck,R. & Miyazono,K.) Ch.2, 29–43 (Cold Spring Harbor Laboratory Press, 2008).

3. Blobe,G.C., Schiemann,W.P.&Lodish,H. F.Roleof transforminggrowth factorb inhuman disease. N. Engl. J. Med. 342, 1350–1358 (2000).

4. Gray, A. M. & Mason, A. J. Requirement for activin A and transforming growthfactor-b 1 pro-regions in homodimer assembly. Science 247, 1328–1330 (1990).

5. Annes, J. P., Chen, Y., Munger, J. S. & Rifkin, D. B. Integrin aVb6-mediated activationof latent TGF-b requires the latent TGF-b binding protein-1. J. Cell Biol. 165,723–734 (2004).

6. Ramirez, F. & Sakai, L. Y. Biogenesis and function of fibrillin assemblies. Cell TissueRes. 339, 71–82 (2010).

7. Yang, Z. et al. Absence of integrin-mediated TGFb1 activation in vivo recapitulatesthe phenotype of TGFb1-null mice. J. Cell Biol. 176, 787–793 (2007).

8. Wipff, P. J. & Hinz, B. Integrins and the activation of latent transforming growthfactor b1 — an intimate relationship. Eur. J. Cell Biol. 87, 601–615 (2008).

9. Aluwihare, P. et al. Mice that lack activity of aVb6- and aVb8-integrins reproduce theabnormalities of Tgfb1- and Tgfb3-null mice. J. Cell Sci. 122, 227–232 (2009).

10. Munger, J. S. et al. The integrin aVb6 binds and activates latent TGF b1: Amechanism for regulating pulmonary inflammation and fibrosis. Cell 96,319–328 (1999).

RESEARCH ARTICLE

3 4 8 | N A T U R E | V O L 4 7 4 | 1 6 J U N E 2 0 1 1

Macmillan Publishers Limited. All rights reserved©2011

Page 7: tgf beta 3

11. Yoshinaga, K. et al. Perturbation of transforming growth factor (TGF)-b1association with latent TGF-b binding protein yields inflammation and tumors.Proc. Natl Acad. Sci. USA 105, 18758–18763 (2008).

12. Holm, L., Kaariainen, S., Rosenstrom, P. & Schenkel, A. Searching protein structuredatabases with DaliLite v.3. Bioinformatics 24, 2780–2781 (2008).

13. Daopin, S., Piez, K. A., Ogawa, Y. & Davies, D. R. Crystal structure of transforminggrowth factor-b2: an unusual fold for the superfamily. Science 257, 369–373(1992).

14. Schlunegger, M. P. & Grutter, M. G. An unusual feature revealed by the crystalstructure at 2.2 A resolution of human transforming growth factor-b2. Nature 358,430–434 (1992).

15. Radaev,S.et al.Ternarycomplexof transforminggrowth factor-b1 reveals isoform-specific ligand recognition and receptor recruitment in the superfamily. J. Biol.Chem. 285, 14806–14814 (2010).

16. Gentry, L. E. & Nash, B. W. The pro domain of pre-pro-transforming growth factorb1 when independently expressed is a functional binding protein for the maturegrowth factor. Biochemistry 29, 6851–6857 (1990).

17. Belville, C. et al. Mutations of the anti-Mullerian hormone gene in patients withpersistent Mullerian duct syndrome: biosynthesis, secretion, and processing ofthe abnormal proteins and analysis using a three-dimensional model. Mol.Endocrinol. 18, 708–721 (2004).

18. Walton, K. L. et al. Two distinct regions of latency-associated peptide coordinatestability of the latent transforming growth factor-b1 complex. J. Biol. Chem. 285,17029–17037 (2010).

19. Little, S. C. & Mullins, M. C. Bone morphogenetic protein heterodimers assembleheteromeric type I receptor complexes to pattern the dorsoventral axis. Nature CellBiol. 11, 637–643 (2009).

20. Lack, J.et al.Solutionstructureof the thirdTBdomain fromLTBP1provides insightinto assembly of the large latent complex that sequesters latent TGF-b. J. Mol. Biol.334, 281–291 (2003).

21. Chen, Y. et al. Amino acid requirements for formation of the TGF-b-latent TGF-bbinding protein complexes. J. Mol. Biol. 345, 175–186 (2005).

22. Luo, B.-H., Carman,C. V. & Springer, T. A. Structural basis of integrin regulation andsignaling. Annu. Rev. Immunol. 25, 619–647 (2007).

23. Forman, J. R. & Clarke, J. Mechanical unfolding of proteins: insights into biology,structure and folding. Curr. Opin. Struct. Biol. 17, 58–66 (2007).

24. Janssens, K. et al. Camurati-Engelmann disease: review of the clinical, radiological,and molecular data of 24 families and implications for diagnosis and treatment.J. Med. Genet. 43, 1–11 (2005).

25. Walton, K. L. et al. A common biosynthetic pathway governs the dimerization andsecretion of inhibin andrelated transforming growth factorb (TGFb) ligands. J. Biol.Chem. 284, 9311–9320 (2009).

26. Anderson, S. B., Goldberg, A. L. & Whitman, M. Identification of a novel pool ofextracellular pro-myostatin in skeletal muscle. J. Biol. Chem. 283, 7027–7035(2008).

27. Sengle, G. et al. Targeting of bone morphogenetic protein growth factor complexesto fibrillin. J. Biol. Chem. 283, 13874–13888 (2008).

28. Cui, Y. et al. The activity and signaling range of mature BMP-4 is regulated bysequential cleavage at two sites within the prodomain of the precursor. Genes Dev.15, 2797–2802 (2001).

29. Blanchet, M.H.et al. Cripto recruits FurinandPACE4andcontrolsNodal traffickingduring proteolytic maturation. EMBO J. 27, 2580–2591 (2008).

30. Wilson,C.A.et al.Mullerian inhibitingsubstance requires itsN-terminaldomain formaintenance of biological activity, a novel finding within the transforming growthfactor-b superfamily. Mol. Endocrinol. 7, 247–257 (1993).

31. Ulloa, L. et al. Lefty proteins exhibit unique processing and activate the MAPKpathway. J. Biol. Chem. 276, 21387–21396 (2001).

Supplementary Information is linked to the online version of the paper atwww.nature.com/nature.

Acknowledgements We thank P. Sun for porcine TGF-b1 cDNA, K. Koli for humanTGF-b1 and LTBP1 cDNAs, D. Rifkin for human LTBP1 cDNA and transformed minklung epithelial cells, and the staff of the Advanced Photon Source General MedicalSciences and National Cancer Institute (APS GM/CA-CAT) beamline 23-ID.

Author Contributions M.S. cloned, expressed and purified proTGF-b1, crystallized theprotein, collected and processed X-ray data, refined and analysed the structure,designed and performed biochemical assays and wrote the paper. J.Z. collected andprocessed X-ray data, refined and analysed the structure and performed electronmicroscopy studies. R.W. designed and performed TGF-b1 assays. X.C. performedelectron microscopy studies. L.M. processed X-ray data. T.W. provided electronmicroscopy supervision. T.A.S. designed and supervised the project, refined andanalysed the structure and wrote the paper.

Author Information X-ray structures have been deposited in the Protein Data Bankunder the accession number 3RJR. Reprints and permissions information is availableat www.nature.com/reprints. The authors declare no competing financial interests.Readers are welcome to comment on the online version of this article atwww.nature.com/nature. Correspondence and requests for materials should beaddressed to T.A.S. ([email protected]).

