telecommunication networks and stochastic geometry - … › ~hendrik › talks ›...

74
Introduction Introduction to Random Tessellations Statistical Model Fitting of Tessellations CLTs for Poisson Hyperplane Tessellations Telecommunication Networks and Stochastic Geometry - Asymptotic Analysis of Random Tessellations and Their Statistical Fitting Hendrik Schmidt France Telecom NSM/R&D/RESA/NET 12 January 2007 Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Upload: others

Post on 23-Jun-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Telecommunication Networks and Stochastic

Geometry - Asymptotic Analysis of Random

Tessellations and Their Statistical Fitting

Hendrik Schmidt

France Telecom NSM/R&D/RESA/NET

12 January 2007

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 2: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Outline

1 IntroductionReal Infrastructure Data of ParisStochastic Geometric Network Modeling

2 Introduction to Random TessellationsDefinition, Properties, and ExamplesIteration of Tessellations

3 Statistical Model Fitting of TessellationsMinimization Problem and Solution ApproachesVerification by Monte Carlo SimulationApplication to Real Network Data

4 CLTs for Poisson Hyperplane TessellationsMotivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 3: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Real Infrastructure Data of ParisStochastic Geometric Network Modeling

Real Infrastructure Data of Paris

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 4: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Real Infrastructure Data of ParisStochastic Geometric Network Modeling

Stochastic Geometric Network ModelingMain Roads

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 5: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Real Infrastructure Data of ParisStochastic Geometric Network Modeling

Stochastic Geometric Network ModelingMain Roads and Side Streets

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 6: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Real Infrastructure Data of ParisStochastic Geometric Network Modeling

Stochastic Geometric Network ModelingNetwork devices and serving zones

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 7: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Real Infrastructure Data of ParisStochastic Geometric Network Modeling

Stochastic Geometric Network ModelingCost Analysis through Network Trees

Network devices on real

infrastructure

0 0.5 1 1.5 2 2.5

00.

20.

40.

60.

8 sans voirievoirie réelle

Histogram of shortest

paths Spatial placement of

network devices

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 8: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Real Infrastructure Data of ParisStochastic Geometric Network Modeling

Stochastic Geometric Network ModelingCost Analysis through Network Trees

Network devices on real

infrastructure

0 0.5 1 1.5 2 2.5

00.

20.

40.

60.

8

voirie réellePVT fit

Histogram of shortest

paths Network devices on

fitted infrastructure

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 9: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Real Infrastructure Data of ParisStochastic Geometric Network Modeling

Stochastic Geometric Network ModelingCost Analysis through Network Trees

Randomtessellation models

can replace realinfrastructuredataafter havingbeen fit

Simulation studiesare very expensive

=⇒ Analytical formulae are needed

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 10: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Definition, Properties, and ExamplesIteration of Tessellations

Introduction to Random TessellationsDefinition, Properties, and Examples

A sequence Pnn≥1 of convex polytopes Pn ∈ IRd is called

(deterministic) tessellation of IRd if

int Pn 6= ∅ for all n ≥ 1

int Pn ∩ int Pm = ∅ for all n 6= m⋃∞n=1 Pn = IR

d

∑n≥1 1IPn∩K 6=∅ < ∞ for all compact sets K ∈ IR

d

The Pn’s are called cells of the tessellation

A sequence X = Ξnn≥1 of random convex polytopes Ξn iscalled random tessellation of IR

d if

IP(X ∈ T ) = 1 ,

where T denotes the family of all tessellations in IRd

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 11: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Definition, Properties, and ExamplesIteration of Tessellations

Introduction to Random TessellationsDefinition, Properties, and Examples

A sequence Pnn≥1 of convex polytopes Pn ∈ IRd is called

(deterministic) tessellation of IRd if

int Pn 6= ∅ for all n ≥ 1

int Pn ∩ int Pm = ∅ for all n 6= m⋃∞n=1 Pn = IR

d

∑n≥1 1IPn∩K 6=∅ < ∞ for all compact sets K ∈ IR

d

The Pn’s are called cells of the tessellation

A sequence X = Ξnn≥1 of random convex polytopes Ξn iscalled random tessellation of IR

d if

IP(X ∈ T ) = 1 ,

where T denotes the family of all tessellations in IRd

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 12: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Definition, Properties, and ExamplesIteration of Tessellations

Introduction to Random TessellationsDefinition, Properties, and Examples

A random tessellation X is called

stationary if its distribution is translation invariant for anytranslation Tx in IR

d , i.e. if

Tx X (·) d= X (·)

isotropic if its distribution is rotation invariant for any rotationRo (around the origin) in IR

d , i.e. if

Ro X (·) d= X (·)

motion invariant if it is both stationary and isotropic

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 13: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Definition, Properties, and ExamplesIteration of Tessellations

Introduction to Random TessellationsDefinition, Properties, and Examples

A random tessellation X is called

stationary if its distribution is translation invariant for anytranslation Tx in IR

d , i.e. if

Tx X (·) d= X (·)

isotropic if its distribution is rotation invariant for any rotationRo (around the origin) in IR

d , i.e. if

Ro X (·) d= X (·)

motion invariant if it is both stationary and isotropic

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 14: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Definition, Properties, and ExamplesIteration of Tessellations

Introduction to Random TessellationsDefinition, Properties, and Examples

A random tessellation X is called

stationary if its distribution is translation invariant for anytranslation Tx in IR

d , i.e. if

Tx X (·) d= X (·)

isotropic if its distribution is rotation invariant for any rotationRo (around the origin) in IR

d , i.e. if

Ro X (·) d= X (·)

motion invariant if it is both stationary and isotropic

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 15: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Definition, Properties, and ExamplesIteration of Tessellations

