tensors.ppt

Upload: foufou2003

Post on 02-Jun-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 Tensors.ppt

    1/46

    Tensors

    References:

    P. Chadwick, Contiuum Mechanics, Dover Publications, 1976.

    M. E. Gurtin, An Introduction to Continuum Mechanics,

    Academic Press, 1981.

    Acknowledgements:

    H. Garmestani, Georgia Tech

    A. Rollett, CMU

  • 8/11/2019 Tensors.ppt

    2/46

    Mappings Sets: Collection of Objects.

    Elements: Constituents of a Set.

    Mapping (or Transformation):

    fmaps D in C

    Domain of f: Set D

    Codomain of f: Set C

    Range of f:

    Range is a subset of codomain: rangefmaps D onto C: range

    One-to-one mapping:

    a e

    cbaA ,,

    CDf :

    })({ Dxxff Cf

    Cf

    2121 )()( xxxfxf

  • 8/11/2019 Tensors.ppt

    3/46

    Tensors

    Tensors: mathematical representation ofphysical entities or phenomena (e.g. Stress,

    Strain, Elastic Stiffness)

    Tensors of different rank are used to

    represent different types of physicalquantities

    Tensors of a given rank have certain

    common properties and follow certain rules(e.g. coordinate transformation laws)

    Tensors are not simply setsor matrices

    Tensors do not require definition of acoordinate system

  • 8/11/2019 Tensors.ppt

    4/46

    Scalars: Tensors of Rank Zero

    Scalars may be specified completely by

    a single number (e.g. density,

    temperature, energy)

    Scalars are not constants, but may

    actually be functions of position and/ortime.

  • 8/11/2019 Tensors.ppt

    5/46

    Points: Rank One Tensors

    a

    b

    cd

    ef

    g

    Euclidean Point Space E

    Set of all points in three

    dimensional space

    Labeling of the points does not

    require a coordinate frame!

    Operations on points are not

    meaningful

  • 8/11/2019 Tensors.ppt

    6/46

    Vectors: Rank One Tensors

    Defined as difference for a

    given ordered pair (a,b): v=

    ba

    Euclidean Vector Space V

    Still no need of a reference

    frame!

    a

    b

    cd

    ef

    g

  • 8/11/2019 Tensors.ppt

    7/46

    Operations on Vectors:

    Dot Product

    vu u

    v

    cosvuvu

    uuu Magnitude or Norm

    V

    vuvuuv , ,,,)( Vwvuwvwuwvu

    V uuu 0 0uuu if f0No need for a reference frame yet!

    0

  • 8/11/2019 Tensors.ppt

    8/46

    Operations on Vectors:

    Dot Product

    1nUnit Vector:

    Orthogonal Vectors: 0 vuSeveral physical quantities possess thecharacteristics described here for Vectors;therefore they are all classified as Rank OneTensors.

    e.g. Force, Displacement, Velocity

    These quantities require not only an assignmentof magnitude, but also a specification of direction.

  • 8/11/2019 Tensors.ppt

    9/46

    Coordinate Frames

    Right-handed, orthogonal, Cartesian Coordinate system.

    Set of orthonormal basis vectors

    }{},,{ 321 ieeee

    Origin oijji

    jiif

    jiif

    0

    1 ee

    Kronecker delta ij

  • 8/11/2019 Tensors.ppt

    10/46

    Coordinate Frames

    v

    iiivevComponents of a vector v:

    ve iiv

    ii

    ii vu evuw Adding Vectors (parallelogram law):

    uIndicial Notation:

    iii vuw

    2/1

    iiuu

    uuu

    Einsteins Summation

    Convention

    iivu vu

    w

  • 8/11/2019 Tensors.ppt

    11/46

    Coordinate Transformation

    Matrices: 2-D

    Or, inverting

    The graph above represents a transformation of coordinates when the system is

    rotated at an angle CCW

    y

    x

    y

    xor

    yxy

    yxx

    cossin

    sincos

    sincos

    sincos

    y

    x

    y

    xor

    yxy

    yxx

    cossin

    sincos

    cossin

    sincos

  • 8/11/2019 Tensors.ppt

    12/46

    Coordinate Transformation

    Matrices: 3-D

    }{},,{ 321 ieeee First Frame:

    }{},,{ 321 ieeee Second Frame:

    iiii vv eev

    jijijiijii vvvv eeee

    ijiijij vQvv ee

    jiijQvQv ee

  • 8/11/2019 Tensors.ppt

    13/46

    Coordinate Transformation

    Matrices: 3-D

    ijjkikkljlikljlkikji QQQQQQ eeee

    Six

    equations Three independent parameters in [Q]

    ITQQ TQQ 1

    1det Q

  • 8/11/2019 Tensors.ppt

    14/46

    Coordinate Transformations:

    Euler Angles

    A sequence of three rotations (called Euler

    angles) are needed to completely specify a

    arbitrary transformation.

    e1 e2

    e3

    e1

    e

    2

    e3

    Rotation 1: Angle f1about e3so

    that the new orientation of e1is

    perpendicular to e3.

    Rotation 2: Angle Fabout the newe1so that the new orientation of e3is

    parallel to e3.

    Rotation 3: Angle f2about e3to

    bring the two frames in coincidence.

  • 8/11/2019 Tensors.ppt

    15/46

    Bunge Euler Angles

    g {1,f,2}

    (0 1 2, 0 f , 02 2)

    (1))2()3( elj

    ekl

    eik

    eij RRRR

    fff

    ffffff

    cossincossinsin

    cossincoscoscossinsincoscossinsincossinsinsincoscoscossinsincossincoscos

    11

    221212121

    221212121e

    ijR

  • 8/11/2019 Tensors.ppt

    16/46

    Invariants

    kklkkllkiliklilkikii uuuuuuQQuQuQuu

    All tensorial quantities possess certain

    measures that are independent of the choice of

    the coordinate reference frame. For example,

    rank one tensors (or vectors) have one

    invariant norm or magnitude of the vector.

  • 8/11/2019 Tensors.ppt

    17/46

    Vector (cross) Product

    vuw

    u

    vsinvuw

    V vuuvvu ,

    0

    w

    V wvuwvwuwvu ,,)()()(

    V vuvuu ,0)(

    V vuvuvvuuvuvu ,)())(()()( 2

    w is perpendicular to uand v

  • 8/11/2019 Tensors.ppt

    18/46

    Vector (cross) Product

    ,,, 213132321 eeeeeeeee

    kijkji eee

    Permutation symbol ijk

    ).,.(

    ),3,2,1(),,(0

    1.,.

    :)3,2,1(),,(1

    )1.,.(

    :),3,2,1(),,(1

    213321132

    312231123

    sametheareindicestwoanyifei

    ofnpermutatioanotiskjiif

    ei

    ofnpermutatiooddaniskjiif

    ei

    ofnpermutatioevenaniskjiif

  • 8/11/2019 Tensors.ppt

    19/46

    Vector (cross) Product

    jijijjii

    vuvu eeeevu

    kijkjivu evu

  • 8/11/2019 Tensors.ppt

    20/46

    Dyadic (Outer) Product

    Rank Two Tensor:

    jji cba )()( cbacba

    ijnjmmnijnmmnijiij WWWW eeeeeeWee

    332313

    322212

    312111

    321

    3

    2

    1

    bababa

    bababa

    bababa

    bbb

    a

    a

    a

    W

    )( baW jiij baW

    jiijjijijjii Wbaba eeeeeeW

  • 8/11/2019 Tensors.ppt

    21/46

    Rank Two Tensors: Coordinate

    Transformations

    srijsjrissjrriij

    jijisrrsjiij

    TQQQQT

    QTT

    eeee

    eeeeeeT

    )()(

    ]][][[][ Tijsjrirs QTQTTQQT

    ororder tensn

    ororder tensthird

    ororder tenssecond

    vector

    scalar

    th

    ......