ARTICLE RESEARCH

1 6 J U N E 2 0 1 1 | V O L 4 7 4 | N A T U R E | 3 4 9

Macmillan Publishers Limited. All rights reserved©2011

Page 8: tgf beta 3

METHODSProTGF-b1. The porcine proTGF-b1 construct with the rat serum albuminleader sequence (MKWVTFLLLLFISGSAFS), followed by eight histidine resi-dues, a streptavidin-binding peptide (TTGWRGGHVVELAGELEQLRARLEHHPQGQREP)32 and a HRV-3C protease site (LEVLFQGP) was amplified frompcDNA-GS-TGF-b1 (ref. 33). Porcine proTGF-b1 with the C4S mutation wasamplified from the latter construct. The C4S mutation increases proTGF-b1expression33 and avoids inappropriate disulphide bond formation34. No crystalswere obtained with this construct. One or two N-linked sites were deleted in theN147Q and N107Q/N147Q constructs, which were expressed similarly to wildtype35. The best crystals were obtained with N147Q; the N107Q/N147Q mutantyielded needles that could not be optimized. CHO-Lec 3.2.8.1 cells were trans-fected by electroporation and cultured with 10 mg ml21 puromycin. Clones werescreened for expression using a sandwich enzyme-linked immunosorbent assay(ELISA) with a capture antibody to prodomain-1 (R&D Systems) and a biotiny-lated detection antibody to the His tag (Qiagen). The clone with highest expres-sion of proTGF-b1 (,2 mg l21) was expanded and cultured in roller bottles withJ/J medium and 5% fetal bovine serum (FBS). Supernatants were collected every5 d, clarified by centrifugation, concentrated tenfold with tangential flow filtra-tion (Vivaflow 200, Sartorius Stedim), diluted fivefold with 10 mM Tris-HCl,0.14 M NaCl (TBS, pH 8.0), then concentrated fivefold. Material was adjustedto 0.2 M NaCl and purified using Ni-NTA agarose (Qiagen) (25 ml per 5 l ofculture supernatant), then washed with three column volumes of 0.6 M NaCl,0.01 M Tris (pH 8.0) and eluted with 0.25 M imidazole in TBS. Material wasadjusted to pH 7.4, applied to Strep-tactin agarose (IBA) (3 ml per 5 l of culturesupernatant) and washed with TBS (pH 7.4). Then 4 ml of recombinant His-tagged HRV-3C protease (Novagen, 100 U mg21, 1 mg ml21), diluted 20-foldin TBS (pH 7.4) with 10% glycerol, was applied to the column, which was heldat 4 uC for 16 h. The flow-through with two column volumes of TBS (pH 7.4),containing untagged proTGF-b1, was concentrated to 1 ml and applied toMonoQ and Superdex S200 columns connected in series and equilibrated withTBS (pH 7.5). Purified proTGF-b1 was concentrated to about 15 mg ml21 in10 mM Tris (pH 7.5), 75 mM NaCl for crystal screening in 96-well Greiner micro-plates (100 nl hanging-drop vapour diffusion format) using a mosquito crystal-lization robot (Molecular Dimensions) at 20 uC. Hits were optimized in 24-wellplates using hanging-drop vapour diffusion. However, better-diffracting crystalscould only be obtained from sitting drops containing equal volumes of 12–15 mlprotein and well solution under the optimized conditions of 6.5–7.5% PEG 3500,17–18% isopropanol and 0.1 M sodium citrate (pH 5.6), with the addition of4–5% glycerol to slow crystal growth and improve crystal size and shape.Maximum single-crystal dimensions reached 450mm 3 150mm 3 40 mm.Before cooling the crystals to 100 K in liquid nitrogen, three rounds of increasesin PEG 3350 concentration (12 h for each increase of 8% per cycle) were carriedout in the mother liquor36. The final PEG 3350 concentration of about 31% wassufficient for cryoprotection. Crystals are summarized in Supplementary Table 1.There are two complexes per asymmetric unit, with a Matthews coefficient of2.9 A3 Da21, giving a solvent content of 57.8%.

To prepare Se-Met proTGF-b1, cells were washed with PBS (pH 7.4), supple-mented with 1% FBS, then incubated for 8 h with methionine-freea-MEM (SAFCBiosciences) supplemented with 50 mg l21 L-Se-Met (Sigma) and 10% dialyzedFBS. After replacement with the same medium, cells were cultured for 4 d. Se-MetproTGF-b1, at a yield of 1.5 mg l21, was purified and crystallized identically tonative proTGF-b1. Furthermore, a heavy-atom derivative was obtained by soak-ing crystals in mother liquor containing 0.4 mM HgBr2 for 4 h.Structure determination and refinement. Native Se multiple-wavelength anom-alous dispersion (MAD) and single-wavelength anomalous dispersion (SAD) Hgderivative data were collected at 100 K at beamline 23-ID, then processed usingHKL2000 (ref. 37) and XDS38. Statistics are in Supplementary Table 1. Initialexperimental phases were determined independently using Se-MAD and Hg-SAD, with 19 out of 24 Se sites and 14 Hg sites in the asymmetric unit locatedusing PHENIX39. Electron density maps from Se-Met phasing, calculated afterfourfold non-crystallographic symmetry (NCS) averaging, clearly defined theorientation of each monomer. The mature TGF-b1 homodimer was easily dockedinto the map using model 1KLC with MOLREP40 in CCP4 (ref. 41). The prodo-main was built into the map manually. A crude model of proTGF-b1 wasobtained after rigid-body refinement by PHENIX, with both domains as one rigidbody. The same model was docked into Hg-SAD density for the two homodimers,using MOLREP.

To improve the phases and extend them to higher resolution, multi-crystalaveraging (two crystals in total: Se-MAD and Hg derivative), multi-domain aver-aging (with separate masks for each prodomain and TGF-b monomer) andsolvent flattening and histogram matching were performed using DMMULTI42

from the CCP4 suite. The mask for each domain was calculated by NCSMASK in

CCP4, and NCS matrices for each domain between molecules and crystals werecomputed by LSQKAB in CCP4. Rigid-body refinements were carried out byPHENIX for each lattice, on the basis of the averaged maps. The new models foreach lattice were then used to calculate a set of new NCS matrices for the nextcycle of DMMULTI. These steps were cycled twice.

Model building in COOT43 was based on multi-crystal, multi-domain averagedelectron density maps and 2Fo 2 Fc maps. NCS restraints and translation-libration-screw (TLS) groups were used in refinement with PHENIX. Thesequence-to-structure register was confirmed using Se anomalous maps. Themulti-crystal, multi-domain averaging was repeated using the refined structureat an Rfree of about 33% and no major differences were found. Two residues fromthe 3C protease site remain at the N terminus after cleavage. The structures includeresidues 0–62, 70–208, 216–241, 250–361 and one N-acetylglucosamine (NAG)residue (chain A); residues 1–62, 70–208, 216–242, 250–299, 310-361 and twoNAG residues (chain B); residues 1–62, 68–208, 216–241, 250–361 and three NAGresidues (chain C) and residues 0–62, 69–208, 216–242, 250–361 and two NAGresidues (chain D). Validation and Ramachandran statistics usedMOLPROBITY44. All structure figures were generated using Pymol (DeLanoScientific).

In the asymmetric unit of the crystal, a second pro-TGF dimer extends eachtwo-stranded b-ribbon to form a four-stranded, inter-dimer super-b-sheet inwhich Leu 203 forms a hydrophobic lattice contact. In its absence, Leu 203 maymediate hydrophobic interactions within the bowtie.Mutagenesis. Wild-type human proTGF-b1 was inserted into the pEF1-puroplasmid. Site-directed mutagenesis was performed using QuikChange(Stratagene). All mutations were confirmed by DNA sequencing.Free cysteine labelling and prodomain detection. HEK-293T cells were trans-fected using Polyfect reagent (Qiagen) according to the manufacturer’s instruc-tions, using 2 mg of proTGF-b1 cDNA per 6-cm dish of cells at 70–80%confluency. The cells were then cultured in FreeStyle serum-free medium(Invitrogen) for 3 d. Supernatant was reacted with 450mM biotin-BMCC(1-biotinamido-4-(49-(maleimidoethylcyclohexane)-carboxamido)butane) (Pierce)for 60 min at 22uC, followed by the addition of 40 mM N-ethylmaleimide.ProTGF-b1 was immunoprecipitated with 1.5mg anti-human-prodomain-1(LAP-1) antibody (R&D Systems) and Protein A Sepharose beads (GEHealthcare) at 4 uC for 2 h, then subjected to reducing SDS 10% PAGE. Aftertransfer to polyvinylidene difluoride membranes (Millipore), biotin was detectedusing streptavidin-horseradish peroxidase with the ECL-plus western blotting kit(GE Healthcare). Total proTGF-b1 was similarly detected on a separate blot usingbiotinylated human prodomain-1 (LAP-1) antibody.TGF-b1 activation assay. Transformed mink lung epithelial cells (TMLCs) stablytransfected with a luciferase construct under plasminogen activator inhibitorpromoter 1 (ref. 5) were provided by D. Rifkin (New York University). HEK-293T cell transfectants stably expressing av and b6 were selected with puromycinand G418. Clones expressing high levels of integrin avb6 were selected by immu-nofluorescent flow cytometry using an anti-b6 antibody. Cells stably transfectedwith empty vector were used as a control. These cells were subsequently transi-ently transfected with human wild-type or mutant proTGF-b1, using lipofecta-mine with 0.4mg plasmid DNA per well in a 48-well plate. After 16–24 h, each wellwas used to seed 3 wells of a 96-well plate with about 15,000 cells, which were co-cultured with 15,000 TMLCs in 100ml DMEM with 0.1% BSA for 16–24 h. TGF-b1-induced luciferase activity in cell lysates was measured using the luciferaseassay system (Promega). To assess heat-releasable TGF-b1, cells were transfectedas above except that polyfect was used in 6-well plates. After 2 d, cells werecollected and heated in 150ml of DMEM with 0.1% BSA at 80 uC for 10 min.TGF-b1 activity in 50ml aliquots was measured using the luciferase assay withTMLCs.Negative-stain electron microscopy. A large latent-complex fragment was iso-lated from supernatants of 293T cells transiently co-transfected with nativehuman proTGF-b and a human LTBP fragment containing the same N-terminal tag as was used above on proTGF-b. The LTBP fragment containedthe TB3 and TB4 domains and two intervening EGF-like domains (residuesThr 1333–Asn 1578, immature numbering). Multi-angle light scattering gavean Mr of 119,400, compared to a calculated Mr of 120,400 for a 2:1 proTGF-b:LTBP fragment (2 3 46,400 for proTGF-b, including 2 3 7,500 for threehigh-mannose N-linked sites, plus 27,600 for the LTBP fragment). The avb6

ectodomain was expressed using C-terminal a-helical coiled-coils and tags; puri-fied, then subjected to negative-stain electron microscopy as previouslydescribed45. Purified proTGF-b1 or proTGF-b1 in complex with an LTBP frag-ment (20mg), proTGF-b1 (30mg) in molar excess over clasped avb6 (20mg), orclasped avb6 (60mg) in excess over proTGF-b (10mg) were subjected to SuperdexS200 chromatography in TBS (pH 7.5) with 1 mM Ca21 and 1 mM Mg21. Peakfractions corresponding to the purified proteins or complexes were subjected to

RESEARCH ARTICLE

Macmillan Publishers Limited. All rights reserved©2011

Page 9: tgf beta 3

negative-stain electron microscopy. Particle selection, alignment, classificationand averaging were conducted as previously described46.