Introduction to Random TessellationsDefinition, Properties, and Examples

Motion invariant non–iterated tessellation models

PLT, γPLT = 0.02 PVT, γPVT = 0.0001 PDT, γPDT = 0.000037

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 16: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Definition, Properties, and ExamplesIteration of Tessellations

Introduction to Random TessellationsDefinition, Properties, and Examples

Mean value relations for facet characteristics

Measured per unit area

λ1 mean number of verticesλ2 mean number of edgesλ3 mean number of cellsλ4 mean total length of edges

For the considered tessellation models with intensity γ

Model λ1 λ2 λ3 λ4

PLT 1

πγ2 2

πγ2 1

πγ2 γ

PVT 2γ 3γ γ 2√

γ

PDT γ 3γ 2γ 32

√γ

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 17: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Definition, Properties, and ExamplesIteration of Tessellations

Introduction to Random TessellationsIteration of Tessellations

A (deterministic) iterated tessellation of IRd consists of

an initial tessellation Pnn≥1

a sequence (Pnνν≥1)n≥1 of component tessellations

and is given by

Pn ∩ Pnν : int Pn ∩ int Pnν 6= ∅ ; n, ν ∈ N

A random nesting of tessellations in IRd is given by

Ξn ∩ Ξnν : int Ξn ∩ int Ξnν 6= ∅ ; n, ν ∈ N

Ξnn≥1 is an arbitrary random tessellation in IRd

(Ξnνν≥1)n≥1 is an independent sequence of independent and

identically distributed random tessellations in IRd

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 18: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Definition, Properties, and ExamplesIteration of Tessellations

Introduction to Random TessellationsIteration of Tessellations

A (deterministic) iterated tessellation of IRd consists of

an initial tessellation Pnn≥1

a sequence (Pnνν≥1)n≥1 of component tessellations

and is given by

Pn ∩ Pnν : int Pn ∩ int Pnν 6= ∅ ; n, ν ∈ N

A random nesting of tessellations in IRd is given by

Ξn ∩ Ξnν : int Ξn ∩ int Ξnν 6= ∅ ; n, ν ∈ N

Ξnn≥1 is an arbitrary random tessellation in IRd

(Ξnνν≥1)n≥1 is an independent sequence of independent and

identically distributed random tessellations in IRd

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 19: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Definition, Properties, and ExamplesIteration of Tessellations

Introduction to Random TessellationsIteration of Tessellations : Examples

(a) PLT/PLT,

γ0 = 0.02, γ1 = 0.04

(b) PLT/PVT,

γ0 = 0.02, γ1 = 0.0004

(c) PLT/PDT, γ0 =

0.02, γ1 = 0.0001388

⇒ λ4 = 0.02 + 0.04 = 0.06

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 20: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Definition, Properties, and ExamplesIteration of Tessellations

Introduction to Random TessellationsIteration of Tessellations : Generalized Nestings

PLT with Bernoulli thinning PLT with multi–type nesting

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 21: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Definition, Properties, and ExamplesIteration of Tessellations

Introduction to Random TessellationsIteration of Tessellations

Mean value relations for facet characteristics of X0/pX1-nestings

λ1 = λ(0)1

+ pλ(1)1

+4p

πλ

(0)4

λ(1)4

λ2 = λ(0)2

+ pλ(1)2

+6p

πλ

(0)4

λ(1)4

λ3 = λ(0)3

+ pλ(1)3

+2p

πλ

(0)4

λ(1)4

λ4 = λ(0)4

+ pλ(1)4

⇒ Mean-value formulae for nestings involving PLT, PDT and PVT

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 22: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Minimization Problem and Solution ApproachesVerification by Monte Carlo SimulationApplication to Real Network Data

Statistical Model Fitting of TessellationsMinimization Problem and Solution Approaches

Step 1 : Vector of estimates

λinp =

(λinp

1, λinp

2, λinp

3, λinp

4

)⊤

from input data in sampling window W using unbiasedestimators

λinp =

1

|W |(nv , ne , nc , le)⊤

nv number of vertices in W

ne number of edges, whose lexicographically smaller endpointlies in W

nc number of cells, whose lexicographically smallest vertex liesin W

le total length of edges in W

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 23: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Minimization Problem and Solution ApproachesVerification by Monte Carlo SimulationApplication to Real Network Data

Statistical Model Fitting of TessellationsMinimization Problem and Solution Approaches

Step 2 : Calculate λ = λ(γ) = (λ1, λ2, λ3,λ4)⊤ (or λ(γ0, γ1))

Step 3 : Minimize d(λinp, λ) . Example :

d(λinp, λ) =4∑

i=1

((λinp

i − λi )/λinpi

)2

→ min

Inserting the mean value relation (PLT)

f (γ) =

((λinp

1− 1

πγ2)/λinp1

)2

+

((λinp

2− 2

πγ2)/λinp2

)2

+

((λinp

3− 1

πγ2)/λinp3

)2

+

((λinp

4− γ)/λinp

4

)2

→ min

Step 4 : Determine d(λinp, λmin) and γmin (or γmin0 and γmin

1 )

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 24: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Minimization Problem and Solution ApproachesVerification by Monte Carlo SimulationApplication to Real Network Data

Statistical Model Fitting of TessellationsMinimization Problem and Solution Approaches

Step 2 : Calculate λ = λ(γ) = (λ1, λ2, λ3,λ4)⊤ (or λ(γ0, γ1))