    nnmnrkrjnimijk

    mnrkrjnimijk

    mnjnimij

    mimi

    TQQQT

    TQQQT

    TQQT

    aQa

  • 8/11/2019 Tensors.ppt

    22/46

    Tensor (Inner) Products

    3

    2

    1

    333231

    232221

    131211

    3

    2

    1

    a

    a

    a

    TTT

    TTT

    TTT

    b

    b

    b

    bTa

    ijijijkkijikjkijkkjiij

    aTaTaT

    aT

    eeeee

    eeeTa

    ijij baT

  • 8/11/2019 Tensors.ppt

    23/46

    Tensor (Inner) Products

    kjkij aSTSaTaTS

    STTS

    3

    2

    1

    333231

    232221

    131211

    333231

    232221

    131211

    a

    a

    a

    SSS

    SSS

    SSS

    TTT

    TTT

    TTT

  • 8/11/2019 Tensors.ppt

    24/46

    Rank Two Tensors

    Unit (spherical) Tensor or Identity Tensor:

    iijiij eeeeI

    Isotropic Tensor = iijiij CC eeee

    SSSSSSSISS

    00A0vAIAvIv

    321

    0

    Transpose of a Tensor:iijjijij

    T vSuvuS vSuvSu

    SSSTSTTSTS TTTTTTTT

  • 8/11/2019 Tensors.ppt

    25/46

    Rank Two Tensors

    Symmetric Tensor:

    Tij= Tji T= TT

    Skew-symmetric or Antisymmetric:

    Wij= -Wji W= -WT

    Decomposition of a general tensor: WSL

    TT LLWLLS 2

    1

    2

    1

  • 8/11/2019 Tensors.ppt

    26/46

    A linear transformation, from rank one tensor spaceV

    into itself defines a rank two tensor

    Tensors as Transformations

    (Mappings)

    cTb

    TaaT

    TbTab)T(a

    )(

    RV ,)( ba,TbTabaT

    Mapping:

    Linear Mapping:

  • 8/11/2019 Tensors.ppt

    27/46

    Tensors

    Yestensor?aisthen,3If TaTa

    TaaTaaTaaaaT

    TbTab)T(abaTbTa

    babab)T(a

    )(3)3(3)(3)(

    33

    33)(3

  • 8/11/2019 Tensors.ppt

    28/46

    Tensors

    Notensor?aisthen,23If 1 TeaTa

    TbTab)T(a

    ebeaTbTa

    ebaebab)T(a

    11

    11

    2323

    2332)(3

  • 8/11/2019 Tensors.ppt

    29/46

    Tensors as MappingsExamples

    TQR ][100

    0cossin

    0sincos

    Transform vectors by a right-hand

    rotation about the e3axis by an angle .

    = 90

    33

    212

    211

    cossin

    sincos

    ab

    aab

    aab

    33

    12

    21

    ab

    ab

    ab

    100

    001

    010

    R

    e1

    e2

    ab

    V abRa

    e1

    e2

    ab

  • 8/11/2019 Tensors.ppt

    30/46

    Q: Let Rcorrespond to a 90right-handrigid body rotation about the x3axis.

    Find the rotation tensor R.

    Tensor (Inner) Products

    Q: Let Scorrespond to a 90right-

    hand rigid body rotation about the x1

    axis. Find the rotation tensor S.

    Q: Let Wcorrespond to a 90right-

    hand rigid body rotation about thex3axis, then a 90right-hand rigid

    body rotation about the x1axis. Find

    the rotation tensor W

    SRW

    S

    R

    010

    100001

    100

    001010

  • 8/11/2019 Tensors.ppt

    31/46

    Tensor (Inner) Products

    TS

    ijijSS SSSMagnitude or Norm:

    STTS WTWSWTS )(

    0SS 0SSS if f0

    jiji dcba ))(()( dbcadcba

    ijijjlikklijljkiklijlkkljiij

    TSTSeeeeTS

    eeTeeS

    TS

  • 8/11/2019 Tensors.ppt

    32/46

    Trace of a Tensor

    baba )(tr

    )(

    )(

    )()()(

    332211

    T

    iiijijjiij

    jiijjiij

    Ttr

    TTT

    TTT

    trTTtrtr

    ee

    eeeeT

    )( TSTS Ttr )(TTI tr

    TT

    TT

    AWAWWW

    ASASSS

  • 8/11/2019 Tensors.ppt

    33/46

    Tensors

    SRTTR)(SSTR TT

    vuSSvu

    321det kjiijk SSSS

    11 detdetdetdet

    detdetdet

    SS

    SS

    TSST

    T

    1det R

  • 8/11/2019 Tensors.ppt

    34/46

    Inverse of a Tensor

    111 STST

    Inverse of a tensor T exists if it is non-singular

    ISS 1

    11 TT SS

  • 8/11/2019 Tensors.ppt

    35/46

    Positive Definite Tensors

    0vvSvv ,0 VPositiveDefinite

    0vvSvv ,0 VPositiveSemi-definite

  • 8/11/2019 Tensors.ppt

    36/46

    Dual Vector of an Skew Tensor

    0

    0

    0

    12

    13

    23

    ww

    ww

    ww

    W

    V vvwWv

    3

    2

    1

    w

    w

    w

    w Axial vector of W

  • 8/11/2019 Tensors.ppt

    37/46

    Notations

    Lin = the set of all rank two tensors

    Lin+= subset of Lin with positive determinants

    Sym = subset of Lin that are symmetric

    Skw = subset of Lin that are skew

    Psym = subset of Sym that are positive definite

    Orth = set of all orthogonal tensors

    Orth += set of all rotations

  • 8/11/2019 Tensors.ppt

    38/46

    Eigenvalues and Eigenvectors

    aTa

    Second rank tensors provide a linear transformation of

    the vector space into itself. However, there would be

    special vectors that satisfy the following condition:

    are eigen values and {a} are eigen vectors

    and {a} are independent of choice of coordinate frame

    Multiple solutions are possible

  • 8/11/2019 Tensors.ppt

    39/46

    Eigenvalues and Eigenvectors

    0aIT )( aTa

    0)det( IT Non-trivial Solutionexists when

    0)()()( 32213 TTT iii Characteristicequation

  • 8/11/2019 Tensors.ppt

    40/46

    Eigenvalues and Eigenvectors

    0)()()( 322

    13 TTT iii

    ii

    Ttri TT)(1

    jiijii TTTtrtri 22222

    1)]()[(

    2

    1)( TTT

    3213 det)( kjiijk TTTi TT

    )(),(),( 321 TTT iii

    List of principal

    invariants

  • 8/11/2019 Tensors.ppt

    41/46

    Cayley-Hamilton Theorem

    0ITTTTTT )()()( 322

    1

    3 iii

    Roots of Characteristic Equation

    0)()()( 322

    1

    3

    TTT iii The characteristic equation can produce

    up to three real roots.

    Multiple vectors are possible for each .

    Rotation Tensors have only one real root!

    R t f Ch t i ti E ti

  • 8/11/2019 Tensors.ppt

    42/46

    Roots of Characteristic Equation:

    Symmetric Tensors

    ii

    i

    ijiijS eeeeS

    3

    1

    A symmetric tensor Spossesses three eigen values(1,2,3) and at least one orthonormal set of eigen

    vectors (e1,e2,e3) associated with (1,2,3) respectively.

    bSbaSaSS T 0 ababaSbSabba

    ijjjjijiijS eeSee

  • 8/11/2019 Tensors.ppt

    43/46

    Symmetric Tensors

    ii

    i

    i eeS 3

    1

    )(

    )(

    )(

    3213

    1332212

    3211

    S

    S

    S

    i

    i

    i

    3

    2

    1

    00

    00

    00

    iS

    e

  • 8/11/2019 Tensors.ppt

    44/46

    Eigen Values and Eigen Vectors

    0,3

    1

    iii

    i

    i eeC

    A positive definite symmetric tensor Cpossessesthree positive eigen values (1,2,3).

    Psymiii

    i

    UeeCU ,3

    1

    ii

    i

    i eeC

    3

    1

    11

  • 8/11/2019 Tensors.ppt

    45/46

    Skew Tensors

    V vvwWv

    0)(1 WW tri

    2222 )]()[(

    21)( wWWW trtri

    0det)(3 WWi

    Whas only one real eigenvalue, which is

    equal to zero

  • 8/11/2019 Tensors.ppt

    46/46

    Polar Decomposition

    1det,

    ,,

    RIRRRR

    VU,FFVFFU

    VRRUFF

    TT

    TT Psym

    Lin

    3

    1

    113

    1

    3

    1

    3

    1

    3

    1

    ,,

    ,

    i

    iii

    i

    iii

    i

    ii

    ii

    i

    iii

    i

    i

    lrFrlFrlR

    llVrrU