32. Keefe, A. D., Wilson, D. S., Seelig, B. & Szostak, J. W. One-step purification ofrecombinant proteins using a nanomolar-affinity streptavidin-binding peptide,the SBP-Tag. Protein Expr. Purif. 23, 440–446 (2001).

33. Zou, Z. & Sun, P. D. Overexpression of human transforming growth factor-b1 usinga recombinant CHO cell expression system. Protein Expr. Purif. 37, 265–272(2004).

34. Gentry, L. E. et al. Type 1 transforming growth factor beta: amplified expressionand secretion of mature and precursor polypeptides in Chinese hamster ovarycells. Mol. Cell. Biol. 7, 3418–3427 (1987).

35. Brunner, A. M. et al. Site-directed mutagenesis of glycosylation sites in thetransforming growth factor-beta 1 (TGF beta 1) and TGF beta 2 (414) precursorsand of cysteine residues within mature TGF beta 1: effects on secretion andbioactivity. Mol. Endocrinol. 6, 1691–1700 (1992).

36. Heras, B. & Martin, J. L. Post-crystallization treatments for improving diffractionquality of protein crystals. Acta Crystallogr. D 61, 1173–1180 (2005).

37. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected inoscillation mode. Methods Enzymol. 276, 307–326 (1997).

38. Kabsch, W. in International Tables for Crystallography, Vol. F: Crystallography ofBiological Macromolecules (eds Rossmann, M. G. & Arnold, E. V.) Ch. 25.2.9 XDS,730–734 (Springer, 2001).

39. Adams, P. D. et al. PHENIX: building new software for automated crystallographicstructure determination. Acta Crystallogr. D 58, 1948–1954 (2002).

40. Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D66, 22–25 (2010).

41. Bailey, S. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).

42. Cowtan, K. Recent developments in classical density modification. ActaCrystallogr. D 66, 470–478 (2010).

43. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. ActaCrystallogr. D 60, 2126–2132 (2004).

44. Davis, I. W. et al. MolProbity: all-atom contacts and structure validation for proteinsand nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

45. Takagi, J., Petre, B. M., Walz, T. & Springer, T. A. Global conformationalrearrangements in integrin extracellular domains in outside-in and inside-outsignaling. Cell 110, 599–611 (2002).

46. Chen, X. et al. Requirement of open headpiece conformation for activation ofleukocyte integrin aXb2. Proc. Natl Acad. Sci. USA 107, 14727–14732 (2010).

ARTICLE RESEARCH

Macmillan Publishers Limited. All rights reserved©2011

Page 10: tgf beta 3

W W W. N A T U R E . C O M / N A T U R E | 1

SUPPLEMENTARY INFORMATIONdoi:10.1038/nature10152

A B

Figure S1. Multi-crystal averaged experimental electron density and crystal protein. A: Multi-crystal average density at 1 σ for the two SLC homodimers in the asymmetric unit.B: Anomalous Fourier map calculated from the Se-Met data, contoured at 4.2 σ. Electron density is shown as black mesh. Met sidechains are shown as white sticks, with Se(S) atoms as gold spheres.C: Multi-crystal average electron density at 1 σ around the clasp region of chain D.D: SDS-PAGE of the SLC preparation used for crystallization (lane 1) and a washed crystal (lane 2).

LAP1A

TGF β1C

Tyr75

Tyr74

Gln23

Lys27

C

A

B

Ser26

TGF β1A

TGF β1D

TGF β1B

LAP1B

LAP1C LAP1D

D 1 M 2

49.5kDa

36.7kDa

12.8kDa

Page 11: tgf beta 3

SUPPLEMENTARY INFORMATION

2 | W W W. N A T U R E . C O M / N A T U R E

RESEARCH

TGF1po ----------------------------------------------------------------------------------------------------LSTCKTIDMELVKRKRIEAIRGQILSKLRLASPP 34TGF1hu ----------------------------------------------------------------------------------------------------LSTCKTIDMELVKRKRIEAIRGQILSKLRLASPP 34TGF2 ---------------------------------------------------------------------------------------------------SLSTCSTLDMDQFMRKRIEAIRGQILSKLKLTSPP 35TGF3 -------------------------------------------------------------------------------------------------SLSLSTCTTLDFGHIKKKRVEAIRGQILSKLRLTSPP 37myosta ---------------------------------------------------------------------------------------NENSEQKENVEKEGLCNACTWRQNTKSSRIEAIKIQILSKLRLETAP 47GDF11 -----------------------------------------------------------------AEGPAAAAAAAAAAAAAGVGGERSSRPAPSVAPEPDGCPVCVWRQHSRELRLESIKSQILSKLRLKEAP 69Inh_bA ----------------------------------------------------------------------------------SPTPGSEGHSAAPDCPSCALAALPKDVPNSQPEMVEAVKKHILNMLHLKKRP 52Inh_bB ----------------------------------------------------------------------SPTPPPTPAAPPPPPPPGSPGGSQDTCTSCGGFRRPEELGRVDGDFLEAVKRHILSRLQMRGRP 64Inh_bC -----------------------------------------------------------------------------------------TPRAGGQCPACGG--PTLELESQRELLLDLAKRSILDKLHLTQRP 43Inh_bE ------------------------------------------------------------------------------------------QGTGSVCPSCGG--SKLAPQAERALVLELAKQQILDGLHLTSRP 42Inh_a ---------------------------------------------------------------------------------------------------------CQGLELARELVLAKVRALFLDAL---GPP 26BMP3 --------------------------------------------------------------------------------------------------------------ERPKPPFPELRKAVPGDRTAGGGP 24GDF10 -----------------------------------------------------------------------------------------------------------SHRAPAWSALPAAADGLQGDRDLQRHP 27BMP15 --------------------------------------------------------------------------------------------------MEHRAQMAEGGQSSIALLAEAPTLPLIEEL-LEESP 35GDF9 ---------------------------------------------------------------------------------------SQASGGEAQIAASAELESGAMPWSLLQHIDERDRAGLLPALFKVLSV 47GDF1 ------------------------------------------------------------------------------------------------------------------PVPPGPAAALLQALGLRDEP 20GDF3 -----------------------------------------------------------------------------------------------------------------------QEYVFLQFLGLDKAP 15BMP10 -----------------------------------------------------------------------------------SPIMNLEQSPLEEDMSLFGDVFSEQDGVDFNTLLQSMKDEFLKTLNLSDIP 51GDF2 --------------------------------------------------------------------------------KPLQSWGRGSAGGNAHSPLGVPGGGLPEHTFNLKMFLENVKVDFLRSLNLSGVP 54Nodal ----------------------------------------------------------------------------------------------------------------------TVATALLRTRGQPSSP 16BMP2 ------------------------------------------------------------------------------------------LVPELGRRKFAAASSGRPSSQPSDEVLSEFELRLLSMFGLKQRP 44BMP4 ---------------------------------------------------------------------------------GASHASLIPETGKKKVAEIQGHAGGRRSGQ-SHELLRDFEATLLQMFGLRRRP 52BMP5 ---------------------------------------------------------------------------------------------------DNHVHSSFIYRRLRNHERREIQREILSILGLPHRP 35BMP7 -----------------------------------------------------------------------------------------------DFSLDNEVHSSFIHRRLRSQERREMQREILSILGLPHRP 39BMP6 -------------------------------------------------------------CCGPPPLRPPLPAAAAAAAGGQLLGDGGSPGRTEQPPPSPQSSSGFLYRRLKTQEKREMQKEILSVLGLPHRP 73BMP8 -----------------------------------------------------------------------------------------------GGGPGLRPPPGCPQRRLGARERRDVQREILAVLGLPGRP 39GDF5 ------APDLGQRPQGTRPGLAKAEAKERPPLARNVFRPGGHSYGGGATNANARAKGGTGQTGGLTQPKKDEPKKLPPRPGGPEPKPGHPPQTRQATARTVTPKGQLPGGKAPPKAGSVPSSFLLKKAREPGPP 128GDF6 ----------------------------------------------------------------------------FQQASISSSSSSAELGSTKGMRSRKEGKMQRAPRDSDAGREGQEPQPRPQDEPRAQQP 58GDF7 ------------------------------------------------------------------------------------------RDGLEAAAVLRAAGAGPVRSPGGGGGGGGGGRTLAQAAGAAAVP 44GDF15 -------------------------------------------------------------------------------------------------------------------------------LSLAEAS 7LEFTY1 ------------------------------------------------------------------------------------------------------------------LTGEQLLGSLLRQLQLKEVP 20LEFTY2 ------------------------------------------------------------------------------------------------------------------LTEEQLLGSLLRQLQLSEVP 20AMH LLGTEALRAEEPAVGTSGLIFREDLDWPPGIPQEPLCLVALGGDSNGSSSPLRVVGALSAYEQAFLGAVQRARWGPRDLATFGVCNTGDRQAALPSLRRLGAWLRDPGGQRLVVLHLEEVTWEPTPSLRFQEPP 134NRTN -----------------------------------------------------------------------------------------IWMCREGLLLSHRLGPALVPLHRLPRTLDARIARLAQYRALLQGA 45ARTN ------------------------------------------------------------------------------------------SLGSAPRSPAPREGPPPVLASPAGHLPGGRTARWCSGRARRPPP 44PSPN -----------------------------------------------------------------------------------------------------------------------------WGPDARGVP 9GDNF -------------------------------------------------------------------------------------------------------------FPLPAGKRPPEAPAEDRSLGRRRAP 25