Step 3 : Minimize d(λinp, λ) . Example :

d(λinp, λ) =4∑

i=1

((λinp

i − λi )/λinpi

)2

→ min

Inserting the mean value relation (PLT)

f (γ) =

((λinp

1− 1

πγ2)/λinp1

)2

+

((λinp

2− 2

πγ2)/λinp2

)2

+

((λinp

3− 1

πγ2)/λinp3

)2

+

((λinp

4− γ)/λinp

4

)2

→ min

Step 4 : Determine d(λinp, λmin) and γmin (or γmin0 and γmin

1 )

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 25: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Minimization Problem and Solution ApproachesVerification by Monte Carlo SimulationApplication to Real Network Data

Statistical Model Fitting of TessellationsMinimization Problem and Solution Approaches

Step 2 : Calculate λ = λ(γ) = (λ1, λ2, λ3,λ4)⊤ (or λ(γ0, γ1))

Step 3 : Minimize d(λinp, λ) . Example :

d(λinp, λ) =4∑

i=1

((λinp

i − λi )/λinpi

)2

→ min

Inserting the mean value relation (PLT)

f (γ) =

((λinp

1− 1

πγ2)/λinp1

)2

+

((λinp

2− 2

πγ2)/λinp2

)2

+

((λinp

3− 1

πγ2)/λinp3

)2

+

((λinp

4− γ)/λinp

4

)2

→ min

Step 4 : Determine d(λinp, λmin) and γmin (or γmin0 and γmin

1 )

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 26: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Minimization Problem and Solution ApproachesVerification by Monte Carlo SimulationApplication to Real Network Data

Statistical Model Fitting of TessellationsMinimization Problem and Solution Approaches

Iterated tessellations : Use numerical methods to find (global)minimum of

f (γ0, γ1) = d(λ

inp, λ(γ0, γ1))

Nelder Mead methodProblem :Minimum may depend on initial valuesSolution :Start with different (randomly chosen) initial valuesAdvantages :

Faster than traversing search on a latticeSimple to implement and to integrate into the Java basedGeoStoch libraryNo need to switch between different programs

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 27: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Minimization Problem and Solution ApproachesVerification by Monte Carlo SimulationApplication to Real Network Data

Statistical Model Fitting of TessellationsMinimization Problem and Solution Approaches

Iterated tessellations : Use numerical methods to find (global)minimum of

f (γ0, γ1) = d(λ

inp, λ(γ0, γ1))

Nelder Mead methodProblem :Minimum may depend on initial valuesSolution :Start with different (randomly chosen) initial valuesAdvantages :

Faster than traversing search on a latticeSimple to implement and to integrate into the Java basedGeoStoch libraryNo need to switch between different programs

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 28: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Minimization Problem and Solution ApproachesVerification by Monte Carlo SimulationApplication to Real Network Data

Statistical Model Fitting of TessellationsVerification by Monte Carlo Simulation

Simulation of PLT/PLT with intensities γ0 = 0.1, γ1 = 0.06

Runs Optimal model Distance γ0 γ1

Traversing1 PLT/PLT 0.00174 0.08790 0.06380

(stepw. 0.0001)

Nelder-Mead 99 PLT/PLT 0.00173 0.08776 0.063921 PLT/PVT 0.01026 0.10796 0.00050

Runtime comparison

Traversing search 4.7 min

Nelder-Mead 0.3 min

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 29: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Minimization Problem and Solution ApproachesVerification by Monte Carlo SimulationApplication to Real Network Data

Statistical Model Fitting of TessellationsVerification by Monte Carlo Simulation

Simulation of PLT/PLT with intensities γ0 = 0.1, γ1 = 0.06

Runs Optimal model Distance γ0 γ1

Traversing1 PLT/PLT 0.00174 0.08790 0.06380

(stepw. 0.0001)

Nelder-Mead 99 PLT/PLT 0.00173 0.08776 0.063921 PLT/PVT 0.01026 0.10796 0.00050

Runtime comparison

Traversing search 4.7 min

Nelder-Mead 0.3 min

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 30: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Minimization Problem and Solution ApproachesVerification by Monte Carlo SimulationApplication to Real Network Data

Statistical Model Fitting of TessellationsVerification by Monte Carlo Simulation

Null-hypothesis H0 : input data represents a realization of thetessellation model τ with parameter γ (or γ0, γ1 and p)

Choose a significance level α (α = 0.05 or α = 0.01)

Calculate the hypothetical vector λ of model characteristicsfor γ (γ0, γ1 and p)

Calculate the distance d between λ and λinp

Generate n realizations of τ (n = 99 or n = 999)

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 31: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Minimization Problem and Solution ApproachesVerification by Monte Carlo SimulationApplication to Real Network Data

Statistical Model Fitting of TessellationsVerification by Monte Carlo Simulation

Determine the vectors λ1, ..., λn of model characteristics foreach simulation run

Calculate the distances d1, ..., dn between λ and λ1, ..., λn

⇒ Obtain n + 1 distance values d , d1, ..., dn

Arrange the values d , d1, ..., dn in ascending order

Determine position i of d in this sequence

Reject null-hypothesis if i ∈ Rα = [n − α(n + 1) + 2, ..., n + 1](R0.05 = [96, 100] or R0.01 = [991, 1000])

Alternatively, regard p-value = 1 − (i − 1)/(n + 1) and rejectnull-hypothesis for small p-values

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 32: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Minimization Problem and Solution ApproachesVerification by Monte Carlo SimulationApplication to Real Network Data

Statistical Model Fitting of TessellationsApplication to Real Network Data

Real Infrastructure Data of Paris

Line segments with marks (typeof road) :

national route

main road

side street

...