TGF1po SQGDV---------------------PP---------GPLPEAVLALYNSTRDRVAGESVEPE---------------------------------------------PEPEADYYAKEVTRVLMV---ESGNQ 90TGF1hu SQGEV---------------------PP---------GPLPEAVLALYNSTRDRVAGESAEPE---------------------------------------------PEPEADYYAKEVTRVLMV---ETHNE 90TGF2 EDY-----------------------PE--------PEEVPPEVISIYNSTRDLLQEKASRRA----------------------------------------AACERERSDEEYYAKEVYKIDMPPFFPSENA 98TGF3 E-------------------------PT-------VMTHVPYQVLALYNSTRELLEEMHGERE----------------------------------------EGCTQENTESEYYAKEIHKFDMIQGLAEHNE 99myosta NISKDVIRQLL---------------PK---------APPLRELIDQYDVQRDD-SSDGSLED--------------------------------------------------DDYHATTETIITMPTESDFLM 106GDF11 NISREVVKQLL---------------PK---------APPLQQILDLHDFQGDALQPEDFLEE--------------------------------------------------DEYHATTETVISMAQETDPAV 129Inh_bA DVTQPV--------------------PK---------AALLNAIRKLHVGKVGENGYVEI-------------------------------------------EDDIGRRAEMNELMEQTSEIITFAESG---- 110Inh_bB NITHAV--------------------PK---------AAMVTALRKLHAGKVREDGRVEI-------------------------------------------PHLDGHASPGADGQERVSEIISFAETDGLA- 125Inh_bC TLNRPV--------------------SR---------AALRTALQHLHGVPQGALLEDNR---------------------------------------------------------EQECEIISFAETGLST- 90Inh_bE RITHPP--------------------PQ---------AALTRALRRLQPGSVAPGN---------------------------------------------------------------GEEVISFATVTDSTS 84Inh_a AVTREGGD------------------PG---------------VRRLPRRHALGGFTHRGSEP---------------------------------------------------EEEEDVSQAILFPATDASCE 76BMP3 DSELQ---------------------PQ---------DKVSEHMLRLYDRYSTVQAARTPGSL------------------------------------------EGGSQPWRPRLLREGNTVRSFRAAAAETL 86GDF10 GDAAATLG------------------PS-------AQDMVAVHMHRLYEKYSRQGARPGG-----------------------------------------------------------GNTVRSFRARLEVV- 76BMP15 GEQPRK--------------------PR-------LLGHSLRYMLELYRRSADSHGHPRENRT------------------------------------------------------IGATMVRLVKPLTSVAR 88GDF9 GRGGSPRLQ-----------------PD---------SRALHYMKKLYKTYATKEGIPKSNRS------------------------------------------------------HLYNTVRLFTPCTRHKQ 101GDF1 QGA-----------------------PR--------LRPVPPVMWRLFRRRDPQETRSGSRRT---------------------------------------SPGVTLQPCHVEELGVAGNIVRHIPDRGAPTR 84GDF3 S-------------------------PQ-------KFQPVPYILKKIFQDREAAATTGVSRDL-----------------------------------------------CYVKELGVRGNVLRFLPDQGFFLY 70BMP10 TQDSAKVDP-----------------PE--------------YMLELYNKFATDRTS-----------------------------------------------------------MPSANIIRSFKNEDLFSQ 95GDF2 SQDKTRVEP-----------------PQ--------------YMIDLYNRYTSDKSTT-----------------------------------------------------------PASNIVRSFSMEDAISI 98Nodal S-------------------------PL-------------AYMLSLYR-----------------------------------------------------------------DPLPRADIIRSLQAEDVAVD 47BMP2 T-------------------------PS-------RDAVVPPYMLDLYRRHSGQPGSPAPDHR-------------------------------------------------LERAASRANTVRSFHHEESLEE 97BMP4 Q-------------------------PS-------KSAVIPDYMRDLYRLQSGEEEEEQIHST---------------------------------------------GLEYPERPASRANTVRSFHHEEHLEN 109BMP5 R-------------------------PF---SPGKQASSAPLFMLDLYNAMTN---EENPEESEYSVRASLAEETRGARKGYPASPNGYPRRIQLSRTTPLTTQSPPLASLHDTNFLNDADMVMSFVNLVERDK 138BMP7 R-------------------------PH---LQGKH-NSAPMFMLDLYNAMAV---EEGGGPGGQGFSYPYKAVFS--------------------------TQGPPLASLQDSHFLTDADMVMSFVNLVEHDK 115BMP6 RPLHGLQQPQPPALRQQEEQQQQQQLPRGEPPPGRL-KSAPLFMLDLYNALSADNDEDGASEGERQQSWPHEAASSSQRRQPPPGAAHPLNRKSLLAPGSGSGGASPLTSAQDSAFLNDADMVMSFVNLVEYDK 206BMP8 R-------------------------PRAPPAASRLPASAPLFMLDLYHAMAGDDDEDGAPAE---------------------------------------------------QRLGRADLVMSFVNMVERDR 97GDF5 REPKEPFRPPPIT-------------PH-------------EYMLSLYRTLSDADRKGGNSSV--------------------------------------------------KLEAGLANTITSFIDKGQDDR 186GDF6 RAQEPPGRGPRVV-------------PH-------------EYMLSIYRTYSIAEKLGINASF--------------------------------------------------FQSSKSANTITSFVDRGLDDL 116GDF7 AAAVPRARAARRAAGSGFRNGSVV--PH-------------HFMMSLYRSLAGRAPAGAAAVS--------------------------------------------------ASGHGRADTITGFTDQATQDE 113GDF15 RASFPG--------------------PS-------ELHSEDSRFRELRKRYEDLLTRLRANQS-------------------------------------------------------WEDSNTDLVPAPAVRI 59LEFTY1 TLDRADMEELVI--------------PT---------HVRAQYVALLQRSHGDRSRGKRFSQS-------------------------------------------------------FREVAGRFLALE---- 72LEFTY2 VLDRADMEKLVI--------------PA---------HVRAQYVVLLRRSHGDRSRGKRFSQS-------------------------------------------------------FREVAGRFLASE---- 72AMH --------------------------PG-------GAGPPELALLVLYPGPGPEVTVTRAGLP--GAQSLCPSRD---------------------------TRYLVLAVDRPAGAWRGSGLALTLQPRGEDSR 206NRTN --------------------------PD------------AMELRELTPWAGRPPGP----------------------------------------------------------------------------- 64ARTN --------------------------QP------SRPAPPPPA------------------------------------------------------------------------------------------- 55PSPN --------------------------VA-------DGEFSSEQVAKAGGTWLGTHR------------------------------------------------------------------------------ 32GDNF -----------------------FALSS----DSNMPEDYPDQFDDVMDFIQATIKRLKRSPD----------------------------------------------------------------------- 61

TGF1po IYDKFKGT------PHSLYMLFNTSELREAVPEP--VLLSRAELRLLR--------------LKLKVEQHVELYQKYSND---------------------SWRYLSNRLLA----PSDSPEWLSFDV------ 171TGF1hu IYDKFKQS------THSIYMFFNTSELREAVPEP--VLLSRAELRLLR--------------LKLKVEQHVELYQKYSNN---------------------SWRYLSNRLLA----PSDSPEWLSFDV------ 171TGF2 IPPTFYR-------PYFRIVRFDVSAMEKNASN-----LVKAEFRVFR----------LQNPKARVPEQRIELYQILKSKDLT----------------SPTQRYIDSKVVK----TRAEGEWLSFDV------ 184TGF3 LAVCPKG-------ITSKVFRFNVSSVEKNRTN-----LFRAEFRVLR----------VPNPSSKRNEQRIELFQILRPDEHI-----------------AKQRYIGGKNLP----TRGTAEWLSFDV------ 184myosta QVD-----------GKPKCCFFKFSSKIQYNK------VVKAQLWIYL------------RPVETPTTVFVQILRLIKPMKDG-------------------TRYTGIRSLKLD-MNPGTGIWQSIDV------ 185GDF11 QTD-----------GSPLCCHFHFSPKVMFTK------VLKAQLWVYL------------RPVPRPATVYLQILRLKPLTGEGTA-----------GGGGGGRRHIRIRSLKIE-LHSRSGHWQSIDF------ 216Inh_bA --------------TARKTLHFEISKEGSDLSV-----VERAEVWLFL-----------KVPKANRTRTKVTIRLFQQQKHPQGSLDTGEEAEEVGLKGERSELLLSEKVVD-----ARKSTWHVFPV------ 203Inh_bB --------------SSRVRLYFFISNEGNQNLF-----VVQASLWLYL------KLLPYVLEKGSRRKVRVKVYFQEQGH--------------------GDRWNMVEKRVD-----LKRSGWHTFPL------ 203Inh_bC --------------INQTRLDFHFSSDRTAGDRE----VQQASLMFFV-----------QLPSNTTWTLKVRVLVLGPHN--------------------TNLTLATQYLLE-----VDASGWHQLPL------ 164Inh_bE --------------AYSSLLTFHLSTPRSHH-------LYHARLWLHV-------------LPTLPGTLCLRIFRWGPRRRRQ-----------------GSRTLLAEHHI-------TNLGWHTLTL------ 154Inh_a DKSAARGLAQEAE-EGLFRYMFRPSQHTRSRQ------VTSAQLWFHT------GLDRQGTAASNSSEPLLGLLALSPG-----------------------GPVAVPMSLG-----HAPPHWAVLHL------ 163BMP3 --------------ERKGLYIFNLTSLTKSEN------ILSATLYFCIGELGNISLSCPVSGGCSHHAQRKHIQIDLSAWTLK--------------FSRNQSQLLGHLSVDMAKSHRDIMSWLSKDI------ 180GDF10 --------------DQKAVYFFNLTSMQDSEM------ILTATFHFYS-EPPRWPRALEVLCKPRAKNASGRPLPLGPPTRQHLLFR--------SLSQNTATQGLLRGAMAL--APPPRGLWQAKDI------ 173BMP15 PHRGTWHIQILGFPLRPNRGLYQLVRATV---------VYRHHLQLTR------------------FNLSCHVEPWVQKNPTN---------------------HFPSSEGDSSKPSLMSNAWKEMDI------ 168GDF9 APGDQVTGI-----LPSVELLFNLDRITTVEH------LLKSVLLYNI---------NNSVSFSSAVKCVCNLMIKEPKSSSR------------TLGRAPYSFTFNSQFEF-----GKKHKWIQIDV------ 192GDF1 ASEPASAAGH----CPEWTVVFDLSAVEPAER------PSRARLELRFAAA---------------------------------------------------------------AAAAPEGGWELSVAQAGQGA 145GDF3 PKKISQASS-----CLQKLLYFNLSAIKEREQ------LTLAQLGLDL---------GPNSYYNLGPELELALFLVQEPHVWGQ-----------TTPKPGKMFVLRSVPWPQ-----GAVHFNLLDV------ 162BMP10 PVSFNG--------LRKYPLLFNVS-IPHHEE------VIMAELRLYT-------LVQRDRMIYDGVDRKITIFEVLESKGDN--------------EGERNMLVLVSGEIYG-----TNSEWETFDV------ 182GDF2 TATEDFP-------FQKHILLFNIS-IPRHEQ------ITRAELRLYV-------SCQNHVDPSHDLKGSVVIYDVLDGTDAW-------------DSATETKTFLVSQDIQD-------EGWETLEV------ 185Nodal --------------GQNWTFAFDFSFLSQQED------LAWAELRLQL---------SSPVDLPTEGSLAIEIFHQPKPDTEQ-------------ASDSCLERFQMDLFTVTLSQVTFSLGSMVLEV------ 133BMP2 LPETSG--------KTTRRFFFNLSSIPTEEF------ITSAELQVFR------EQMQDALGNNSSFHHRINIYEIIKPATAN--------------SKFPVTRLLDTRLVN-----QNASRWESFDV------ 186BMP4 IPGTSE--------NSAFRFLFNLSSIPENEV------ISSAELRLFR------EQVDQGPDWERGF-HRINIYEVMKPPAEV-------------VPGHLITRLLDTRLVH-----HNVTRWETFDV------ 198BMP5 DFSHQR--------RHYKEFRFDLTQIPHGEA------VTAAEFRIYK---------DRSNNRFENETIKISIYQIIKEYTNR----------------DADLFLLDTRKAQ-----ALDVGWLVFDI------ 222BMP7 EFFHPR--------YHHREFRFDLSKIPEGEA------VTAAEFRIYK---------DYIRERFDNETFRISVYQVLQEHLGR----------------ESDLFLLDSRTLW-----ASEEGWLVFDI------ 199BMP6 EFSPRQ--------RHHKEFKFNLSQIPEGEV------VTAAEFRIYK---------DCVMGSFKNQTFLISIYQVLQEHQHR----------------DSDLFLLDTRVVW-----ASEEGWLEFDI------ 290BMP8 ALGHQE--------PHWKEFRFDLTQIPAGEA------VTAAEFRIYK----------VPSIHLLNRTLHVSMFQVVQEQSNR----------------ESDLFFLDLQTLR-----AGDEGWLVLDV------ 180GDF5 GPV-----------VRKQRYVFDISALEKDG-------LLGAELRILRKKPSDTAK-PAAPGGGRAAQLKLSSCPSGR----------------------QPASLLDVRSVPG----LDGSGWEVFDI------ 269GDF6 SHTP----------LRRQKYLFDVSMLSDKEE------LVGAELRLFR-------QAPSAPWGPPAGPLHVQLFPCLSP------------------------LLLDARTLDPQ--GAPPAGWEVFDV------ 195GDF7 SAA-----------ETGQSFLFDVSSLNDADE------VVGAELRVLRRGSPE----SGPGSWTSPPLLLLSTCPGAA----------------------RAPRLLYSRAAEP----LVGQRWEAFDV------ 194GDF15 LT-------PEVRLGSGGHLHLRISRAALPEGLPEASRLHRALFRLS---------------------------------------------------------------------PTASRSWDVTRP------ 111LEFTY1 --------------ASTHLLVFGMEQRLPPNSE-----LVQAVLRLFQEPVPKAALHRHGRLSPRSARARVTVEWLRVRDDGS-----------------NRTSLIDSRLVS-----VHESGWKAFDV------ 159LEFTY2 --------------ASTHLLVFGMEQRLPPNSE-----LVQAVLRLFQEPVPKAALHRHGRLSPRSAQARVTVEWLRVRDDGS-----------------NRTSLIDSRLVS-----VHESGWKAFDV------ 159AMH LST-----------ARLQALLFGDDHRCFTR-------MTPALLLLPR---------SEPAPLPAHGQLDTVPFPPPR-----------------------PSAELEESPPS-------ADPFLETL------- 276NRTN -------------------------------------------------------------------------------------------------------------------------------------- 64ARTN -------------------------------------------------------------------------------------------------------------------------------------- 55PSPN -------------------------------------------------------------------------------------------------------------------------------------- 32GDNF -------------------------------------------------------------------------------------------------------------------------------------- 61

β6β5β3α3β2

α2 β1

α1

β4

•• ••• • • •

•• • • •

• • •

Figure S2 (first page)