Preprocess data =⇒ network with polygonal cells

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 33: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Minimization Problem and Solution ApproachesVerification by Monte Carlo SimulationApplication to Real Network Data

Statistical Model Fitting of TessellationsApplication to Real Network Data

Raw data Preprocessed data

|W | = 3000m × 3000m = 9km2

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 34: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Minimization Problem and Solution ApproachesVerification by Monte Carlo SimulationApplication to Real Network Data

Statistical Model Fitting of TessellationsApplication to Real Network Data

Fitting strategy : Exploit hierarchical data structure

Fitting of a non-iterated tessellation model to the main roads

Fitting of an iterated tessellation model to road data withfixed initial tessellation model

p = 1

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 35: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Minimization Problem and Solution ApproachesVerification by Monte Carlo SimulationApplication to Real Network Data

Statistical Model Fitting of TessellationsApplication to Real Network Data

Model Distance γmin

PLT 0.21101 0.002384PVT 0.29749 0.000001PDT 0.73378 0.000001

Distance and corresponding optimized parameter γmin

Main roads would be modelled by a PLT with γopt = 0.002384

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 36: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Minimization Problem and Solution ApproachesVerification by Monte Carlo SimulationApplication to Real Network Data

Statistical Model Fitting of TessellationsApplication to Real Network Data

Model Distance γmin0 γmin

1

PLT/PLT 0.15224 0.002384 0.013906

PLT/PVT 0.20455 0.002384 0.000044

PLT/PDT 0.36649 0.002384 0.000028

Distance and corresponding optimized parameters γmin0 and γ

min1

Road system would be modelled by a PLT/PLT-nesting withγopt

0= 0.002384 and γopt

1= 0.013906

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 37: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Minimization Problem and Solution ApproachesVerification by Monte Carlo SimulationApplication to Real Network Data

Statistical Model Fitting of TessellationsApplication to Real Network Data

Monte Carlo test

PLT/PLT with γ0 = 0.002384 and γ1 = 0.013906

α n Rα d d(1) d(n) i p-value

0.05 99 [96,100] 0.15327 0.00968 1.22830 30 0.7100.01 999 [991,100] 0.15327 0.00966 1.04893 306 0.695

=⇒ Cannot reject null hypothesis in both cases

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 38: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Minimization Problem and Solution ApproachesVerification by Monte Carlo SimulationApplication to Real Network Data

Statistical Model Fitting of TessellationsApplication to Real Network Data

Preprocessed road system Realization of optimal PLT/PLT

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 39: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Minimization Problem and Solution ApproachesVerification by Monte Carlo SimulationApplication to Real Network Data

Statistical Model Fitting of TessellationsApplication to Real Network Data

Network Data from Cell Biology

Cellular keratin proteins

How can we describe the spatial geometrical structure of a complexfilament network in biological cells by tessellation models ?

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 40: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Minimization Problem and Solution ApproachesVerification by Monte Carlo SimulationApplication to Real Network Data

Statistical Model Fitting of TessellationsApplication to Real Network Data

Control sample image Graph structure

TGFα sample image Graph structure

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 41: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Minimization Problem and Solution ApproachesVerification by Monte Carlo SimulationApplication to Real Network Data

Statistical Model Fitting of TessellationsApplication to Real Network Data

Control group : Graph structure and sample realization of optimal PVT/PLT

TGFα group : Graph structure and sample realization of optimal PDT/PLT

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 42: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

CLTs for Poisson Hyperplane TessellationsMotivation

Consider (2–dim.) stationary (and isotropic) Poisson lineprocess with intensity λ > 0 in the circle B2

r

Br

η0(B2r ) number of

intersection points in B2r

η1(B2r ) number of lines

hitting B2r

ζ1(B2r ) total length of line

segments in B2r

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 43: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

CLTs for Poisson Hyperplane TessellationsStationary k–flat processes in IR

d for k = 0, ..., d − 1

A k–flat process Φk in IRd is a random (locally–finite)

counting measure on the space of affine k–dimensionalsubspaces Ad

k in IRd

Φk : Ω → N(Adk ) is a

(σ(Ω),N (Ad

k ))–measurable mapping

Representation of Φk

Φk(·) =∑

i≥1δH

(k)i

(·)supp(Φk) =

⋃i≥1

H(k)i (RACS)

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 44: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

CLTs for Poisson Hyperplane TessellationsStationary k–flat processes in IR

d for k = 0, ..., d − 1

Φk is stationary if TxΦk(·) d= Φk(·)

Interpretation of the intensity λk

λk =EΦk (L∈Ad

k : L∩Bdr 6=∅)

νd−k (Bd−kr )

for all r > 0 ,

λk = 1

νd (B) E

(∑i≥1

νk(H(k)i ∩ B)

), B ∈ B(IRd)

Φk is isotropic if RoΦk(·) d= Φk(·)

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 45: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

CLTs for Poisson Hyperplane TessellationsStationary k–flat processes in IR

d for k = 0, ..., d − 1

A (d − 1)–flat process Φd−1 is called hyperplane process

Parameterization : H(p, u) = x ∈ IRd : 〈u, x〉 = p

Orientation vector u ∈ Sd−1

+

Signed perpendiculardistance p ∈ IR from theorigin

α

p

H(p,u)

Φd−1(·) =∑

i≥1δH(Pi ,Ui )(·)

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 46: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

CLTs for Poisson Hyperplane TessellationsStationary k–flat processes in IR

d for k = 0, ..., d − 1

A stationary Poisson hyperplane processes can be seen asstationary and independently marked Poisson point process Ψon IR × S

d−1+ , i.e.

Ψ(·) =∑

i≥1

δ(Pi ,Ui )(·)

Intensity λMark distribution Θ (coincides with the spherical orientationdistribution on B(Sd−1

+ ))

A stationary Poisson hyperplane process is

isotropic if Θ is the uniform distributionnondegenerate if Θ(H(0, u) ∩ S

d−1

+ ) < 1 for u ∈ Sd−1

+

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 47: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

CLTs for Poisson Hyperplane TessellationsStationary k–flat processes in IR

d for k = 0, ..., d − 1

A stationary Poisson hyperplane processes can be seen asstationary and independently marked Poisson point process Ψon IR × S

d−1+ , i.e.