Page 12: tgf beta 3

W W W. N A T U R E . C O M / N A T U R E | 3

SUPPLEMENTARY INFORMATION RESEARCH

TGF1po ----------------------TGVVRQWLTRRE--AIEGFRLSAHCSCDSKD-----------NTLHVEINGFN---------SGRRGDLATIHGMNRPFLLLMATPLERAQH-------------------- 241TGF1hu ----------------------TGVVRQWLSRGG--EIEGFRLSAHCSCDSRD-----------NTLQVDINGFT---------TGRRGDLATIHGMNRPFLLLMATPLERAQH-------------------- 241TGF2 ----------------------TDAVHEWLHHKD--RNLGFKISLHCPCCTFVPSNNYIIPNKSEELEARFAGIDGTSTYTSGDQKTIKSTRKKNSGKTPHLLLMLLPSYRLESQ------------------- 275TGF3 ----------------------TDTVREWLLRRE--SNLGLEISIHCPCHTFQP-NGDILENIHEVMEIKFKGVDNED---DHGRGDLGRLKKQKDHHNPHLILMMIPPHRLDNP------------------- 271myosta ----------------------KTVLQNWLKQPE--SNLGIEIKALDENGHDLAVTFPG---------------------------------PGEDGLNPFLEVKVTD-------------------------- 236GDF11 ----------------------KQVLHSWFRQPQ--SNWGIEINAFDPSGTDLAVTSLG---------------------------------PGAEGLHPFMELRVLE-------------------------- 267Inh_bA ----------------------SSSIQRLLDQGK--SSLDVRIACEQCQESGASLVLLGKKKKKEE--------EGEGKKKGGGEGGAGADEEKEQSHRPFLMLQARQSED----------------------- 282Inh_bB ----------------------TEAIQALFERGE--RRLNLDVQCDSCQELAVVPVFV---------------------------------DPGEESHRPFVVVQARLGD------------------------ 256Inh_bC ----------------------GPEAQAACSQGH--LTLELVLEGQVAQSSVIL---------------------------------------GGAAHRPFVAARVRVG------------------------- 210Inh_bE -------------------------PSSGLRGEKS-GVLKLQLDCRPLEGNSTV------------------------------TGQPRRLLDTAGHQQPFLELKIRANEP----------------------- 209Inh_a ----------------------ATSALSLLTHPV--LVLLLRCPLCTCSA--------------------------------------------RPEATPFLVAHTRTRPP----------------------- 206BMP3 ----------------------TQLLRKAKENEE--FLIGFNITSK----------------------------------------GRQLPKRRLPFPEPYILVYANDAAISEPESVVSSLQGHRNFPTGTVPK 250GDF10 ----------------------SPIVKAARRDGE--LLLSAQLDSE----------------------------------------ERDPGVPRPSPYAPYILVYANDLAISEPNSVAVTLQRYDPFPAG---- 239BMP15 ----------------------TQLVQQRFWNNKGHRILRLRFMCQQQKD----------------------------------SGGLELWHGTSSLDIAFLLLYFNDTHKSIRKAKFLPRGMEEFMER----- 241GDF9 ----------------------TSLLQPLVASNK--RSIHMSINFTCMKDQLEHP-------------------------------SAQNGLFNMTLVSPSLILYLNDTSAQAYHSWYSLHYKRRPSQGPDQER 271GDF1 GADPGPVLLRQLVPALGPPVRAELLGAAWARNASWPRSLRLALALR----------------------------------------PRAPAACARLAEASLLLVTLDPRLC----------------------- 216GDF3 -------------------------AKDWNDNPR--KNFGLFLEILVKEDRDSGVNFQPEDT---------------------------CARLRCSLHASLLVVTLNPD------------------------- 217BMP10 ----------------------TDAIRRWQKSGS--STHQLEVHIESKHDEAEDAS----------------------------SGRLEIDTSAQNKHNPLLIVFSDD-------------------------- 238GDF2 ----------------------SSAVKRWVRSDSTKSKNKLEVTVE---------------------------------SHRKGCDTLDISVPPGSRNLPFFVVFSNDH------------------------- 239Nodal ----------------------TRPLSKWLKR-----PGALEKQMS------------------------------------RVAGECWPRPPTPPATNVLLMLYSNL-------------------------- 178BMP2 ----------------------TPAVMRWTAQGH--ANHGFVVEVAHLEEKQGVSK-----------------------RHVRISRSLHQDEHSWSQIRPLLVTFGHDGKG----------------------- 250BMP4 ----------------------SPAVLRWTREKQ--PNYGLAIEVTHLHQTRTHQG-----------------------QHVRISRSLPQGSGNWAQLRPLLVTFGHDGRG----------------------- 262BMP5 ----------------------TVTSNHWVINPQ--NNLGLQLCAETGDGRSINVKSAGL-----------------------------VGRQGPQSKQPFMVAFFKASEVLLRSVR----------------- 286BMP7 ----------------------TATSNHWVVNPR--HNLGLQLSVETLDGQSINPKLAGL-----------------------------IGRHGPQNKQPFMVAFFKATEVHFRSIR----------------- 263BMP6 ----------------------TATSNLWVVTPQ--HNMGLQLSVVTRDGVHVHPRAAGL-----------------------------VGRDGPYDKQPFMVAFFKVSEVHVRTTR----------------- 354BMP8 ----------------------TAASDCWLLKRH--KDLGLRLYVETEDGHSVDPGLAGL-----------------------------LGQRAPRSQQPFVVTFFRASPSPIRTPR----------------- 244GDF5 ----------------------WKLFRNFKNS------AQLCLELEAWERGRAV-------------------------DLRGLGF---DRAARQVHEKALFLVFGRT-------------------------- 321GDF6 ----------------------WQGLRHQPWK-------QLCLELRAAWGELDAGEAEARARGPQQPPPP---------DLRSLGF---GRRVRPPQERALLVVFTRS-------------------------- 262GDF7 ----------------------ADAMRRHRREPR--PPRAFCLLLRAVAGPVPSPL-----------------------ALRRLGFGWPGGGGSAAEERAVLVVSSRT-------------------------- 255GDF15 ------------------------LRRQLSLARPQAPALHLRLSPPPSQSDQLL--------------------------------------AESSSARPQLELHLRP-------------------------- 157LEFTY1 ----------------------TEAVNFWQQLSRPRQPLLLQVSVQREHLGPLASGAHKLV-------------------------RFASQGAPAGLGEPQLELHTLDLGDYGAQGD----------------- 229LEFTY2 ----------------------TEAVNFWQQLSRPRQPLLLQVSVQREHLGPLASGAHKLV-------------------------RFASQGAPAGLGEPQLELHTLDLRDYGAQGD----------------- 229AMH ----------------------TRLVRALRVPPARASAPRLALDPDALAGFPQGLVNLSDPAALERLLDG---------------------------EEPLLLLLRPTAATTGDPAPLHDPTSAPWATALARRV 361NRTN -------------------------------------------------------------------------------------------------------------------------------------- 64ARTN -------------------------------------------------------------------------------------------------------------------------------------- 55PSPN -------------------------------------------------------------------------------------------------------------------------------------- 32GDNF -------------------------------------------------------------------------------------------------------------------------------------- 61

* TGF1po -----------------------------------------------------------------LHSSRHRR-------------------------------------------ALDTNYCFSSTEKNCCVR 267TGF1hu -----------------------------------------------------------------LQSSRHRR-------------------------------------------ALDTNYCFSSTEKNCCVR 267TGF2 -----------------------------------------------------------------QTNRRKKR-------------------------------------------ALDAAYCFRNVQDNCCLR 301TGF3 ----------------------------------------------------------------GQGGQRKKR-------------------------------------------ALDTNYCFRNLEENCCVR 298myosta ------------------------------------------------------------------TPKRSRR-------------------------------------------DFGLDCDEHSTESRCCRY 261GDF11 ------------------------------------------------------------------NTKRSRR-------------------------------------------NLGLDCDEHSSESRCCRY 292Inh_bA -----------------------------------------------------------------HPHRRRRR-----------------------------------------------GLECDGKVNICCKK 304Inh_bB -----------------------------------------------------------------SRHRIRKR-----------------------------------------------GLECDGRTNLCCRQ 278Inh_bC -----------------------------------------------------------------GKHQIHRR-----------------------------------------------GIDCQGGSRMCCRQ 232Inh_bE -----------------------------------------------------------------GAGRARRR-----------------------------------------------TPTCEPATPLCCRR 231Inh_a -----------------------------------------------------------------SGGERARR----------------------------STPLMSWPWSPSALRLLQRPPEEPAAHANCHRV 247BMP3 WDSHIRAAL--SIERRKKRSTGVLLPLQNNELPGAE--------YQYKKDEVWEERKPYKTLQA-QAPEKSKNKK----------------------KQRKGPHRKSQTLQFDEQTLKKARRKQWIEPRNCARR 351GDF10 -DPEPRAAPNNSADPRVRRAAQATGPLQDNELPGLDERPPRAHAQHFHKHQLWPS--PFRALKP-RPGRKDRRKK----------------------GQEV-FMAASQVLDFDEKTMQKARRKQWDEPRVCSRR 346BMP15 -----------------------------------------------------------------ESLLRRTR------------------------QADGISAEVTA----------SSSKHSGPENNQCSLH 276GDF9 SLSAYPVGEEAAEDGR-------------------------------------------------SSHHRHRR------------------------GQETVSSELKKPLGPASFNLSEYFRQFLLPQNECELH 332GDF1 -----------------------------------------------------------------HPLARPRRD--------------------------------------------AEPVLGGGPGGACRAR 241GDF3 ----------------------------------------------------------------QCHPSRKRRA--------------------------------------------AIPVPKLSCKNLCHRH 243BMP10 -----------------------------------------------------------------QSSDKERKEELNEMISHEQLPELDNLGLDSFSSGPGEEALLQMRSNIIYDS--TARIRRNAKGNYCKRT 305GDF2 -----------------------------------------------------------------SSGTKETRLELREMISHEQESVLKKLSKDGSTEAGESSHEEDTDGHVAAGSTLARRKRSAGAGSHCQKT 308Nodal --------------------------------------------------------------------SQEQRQLGGSTLLWEAESSWRAQEGQLSWEWGKR----------------HRRHHLPDRSQLCRKV 228BMP2 -----------------------------------------------------------------HPL--HKREKR-----------------------------------------QAKHKQRKRLKSSCKRH 276BMP4 -----------------------------------------------------------------HALTRRRRAKR---------------------------------------SPKHHSQRARKKNKNCRRH 292BMP5 ------------------------------------------------------------------AANKRKNQNRNK---------------------------SSSHQDSSRMSS-VGDYNTSEQKQACKKH 326BMP7 -----------------------------------------------------------------STGSKQRSQNRSK---------------------------TPKNQEALRMAN-VAENSSSDQRQACKKH 304BMP6 -----------------------------------------------------------------SASSRRRQQSRNR---------------------------STQSQDVARVSS-ASDYNSSELKTACRKH 395BMP8 -----------------------------------------------------------------AVRPLRRRQP-KK---------------------------SNELPQANRLPGIFDDVRGSHGRQVCRRH 285GDF5 -----------------KKRDLFFNEIKAR-----------------------SGQDDKTVYEYLFSQRRKRRAPLATR-------------QGKR--------------------------PSKNLKARCSRK 376GDF6 ------------------QRKNLFAEMREQ---LGSAEAAGPGAGAEGSWPPPSGAPDARPWLP-SPGRRRRRTAFASR---------HGKRHGKK------------------------------SRLRCSKK 335GDF7 -----------------QRKESLFREIRAQARALGAALASEPL--------PDPGTGTASPRAV-IGGRRRRRTALAGTRTAQGSGGGAGRGHGRR------------------------------GRSRCSRK 333GDF15 -----------------------------------------------------------------QAARGRRRARAR-----------------------------------------NGDHCPLGPGRCCRLH 185LEFTY1 ----------------------------------------------------------------------------------------------------------------------CDPEAPMTEGTRCCRQ 245LEFTY2 ----------------------------------------------------------------------------------------------------------------------CDPEAPMTEGTRCCRQ 245AMH AAELQAAAAELRSLPGLPPATAPLLARLLALCPGGPGGLGDPLRALLLLKALQGLRVEWRGRDP-RGPGRAQRSA-----------------------------------------------GATAADGPCALR 447NRTN ---------------------------------------------------------------RRRAGPRRRRAR------------------------------------------------ARLGARPCGLR 87ARTN ---------------------------------------------------------------PPSALPRGGRAARAGG---------------------------------------PGSRARAAGARGCRLR 87PSPN ----------------------------------------------------------------------------------------------------------------------PLARLRRALSGPCQLW 48GDNF --------------------------------------------------------------KQMAVLPRRERNRQAAAANPENSRG-------------------------------KGRRGQRGKNRGCVLT 102

. * * * . . * * TGF1po QLYIDFRKDLGW--KWIHEPKGYHANFCLGPCPYIWSLD-----T----QYSKVLALYNQH--N-P---GASAAPC--CVPQALEPLPIVYYVG-----RKPKVEQLSNMIVRSCKCS------------ 361TGF1hu QLYIDFRKDLGW--KWIHEPKGYHANFCLGPCPYIWSLD-----T----QYSKVLALYNQH--N-P---GASAAPC--CVPQALEPLPIVYYVG-----RKPKVEQLSNMIVRSCKCS------------ 361TGF2 PLYIDFKRDLGW--KWIHEPKGYNANFCAGACPYLWSSD-----T----QHSRVLSLYNTI--N-P---EASASPC--CVSQDLEPLTILYYIG-----KTPKIEQLSNMIVKSCKCS------------ 395TGF3 PLYIDFRQDLGW--KWVHEPKGYYANFCSGPCPYLRSAD-----T----THSTVLGLYNTL--N-P---EASASPC--CVPQDLEPLTILYYVG-----RTPKVEQLSNMVVKSCKCS------------ 392myosta PLTVDFE-AFGW--DWIIAPKRYKANYCSGECEFVFLQK--YPHT----------HLVHQA--N-P---RGSAGPC--CTPTKMSPINMLYFNGK----EQIIYGKIPAMVVDRCGCS------------ 352GDF11 PLTVDFE-AFGW--DWIIAPKRYKANYCSGQCEYMFMQK--YPHT----------HLVQQA--N-P---RGSAGPC--CTPTKMSPINMLYFNDK----QQIIYGKIPGMVVDRCGCS------------ 383Inh_bA QFFVSFK-DIGW-NDWIIAPSGYHANYCEGECPSHIAGTSGSSLS----FHSTVINHYRMRGHS-P---FANLKSC--CVPTKLRPMSMLYYDDG----QNIIKKDIQNMIVEECGCS------------ 406Inh_bB QFFIDFR-LIGW-NDWIIAPTGYYGNYCEGSCPAYLAGVPGSASS----FHTAVVNQYRMRGLN-P----GTVNSC--CIPTKLSTMSMLYFDDE----YNIVKRDVPNMIVEECGCA------------ 379Inh_bC EFFVDFR-EIGW-HDWIIQPEGYAMNFCIGQCPLHIAGMPGIAAS----FHTAVLNLLKANTAA-G---TTGGGSC--CVPTARRPLSLLYYDRD----SNIVKTDIPDMVVEACGCS------------ 334Inh_bE DHYVDFQ-ELGW-RDWILQPEGYQLNYCSGQCPPHLAGSPGIAAS----FHSAVFSLLKAN--N-P---WPASTSC--CVPTARRPLSLLYLDHN----GNVVKTDVPDMVVEACGCS------------ 331Inh_a ALNISFQ-ELGW-ERWIVYPPSFIFHYCHGGCGLHIPPN--LSLP----VPGAPPTPAQPY--S-L---LPGAQPCCAALPGTMRPLHVRTTSDGG---YSFKYETVPNLLTQHCACI------------ 348BMP3 YLKVDFA-DIGW-SEWIISPKSFDAYYCSGACQFPMPKS--LKPS----NHATIQSIVRAV--GVV---PGIPEPC--CVPEKMSSLSILFFDEN----KNVVLKVYPNMTVESCACR------------ 450GDF10 YLKVDFA-DIGW-NEWIISPKSFDAYYCAGACEFPMPKI--VRPS----NHATIQSIVRAV--GII---PGIPEPC--CVPDKMNSLGVLFLDEN----RNVVLKVYPNMSVDTCACR------------ 445BMP15 PFQISFR-QLGW-DHWIIAPPFYTPNYCKGTCLRVLRDG--LNSP----NHAIIQNLINQL--V-D---QSVPRPS--CVPYKYVPISVLMIEAN----GSILYKEYEGMIAESCTCR------------ 374GDF9 DFRLSFS-QLKW-DNWIVAPHRYNPRYCKGDCPRAVGHR--YGSP----VHTMVQNIIYEK--L-D---SSVPRPS--CVPAKYSPLSVLTIEPD----GSIAYKEYEDMIATKCTCR------------ 430GDF1 RLYVSFR-EVGW-HRWVIAPRGFLANYCQGQCALPVALS--GSGGPPALNHAVLRALMHAA--A-P---GAADLPC--CVPARLSPISVLFFDNS----DNVVLRQYEDMVVDECGCR------------ 343GDF3 QLFINFR-DLGW-HKWIIAPKGFMANYCHGECPFSLTIS--LNSS----NYAFMQALMHAV--D-P----EIPQAV--CIPTKLSPISMLYQDNN----DNVILRHYEDMVVDECGCG------------ 340BMP10 PLYIDFK-EIGW-DSWIIAPPGYEAYECRGVCNYPLAEH--LTPT----KHAIIQALVHLK--N-S---QKASKAC--CVPTKLEPISILYLDKG----VVTYKFKYEGMAVSECGCR------------ 403GDF2 SLRVNFE-DIGW-DSWIIAPKEYEAYECKGGCFFPLADD--VTPT----KHAIVQTLVHLK--F-P---TKVGKAC--CVPTKLSPISVLYKDDM---GVPTLKYHYEGMSVAECGCR------------ 407Nodal KFQVDFN-LIGW-GSWIIYPKQYNAYRCEGECPNPVGEE--FHPT----NHAYIQSLLKRY--Q-P---HRVPSTC--CAPVKTKPLSMLYVDN-----GRVLLDHHKDMIVEECGCL------------ 325BMP2 PLYVDFS-DVGW-NDWIVAPPGYHAFYCHGECPFPLADH--LNST----NHAIVQTLVNSV----N---SKIPKAC--CVPTELSAISMLYLDE----NEKVVLKNYQDMVVEGCGCR------------ 373BMP4 SLYVDFS-DVGW-NDWIVAPPGYQAFYCHGDCPFPLADH--LNST----NHAIVQTLVNSV----N---SSIPKAC--CVPTELSAISMLYLDE----YDKVVLKNYQEMVVEGCGCR------------ 389BMP5 ELYVSFR-DLGW-QDWIIAPEGYAAFYCDGECSFPLNAH--MNAT----NHAIVQTLVHLM--F-P---DHVPKPC--CAPTKLNAISVLYFDD----SSNVILKKYRNMVVRSCGCH------------ 424BMP7 ELYVSFR-DLGW-QDWIIAPEGYAAYYCEGECAFPLNSY--MNAT----NHAIVQTLVHFI--N-P---ETVPKPC--CAPTQLNAISVLYFDD----SSNVILKKYRNMVVRACGCH------------ 402BMP6 ELYVSFQ-DLGW-QDWIIAPKGYAANYCDGECSFPLNAH--MNAT----NHAIVQTLVHLM--N-P---EYVPKPC--CAPTKLNAISVLYFDD----NSNVILKKYRNMVVRACGCH------------ 493BMP8 ELYVSFQ-DLGW-LDWVIAPQGYSAYYCEGECSFPLDSC--MNAT----NHAILQSLVHLM--K-P---NAVPKAC--CAPTKLSATSVLYYDS----SNNVILRKHRNMVVKACGCH------------ 383GDF5 ALHVNFK-DMGW-DDWIIAPLEYEAFHCEGLCEFPLRSH--LEPT----NHAVIQTLMNSM--D-P---ESTPPTC--CVPTRLSPISILFIDS----ANNVVYKQYEDMVVESCGCR------------ 474GDF6 PLHVNFK-ELGW-DDWIIAPLEYEAYHCEGVCDFPLRSH--LEPT----NHAIIQTLMNSM--D-P---GSTPPSC--CVPTKLTPISILYIDA----GNNVVYKQYEDMVVESCGCR------------ 433GDF7 PLHVDFK-ELGW-DDWIIAPLDYEAYHCEGLCDFPLRSH--LEPT----NHAIIQTLLNSM--A-P---DAAPASC--CVPARLSPISILYIDA----ANNVVYKQYEDMVVEACGCR------------ 431GDF15 TVRASLE-DLGW-ADWVLSPREVQVTMCIGACPSQFRAA-----N----MHAQIKTSLHRL--K-P---DTVPAPC--CVPASYNPMVLIQKTD-----TGVSLQTYDDLLAKDCHCI------------ 279LEFTY1 EMYIDLQ-GMKWAENWVLEPPGFLAYECVGTCRQPPEAL----------------------AFKWP---FLGPRQC---IASETDSLPMIVSIKEG-GRTRPQVVSLPNMRVQKCSCASDGALVPRRLQP 345LEFTY2 EMYIDLQ-GMKWAKNWVLEPPGFLAYECVGTCQQPPEAL----------------------AFNWP---FLGPRQC---IASETASLPMIVSIKEG-GRTRPQVVSLPNMRVQKCSCASDGALVPRRLQP 345AMH ELSVDLR-A----ERSVLIPETYQANNCQGVCGWPQSDR-----NPRYGNHVVLLLKMQVR--G-A---ALARPPC--CVPTAY-AGKLLISLSE----ERISAHHVPNMVATECGCR------------ 542NRTN ELEVRVS-ELGL---GYASDETVLFRYCAGACEAAARVY-----------DLGLRRLRQRRRLRRE---RVRAQPC--CRPTAYEDEVSFLDA-------HSRYHTVHELSARECACV------------ 178ARTN SQLVPVR-ALGL---GHRSDELVRFRFCSGSCRRARSPH-----------DLSLASLLGAGALRPPPGSRPVSQPC--CRPTRY-EAVSFMDV-------NSTWRTVDRLSATACGCLG----------- 181PSPN SLTLSVA-ELGL---GYASEEKVIFRYCAGSCPRGARTQ-----------HGLALARLQGQ----G---RAHGGPC--CRPTRY-TDVAFLDD-------RHRWQRLPQLSAAACGCGG----------- 135GDNF AIHLNVT-DLGL---GYETKEELIFRYCSGSCDAAETTY-----------DKILKNLSRNRRLV-S---DKVGQAC--CRPIAFDDDLSFLDD-------NLVYHILRKHSAKRCGCI------------ 192