Ψ(·) =∑

i≥1

δ(Pi ,Ui )(·)

Intensity λMark distribution Θ (coincides with the spherical orientationdistribution on B(Sd−1

+ ))

A stationary Poisson hyperplane process is

isotropic if Θ is the uniform distributionnondegenerate if Θ(H(0, u) ∩ S

d−1

+ ) < 1 for u ∈ Sd−1

+

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 48: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

CLTs for Poisson Hyperplane TessellationsAsymptotic Distribution of k–Flat Intersections

Number of k–flats hitting Bdr (k = 0, . . . , d − 1)

ηk(Bdr ) = Φk(L ∈ Ad

k : L ∩ Bdr 6= ∅)

ηk(Bdr )

d= 1

(d−k) !

∑∗

1≤i1,...,id−k≤Nr

χ(∩d−kj=1

H(Xij ) ∩ Bdr )

Notice thatNr = Ψ([−r , r ] × Sd−1

+ ) ∼ Poi(2λ r)Xi = (Pi ,Ui ) i.i.d., indep. of Nr with indep. componentsPi uniformly distributed on [−r , r ]Ui has distribution ΘIntensity λk of Φk can be given explicitely (isotropic case) :

λk =

(d

k

)κd

κk

(κd−1

d κd

)d−k

λd−k

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 49: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

CLTs for Poisson Hyperplane TessellationsAsymptotic Distribution of k–Flat Intersections

Number of k–flats hitting Bdr (k = 0, . . . , d − 1)

ηk(Bdr ) = Φk(L ∈ Ad

k : L ∩ Bdr 6= ∅)

ηk(Bdr )

d= 1

(d−k) !

∑∗

1≤i1,...,id−k≤Nr

χ(∩d−kj=1

H(Xij ) ∩ Bdr )

Notice thatNr = Ψ([−r , r ] × Sd−1

+ ) ∼ Poi(2λ r)Xi = (Pi ,Ui ) i.i.d., indep. of Nr with indep. componentsPi uniformly distributed on [−r , r ]Ui has distribution ΘIntensity λk of Φk can be given explicitely (isotropic case) :

λk =

(d

k

)κd

κk

(κd−1

d κd

)d−k

λd−k

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 50: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

CLTs for Poisson Hyperplane TessellationsAsymptotic Distribution of k–Flat Intersections

Expectations : Eηk(Bdr ) = λk κd−k rd−k

Asymptotic variances :

limr→∞

Var ηk(Bdr )

r2d−2k−1=

(2λ)2d−2k−1

((d − k − 1)!)2σ

(1,d−k)χ,k

Notice that σ(1,d−k)χ,k is given by

E(χ(∩d−k

i=1H(Xi ) ∩ Bd

r )χ(∩2(d−k)−1

i=d−k H(Xi ) ∩ Bdr ))

=

Eg2

χ,k(Xd−k)

gχ,k((p, u)) = Eχ(H(X1) ∩ . . . ∩ H(Xd−k−1) ∩ H(p, u) ∩ Bdr )

for (p, u) ∈ [−r , r ] × Sd−1

+

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 51: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

CLTs for Poisson Hyperplane TessellationsAsymptotic Distribution of k–Flat Intersections

Expectations : Eηk(Bdr ) = λk κd−k rd−k

Asymptotic variances :

limr→∞

Var ηk(Bdr )

r2d−2k−1=

(2λ)2d−2k−1

((d − k − 1)!)2σ

(1,d−k)χ,k

Notice that σ(1,d−k)χ,k is given by

E(χ(∩d−k

i=1H(Xi ) ∩ Bd

r )χ(∩2(d−k)−1

i=d−k H(Xi ) ∩ Bdr ))

=

Eg2

χ,k(Xd−k)

gχ,k((p, u)) = Eχ(H(X1) ∩ . . . ∩ H(Xd−k−1) ∩ H(p, u) ∩ Bdr )

for (p, u) ∈ [−r , r ] × Sd−1

+

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 52: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

CLTs for Poisson Hyperplane TessellationsAsymptotic Distribution of k–Flat Intersections

Theorem 1 (CLTs for numbers of intersections)

For k = 0, . . . , d − 1 ,

Z(d)k,r (χ)

d−→r→∞

N(0, σ

(1,d−k)χ,k

)

Z(d)k,r (χ) = (d−k−1)!

( 2λ r )d−k−1/2

(ηk(Bd

r ) − λk κd−k rd−k)

In case of isotropy

σ(1,d−k)χ,k =

(κd−k−1 (d − k − 1)!)2

(2d − 2k − 1)!

(d ! κd

k! κk

)2 (κd−1

d κd

)2(d−k)

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 53: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

CLTs for Poisson Hyperplane TessellationsAsymptotic Distribution of k–Flat Intersections

Idea of the proof

A U–statistic U(m)n (f ) of order m is defined by

U(m)n (f ) =

1(nm

)∑

1≤i1<...<im≤n

f (Xi1 , . . . ,Xim) for n ≥ m

X1,X2, . . . sequence of i.i.d. random variablesf is called kernel function (E|f (X1, . . . ,Xm)| < ∞ )

U(m)n (f ) unbiased estimator for µ = Ef (X1, . . . ,Xm)

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 54: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

CLTs for Poisson Hyperplane TessellationsAsymptotic Distribution of k–Flat Intersections

U–statistic U(m)n (f ) of order m :