• •••••

••

• • • • ••

• •β8β5 β6 β7β2 β3 β4α2

α4 β7 β8 β10 α5

α1 β1

β9

Figure S2. Alignment of all 37 human TGF-β superfamily members and porcine TGF-β1. BMP8A and B are almost identical so only BMP 8A is shown. Sequence alignment with the MAFFT version 6 server (http://mafft.cbrc.jp/alignment /server/) used the E-INS-i option. Minor manual adjustments were madeto the alignment in the β1 and β2 strands. Gap lengths were shortened when this broke alignment of residues in only a small number of sequences. Any gaps in secondary structure were moved to neighboring loops. The four GDNF-like factors lacked arm domain sequence signatures, and were manually aligned with the straightjacket region. Dots mark decadal residues in TGF-β1. Gold circles mark hydrophobic core residues of the arm domain. The coloring schemefor sequence conservation is modified from Clustal.

Page 13: tgf beta 3

SUPPLEMENTARY INFORMATION

4 | W W W. N A T U R E . C O M / N A T U R E

RESEARCH

Fingersa3

a1a3

a3

a3

a3 a3

a3

a3

proa1

proa1

proa2prob1

A

D

B

C

Figure S3. Conformational changes relative to mature TGF-β1. A and B. Superposition of TGF-β1 monomers from proTGF-β (chain C, gold and chain D, cyan) and from a receptor complex (magenta) (3KFD). C-E. Superposition of TGF-β dimers. In C and D, TGF-β1 from a receptor complex (C) is shown in the same orientation as TGF-β1 from proTGF-β (D), with vertical displacement on the page. Dashed black lines show the change in position of representative residues in the α3-helix and long β-finger. Interacting prodo-main secondary structure elements are shown in silver in D. E. Similar to main text Fig. 3, except the dimeric rather than monomeric unit is shown. Receptors are shown as transparent surfaces.

E

Latency lasso

Mature TGF-b

Latent TGF-b

a1

b10 b1

R type II

R type I

Prodomain

b3

Page 14: tgf beta 3

W W W. N A T U R E . C O M / N A T U R E | 5

SUPPLEMENTARY INFORMATION RESEARCH

B proTGF-b, 2862 particles

C proTGF-b complex with LTBP fragment, 3652 particles

D Excess proTGF-b + aVb6 (1:1), 2710 particles

A

Figure S4. Gel filtration profiles and complete class averages for EM experiments. A. S200 gel filtration with an excess of aVb6 (cyan trace) or excess of proTGF-b (magenta trace). The two runs were done 10 months apart, on different columns of same nominal size (1 x 30 cm). B-E. The complete sets of EM class averages. Scale bars are 100 Å - see figure 4 part 2 on next page.

proTGF-b + aVb6 (1:1)proTGF-b

aVb6 proTGF-b + aVb6 (1:2)

Page 15: tgf beta 3

SUPPLEMENTARY INFORMATION

6 | W W W. N A T U R E . C O M / N A T U R E

RESEARCH

E proTGF-b and excess aVb6 (1:2), 2069 particles

Figure S4 part 2

Page 16: tgf beta 3

W W W. N A T U R E . C O M / N A T U R E | 7

SUPPLEMENTARY INFORMATION RESEARCH

BMP15

BMP3 GDF10 TGF-b1 TGF-b2 TGF-b3

GDF11 myostatin (GDF8)

Inhibin-bCInhibin-bE

Inhibin-bB

Lefty1Lefty2

GDF15

NRTN

GDNF

PSPNARTN

GDF1 Inhibin-aGDF3

GDF5GDF6

GDF7

GDF2BMP10

Nodal

BMP4BMP2

BMP5BMP7BMP6

BMP8A,B

GDF9

Inhibin-bA

Anti-Mullerian hormone

Figure S5. TGF-b Superfamily tree. The TGF-β superfamily consists of 33 true family members that signal through type I and II receptors, and four ligands related to glial-cell derived neurotrophic factor (GDNF) that signal in the nervous system through the tyrosine kinase RET and co-receptors specific for each ligand (GDNF, NRTN, PSPN, and ARTN).

Page 17: tgf beta 3

SUPPLEMENTARY INFORMATION

8 | W W W. N A T U R E . C O M / N A T U R E

RESEARCH

Table S1: Diffraction dataa and refinement statistics for SLC1 structure.

aNumbers in parentheses correspond to the outermost resolution shell. bRmerge=ΣhΣi|Ii(h)−<I(h)>|/ΣhΣiIi(h), where Ii(h) and <I(h)> are the ith and mean measurement of the intensity of reflection h. cRwork=Σh||Fobs(h)|−|Fcalc(h)||/Σh|Fobs(h)|, where Fobs(h) and Fcalc(h) are the observed and calculated structure factors, respectively. No I/σ cutoff was applied. dRfree is the R value obtained for a test set of reflections consisting of a randomly selected ~3% subset of the data set excluded from refinement. eResidues in favored and outlier regions of the Ramachandran plot as reported by MOLPROBITY.

Data sets Native Se MAD Hg SAD Peak Inflection Remote Peak Space group P21 P21 P21 Unit Cell a (Å) 54.7 54.2 50.9 b (Å) 127.1 128.3 128.0 c (Å) 138.2 138.6 138.7 β (°) 96.7 96.7 95.5 Wavelength (Å) 0.97931 0.97941 0.97959 0.95667 1.0070 Resolution (Å) 50 – 3.05 50 – 3.8 50 – 3.8 50 – 3.8 50 – 3.5 Completeness (%) 97.9 (96.5) 96.0 (78.2) 92.5 (57.9) 93.1 (59.3) 99.8 (100.0) I/σ(I) 16.4 (1.8) 10.9 (2.3) 14.2 (2.3) 15.6 (2.0) 7.0 (2.0) Rmerge

b (%) 4.7 (75.2) 7.9 (35.5) 6.2 (30.2) 6.5 (35.3) 9.3 (58.6) Redundancy 5.6 (4.2) 3.8 (3.3) 3.7 (2.8) 4.0 (2.8) 5.3 (5.3) Solvent content 57.8 57.8 55.2 Number of reflections Total/Unique

199,523/ 21,876

67,691/ 18,018

63,150/ 17,260

70,060/ 17,501

117,999/ 17,253

Rworkc/Rfree

d (%) 27.4/31.1 RMS Bond (Å) 0.002 Angle (°) 0.488 Ramanchandran Favored/Outliere (%)

89.78/0.45

PDB code 3RJR