U(m)n (f ) =

1(nm

)∑

1≤i1<...<im≤n

f (Xi1 , . . . ,Xim) for n ≥ m

Hoeffding’s decomposition

U(m)n (f ) − µ =

m

n

n∑

i=1

( g(Xi ) − µ ) + R(m)n (f )

g(x) = E(f (X1,X2, . . . ,Xm) | X1 = x) = Ef (x ,X2, . . . ,Xm)

E(R

(m)n (f )

)2 ≤ cmn2 E f 2(X1, . . . ,Xm) for n ≥ m

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 55: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

CLTs for Poisson Hyperplane TessellationsAsymptotic Distribution of k–Flat Intersections

Write η0(Bdr )

d=(Nr

d

)U

(d)Nr

(χ)

U(d)Nr

(χ) is U–statistic of order d (kernel fct. χ , Nr = n)

Apply Hoeffding’s decomposition

η0(Bdr ) − (2 λ r)d

d! Eχ(H(X1), . . . ,H(Xd) ∩ Bdr )

d=

( (Nr

d

)− nd

rd!

)µ +

(Nr

d

)dNr

Nr∑i=1

(gχ,0(Xi )− µ

)+(Nr

d

)R

(d)Nr

(χ)

=( (

Nr

d

)− Nr

(Nr−1

d−1

)+ nr

(Nr−1

d−1

)− nd

rd!

)µ +

(Nr

d

)R

(d)Nr

(χ)

+(Nr−1

d−1

) ( Nr∑i=1

gχ,0(Xi ) − nr µ

)

Notice thatµ = Eχ(H(X1) ∩ . . . ∩ H(Xd) ∩ Bd

r )nr = ENr = 2λ r

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 56: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

CLTs for Poisson Hyperplane TessellationsAsymptotic Distribution of k–Flat Intersections

Theorem 2 (Multivariate extension)

(Z

(d)0,r (χ), . . . ,Z

(d)d−1,r (χ)

) d−→r→∞

N(o, Σ(χ)

)

Σ(χ) possesses always full rank d

Σ(χ)=(

( d! κd )2 κd−k−1 κd−l−1

k! l! κk κl 22d−k−l−1

κ2d−k−l−1

κ2d−k−l−2

(κd−1

d κd

)2d−k−l)d−1

k,l=0

For d = 2 ,

η0(Br )−λ2 r2

(2 λ r)3/2

η1(Br )− 2 λ r

(2 λ r)1/2

d−→

r→∞N((

0

0

),

(8

3 π21

2

1

21

))

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 57: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

CLTs for Poisson Hyperplane TessellationsAsymptotic Distribution of k–Flat Intersections

Theorem 2 (Multivariate extension)

(Z

(d)0,r (χ), . . . ,Z

(d)d−1,r (χ)

) d−→r→∞

N(o, Σ(χ)

)

Σ(χ) possesses always full rank d

Σ(χ)=(

( d! κd )2 κd−k−1 κd−l−1

k! l! κk κl 22d−k−l−1

κ2d−k−l−1

κ2d−k−l−2

(κd−1

d κd

)2d−k−l)d−1

k,l=0

For d = 2 ,

η0(Br )−λ2 r2

(2 λ r)3/2

η1(Br )− 2 λ r

(2 λ r)1/2

d−→

r→∞N((

0

0

),

(8

3 π21

2

1

21

))

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 58: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

CLTs for Poisson Hyperplane TessellationsAsymptotic Distribution of k–Flat Intersections

Total k–volume of k–flat intersections in Bdr , k = 0, . . . , d − 1

ζk(Bdr ) =

L∈⋃ i≥1H

(k)i

νk(Bdr ∩ L)

ζk(Bdr )

d= 1

(d−k) !

∑∗

1≤i1,...,id−k≤Nr

νk(∩d−kj=1

H(Xij ) ∩ Bdr )

ExpectationsEζk(Bd

r ) = λk κd rd

Asymptotic variances

limr→∞

Var ζk(Bdr )

r2d−1=

(2λ)2d−2k−1

((d − k − 1)!)2σ

(1,d−k)ν,k

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 59: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

CLTs for Poisson Hyperplane TessellationsAsymptotic Distribution of k–Flat Intersections

Total k–volume of k–flat intersections in Bdr , k = 0, . . . , d − 1

ζk(Bdr ) =

L∈⋃ i≥1H

(k)i

νk(Bdr ∩ L)

ζk(Bdr )

d= 1

(d−k) !

∑∗

1≤i1,...,id−k≤Nr

νk(∩d−kj=1

H(Xij ) ∩ Bdr )

ExpectationsEζk(Bd

r ) = λk κd rd

Asymptotic variances

limr→∞

Var ζk(Bdr )

r2d−1=

(2λ)2d−2k−1

((d − k − 1)!)2σ

(1,d−k)ν,k

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 60: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

CLTs for Poisson Hyperplane TessellationsAsymptotic Distribution of k–Flat Intersections

Total k–volume of k–flat intersections in Bdr , k = 0, . . . , d − 1

ζk(Bdr ) =

L∈⋃ i≥1H

(k)i

νk(Bdr ∩ L)

ζk(Bdr )

d= 1

(d−k) !

∑∗

1≤i1,...,id−k≤Nr

νk(∩d−kj=1

H(Xij ) ∩ Bdr )

ExpectationsEζk(Bd

r ) = λk κd rd

Asymptotic variances

limr→∞

Var ζk(Bdr )

r2d−1=

(2λ)2d−2k−1

((d − k − 1)!)2σ

(1,d−k)ν,k

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 61: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

CLTs for Poisson Hyperplane TessellationsAsymptotic Distribution of k–Flat Intersections

Theorem 3 (CLT for total volumes of intersections)

For k = 0, . . . , d − 1

Z(d)k,r (ν)

d−→r→∞

N(0, σ

(1,d−k)ν,k

)

Z(d)k,r (ν) = (d−k−1)!

( 2λ)d−k−1/2 rd−1/2

(ζk(Bd

r ) − λk κd rd)

In case of isotropy

σ(1,d−k)ν,k =

(2k κd−1 (d − 1)!

)2

(2d − 1)!

(d ! κd

k! κk

)2 (κd−1

d κd

)2(d−k)

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 62: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

CLTs for Poisson Hyperplane TessellationsAsymptotic Distribution of k–Flat Intersections

Theorem 3 (CLT for total volumes of intersections)

For k = 0, . . . , d − 1

Z(d)k,r (ν)

d−→r→∞

N(0, σ

(1,d−k)ν,k

)

Z(d)k,r (ν) = (d−k−1)!

( 2λ)d−k−1/2 rd−1/2

(ζk(Bd

r ) − λk κd rd)

In case of isotropy

σ(1,d−k)ν,k =

(2k κd−1 (d − 1)!

)2

(2d − 1)!

(d ! κd

k! κk

)2 (κd−1

d κd

)2(d−k)

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 63: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

CLTs for Poisson Hyperplane TessellationsAsymptotic Distribution of k–Flat Intersections

Theorem 4 (Multivariate extensions)

(Z

(d)0,r (ν), . . . ,Z

(d)d−1,r (ν)

) d−→r→∞

N(o, Σ(ν)

)

Σ(ν) has rank 1 for any d ≥ 1

Σ(ν)=(

(κd κd−1 d! (d−1)!)2 2k+l

k! l! κk κl (2d−1)!

(κd−1

d κd

)2d−k−l)d−1

k,l=0

In case d = 2,

ζ0(Br )−λ2 r2

(2 λ r)3/2

ζ1(Br )−λ π r2

(2 λ)1/2 r3/2

d−→

r→∞N((

0

0

),

(8

3 π28

3 π8

3 π8

3

))

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 64: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

CLTs for Poisson Hyperplane TessellationsAsymptotic Distribution of k–Flat Intersections

Theorem 4 (Multivariate extensions)

(Z

(d)0,r (ν), . . . ,Z

(d)d−1,r (ν)

) d−→r→∞

N(o, Σ(ν)

)

Σ(ν) has rank 1 for any d ≥ 1

Σ(ν)=(

(κd κd−1 d! (d−1)!)2 2k+l

k! l! κk κl (2d−1)!

(κd−1

d κd

)2d−k−l)d−1

k,l=0

In case d = 2,

ζ0(Br )−λ2 r2

(2 λ r)3/2

ζ1(Br )−λ π r2

(2 λ)1/2 r3/2

d−→

r→∞N((

0

0

),

(8

3 π28

3 π8

3 π8

3

))

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 65: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

CLTs for Poisson Hyperplane TessellationsApplications ; Intensity Estimators

Estimators for λk , k = 0, . . . , d − 1Use information about number of k–flat intersections

λk,r = ηk(Bdr )/νd−k(Bd−k

r )

Use information about k–volumes of flat intersections

λk,r = ζk(Bdr )/νd(Bd

r )

Unbiased

Strongly consistent

Asymptotic optimality w.r.t. second moments

limr→∞

r Var λk,r ≤ limr→∞

r Var λk,r

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 66: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

CLTs for Poisson Hyperplane TessellationsApplications in IR

2

Concentrate on the counting of intersections (i.e. η0(·))Variance stabilizing transformation

From Theorem 1 we have that

Z(2)0,r =

√r ( f (λ0,r ) − f (λ0) )

d−→r→∞

N (0, 1)

where

f (x) =

√3

2π−5/4x1/4

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 67: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

CLTs for Poisson Hyperplane TessellationsApplications in IR

2

−4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

Histogram

••

••

•••

••

••

••

••

••

••

••

••

••

•• •

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

•••

••

••

••

• •

••

•••

•••

••

••

•••

••

••

••

• •

• •

••

•••

••

••

••

•••

••

••

••

••

••

••

••

••

•••

••

••

• •

••

••

• •

••

••

•••

••

••

••

••

••

••

••

•• •

••

••

••••

••

• •

• •

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

• •

••

••

•••

••

••

••

••

••

••

••

••

••

•• •

••

•••

••

••

••

••

••

••

••••

••

••

• •

••

••

••

••

• •

••

••

••

••

••

••

••

••

••

••

••

••

• •

••

••

••

••

••

••

••

• •

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••• •

••

••

• ••

••

••

•••

•••

••

••

••

••

••

••

••

••

••

••••

••

•••

•••

•••

••

••

• •

••

••

••

••

••

• •

••

••

••

••

••

•••

••••

••

••

••

••

••

••

••

••

••

••

••

••

• •

••

••

• •

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

•••

••

••

••

••

••

••

••

•• •

••

••

•••

••

•• •

••

••

••

• •

••

••

••

••

••

••

••

••

• •

•••

••

••

••

••

••

••

•••

••

••

••

••

••

••

••

••

••

•• •

••

••

••

• •

••

••

••

••

••

••

• •

••

• ••

••

••

••

•••

••

••

••

••

••

• ••

••

••

••

• ••

••

• ••

••

••

••

••

••

••

••

••

••

••

••

••

• •

••

••

••

••

••

•••

••

••

••

••

••

•••

••

••

•••

••

• • •

••

••

••

•••

••

••

••

••

••

••

• •

••

•••

••••

••

••

••

••

••

••

••

• •

••

••

••

••

••

••

••

••

••

••

••

••

• •

••

••

••

••

••

••

••

••

••

••

••

••

••

••

•••

••

••

••

• ••

••

••

••

••

•••

•••

• •

••

• •

••

••

••

• •

••

••

••

••

••

• •

••

••

••

••

•••

••

••

•••

••

• •

••

•••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

• •

•••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

• •

••

••

•••

••

••

••

••

••

•••

••

• ••

••

••

••

• •

••

••

••

••

••

• ••

••

••

• •

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

• •

•••

••

••

••

••

••

• ••

••

•••

••

••

••

••

••

••

••

••

••

• •

••

••

••

••

••

••

••

••

••

••

•••

−4 −2 0 2 4−

20

2

QQ plot

Graphical goodness–of–fit analysis of Z(2)0,900 (λ = 0.1)

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 68: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

CLTs for Poisson Hyperplane TessellationsApplications in IR

2

Pearson test (α = 0.05)r T1000 p1000 T5000 p5000

300 42.50 0.051 126.10* < 10−3

600 32.18 0.312 116.16* < 10−3

900 34.88 0.209 78.44 0.204

1200 28.52 0.490 70.13 0.440

Kolmogoroff–Smirnoff test (α = 0.05)r T ′

1000p1000 T ′

5000p5000

300 1.58* 0.014 2.85* < 10−3

600 1.72* 0.006 2.47* < 10−3

900 1.33 0.057 1.76* 0.004

1200 0.64 0.800 2.28* < 10−3

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 69: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

CLTs for Poisson Hyperplane TessellationsApplications in IR

2

Confidence interval I(r)0

(α) for λ0

[((λ0,r

)1/4

− 2√3 r

π−5/4 z1−α/2

)4

,((

λ0,r

)1/4

+ 2√3 r

π−5/4 z1−α/2

)4]

=[

1

πr2

( (η0(Br )

)1/4 − 2 z1−α/2

π√

3

)4

, 1

πr2

( (η0(Br )

)1/4+

2 z1−α/2

π√

3

)4 ]

From Theorem 1 we have that IP(λ0 ∈ I(r)0

(α) ) −→r→∞

1 − α for

any α ∈ (0, 1)

Note : λ = (λ0 π )1/2

confidence interval J(r)0

(α) for λ[1

r

((η0(Br )

)1/4

− 2 z1−α/2

π√

3

)2

, 1

r

((η0(Br )

)1/4

+2 z1−α/2

π√

3

)2]

IP(λ ∈ J(r)0

(α) ) −→r→∞

1 − α

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 70: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

CLTs for Poisson Hyperplane TessellationsApplications in IR

2

Confidence interval I(r)0

(α) for λ0

[((λ0,r

)1/4

− 2√3 r

π−5/4 z1−α/2

)4

,((

λ0,r

)1/4

+ 2√3 r

π−5/4 z1−α/2

)4]

=[

1

πr2

( (η0(Br )

)1/4 − 2 z1−α/2

π√

3

)4

, 1

πr2

( (η0(Br )

)1/4+

2 z1−α/2

π√

3

)4 ]

From Theorem 1 we have that IP(λ0 ∈ I(r)0

(α) ) −→r→∞

1 − α for

any α ∈ (0, 1)

Note : λ = (λ0 π )1/2

confidence interval J(r)0

(α) for λ[1

r

((η0(Br )

)1/4

− 2 z1−α/2

π√

3

)2

, 1

r

((η0(Br )

)1/4

+2 z1−α/2

π√

3

)2]

IP(λ ∈ J(r)0

(α) ) −→r→∞

1 − α

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 71: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

CLTs for Poisson Hyperplane TessellationsApplications in IR

2

Hypothesis :

H0 : λ ≤ λ∗ versus H1 : λ > λ∗

(Asymptotic) significance level : α ∈ (0, 1)

From Theorem 1 we have :

Reject H0 if

η0(Br ) >(√

λ∗ r +2

π√

3z1−α

)4

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 72: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

CLTs for Poisson Hyperplane TessellationsApplications in IR

2

0

0.2

0.4

0.6

0.8

1

pow

0.09 0.1 0.11 0.12 0.13 0.14 0.15

lambda

Estimated power function (H0 : λ ≤ 0.1)

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 73: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

Literature

M. Beil, S. Eckel, F. Fleischer, H. Schmidt, V. Schmidt and P.Walther (2006) Fitting of Random Tessellation Models toKeratin Filament Networks, Journal of Theoretical Biology241, pp. 62-72

C. Gloaguen, F. Fleischer, H. Schmidt and V. Schmidt (2006)Fitting of Stochastic Telecommunication Network Models viaDistance Measures and Monte-Carlo Tests, TelecommunicationSystems 31, pp. 353-377

L. Heinrich, H. Schmidt and V. Schmidt (2006) Central LimitTheorems for Poisson Hyperplane Tessellations, Annals ofApplied Probability 16, pp. 919-950

H. Schmidt (2006) Asymptotic Analysis of Stationary RandomTessellations with Applications to Network Modelling, PhDThesis, Ulm Univ., http ://vts.uni-ulm.de/doc.asp ?id=5702

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry

Page 74: Telecommunication Networks and Stochastic Geometry - … › ~hendrik › talks › hs_paris5.pdf · 2007-01-15 · Telecommunication Networks and Stochastic Geometry - Asymptotic

IntroductionIntroduction to Random Tessellations

Statistical Model Fitting of TessellationsCLTs for Poisson Hyperplane Tessellations

Motivation ; Introduction to Random k–FlatsAsymptotic Distribution of k–Flat IntersectionsApplications

This talk is based on joint work withF. Fleischer, C. Gloaguen, L. Heinrich and V. Schmidt

Thank you for your attention !

Hendrik Schmidt Telecommunication Networks and Stochastic Geometry