techno-‐economic study for carbon capture from cement plants

16
University of Edinburgh , School of Engineering, Edinburgh SCCS – Sco9sh Carbon Capture and Storage Centre TechnoEconomic Study for Carbon Capture from Cement Plants Dursun Can Ozcan, Hyungwoong Ahn, Stefano Brandani [email protected]

Upload: vuliem

Post on 31-Dec-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Techno-‐Economic Study for Carbon Capture from Cement Plants

University  of  Edinburgh  ,  School  of  Engineering,  Edinburgh  SCCS  –  Sco9sh  Carbon  Capture  and  Storage  Centre  

Techno-­‐Economic  Study  for  Carbon  Capture  from  Cement  Plants  

Dursun  Can  Ozcan,  Hyungwoong  Ahn,  Stefano  Brandani  

[email protected]  

Page 2: Techno-‐Economic Study for Carbon Capture from Cement Plants

CO2  Emissions  from  Cement  Industry  

2            

       

•  Cement  is  a  key  construcIon  material  (3.78  billion  tons  in  2012)1  •  Accounts  for  more  than  5%  of  global  emissions  from  staIonary  sources2  

•  50  -­‐  70%  of  the  total  emission  accounts  for  calcinaIon  of  limestone  in  raw  meal  • More  efficient  thermal  management  has  reduced  CO2  emissions3    •  EssenIal  to  deploy  a  carbon  capture  technology  to  reduce  CO2  emission  up  to  90%    

 

1  CW  Group,  Global  Cement  Volume  Forecast  Report,  2012.  2  IEA,  Carbon  Emission  ReducIons  up  to  2050,  2009.  3  Hasanbeigi  et  al.,  Renewable  and  Sustainable  Energy  Reviews,  6220,  2012.    

Page 3: Techno-‐Economic Study for Carbon Capture from Cement Plants

Cement  Plant  SimulaIon  

3  

•  The  base  cement  plant  includes  all  the  major  units;  raw  mill,  preheaters,  pre-­‐calciner,  kiln  and  cooler  

•  It  is  crucial  to  idenIfy  the  chemical  reacIons  occurring  in  each  unit  and  determine  their  conversion  rate  in  order  to  have  accurate  mass  and  energy  balances  

•  Technical  opIons  for  carbon  capture;  calcium  looping  (Ca-­‐looping)  process,  amine  scrubbing  ,  oxy-­‐combusIon  and  indirect  calcinaIon    

   

Page 4: Techno-‐Economic Study for Carbon Capture from Cement Plants

Base  Cement  Plant  –  Mass  Balance  

4  

Mass  in  (kg/s)   Mass  out  (kg/s)  Raw  meal   52.41   Clinker   31.61  Air   99.55   Flue  gas  Fuel                                                    From  fuel  drying   4.30                          Wet  coal  to  pre-­‐calciner   2.26                                                    From  raw  mill   75.49                          Wet  pet-­‐coke  to  kiln   1.18   Excess  Air   44.00  Total  in   155.40   Total  out   155.40  

o   1.66  kg/s  of  raw  meal  is  required  to  produce  1  kg/s  of  clinker  o   The  approximate  chemical  composiIon  of  clinker  phases  are  esImated  by  Bogue  equaIon1  o   The  CO2  generaIon  intensity  is  around  0.8  ton  CO2/ton  clinker  within  the  range  of  0.65  –  0.92  ton  CO2/ton  cement  given  in  the  reference2    

1  Bogue,  R.H.,  1929.  I&EC  1(4),  192-­‐197.  2  IEA,  Tracking  Industrial  Energy  Efficiency  and  CO2  Emissions;  2007.      

Page 5: Techno-‐Economic Study for Carbon Capture from Cement Plants

Base  Cement  Plant  –  Energy  Balance  

5  

Enthalpy  in   Enthalpy  out  Sensible  Heat  

*Heat  by  combusAon  

Sensible  Heat  

Heat  of  ReacAon  

Raw  Meal   1.82      Clinker   5.12  Air   3.25      Flue  gas  Fuel                                                    From  fuel  drying   4.29                                    Wet  coal  to  pre-­‐calciner   0.12   216.58                                                    From  raw  Mill   72.95                                      Wet  pet-­‐coke  to  kiln   0.05   139.25      Excess  Air   45.77  

   Heat  lost  by  radiaIon  and  convecIon   54.54  

   Overall  heat  of  reacIon          178.4  

       (1.57  MJth/kg)  Total  in   361.07      Total  out   361.07  

o   All  the  reacIons  (decomposiIon  of  raw  materials  and  clinkerizaIon)  are  carefully  considered  in  the  process  simulaIon    o   The  required  thermal  energy  for  unit  clinker  is  esImated  to  be  3.13  MJ/ton  clinker,  similar  to  reported  values,  2.9  –  3.4  MJ/ton  clinker1    

1  WBCSD,  Cement  Industry  and  CO2  performance;  2009.    

Page 6: Techno-‐Economic Study for Carbon Capture from Cement Plants

Ca-­‐looping  Process  

6  

•  Ca-­‐looping  agent  (CaO)  circulates  between  two  reactors:          *  Carbonator:  CO2  is  captured  by  exothermic  carbonaIon  reacIon  at  ~650  °C                                *  Calciner:  CaCO3  is  regenerated  to  CaO  by  endothermic  calcinaIons  reacIon  at                      ~930  °C  •  CaO  loses  its  capacity  over  the  cycles  and  needs  to  be  replaced  with  fresh  sorbent  •  The  purge  stream  from  this  system  contains  mainly  CaO  and  can  be  used  for                      cement  producIon,  lowering  the  variable  cost  associated  with  sorbent  use  

Charitos  et  al.,  Powder  Technology,117,  2010  La  Perada,  Spain  (1.7  MW  pilot  plant,  www.caoling.eu)    

Page 7: Techno-‐Economic Study for Carbon Capture from Cement Plants

Ca-­‐looping  Carbonator  Model  

7  

•  The  rigorous  carbonator  model1:    *  CirculaIng  fluidized  bed  (CFB)  model  operates  in  the  fast  fluidizaIon  regime    *  ParIcle  distribuIon  part  has  been  applied  from  K-­‐L  model2;  lower  dense  region  and  upper  lean  region    *  The  CO2  concentraIon  at  the  exit  has  been  esImated  from  the  gaseous  material  balance  by  considering  the  first  order  kineIc  law  of  carbonaIon  degree  

   •  All  the  mathemaIcal  models  have  been  solved  in  Matlab  and    implemented  fully  into  UniSim®;  -­‐  Directly  via  a  component  object  model  (COM)  interface3  

-­‐  As  a  standalone  executable  file  using  Matlab  Compiler4                

The  schemaIc  of  carbonator–calciner  reactor  system  (www.caoling.eu)  

1Romano,  M.,  CES,257,  2012  2Kunii  and  Levenspiel,  FluidizaIon  Engineering,  1991  3Microsoo,  hpp://www.microsoo.com/com/default.mspx  4Matlab,  hpp://www.mathworks.co.uk/products/compiler/  

Page 8: Techno-‐Economic Study for Carbon Capture from Cement Plants

ImplementaIon  of  Carbonator  Model  

8  

o  SoluIon  of  all  mathemaIcal  models  for  the  carbonator  in  Matlab  

o  The  carbonator  unit  into  the  Unisim  Design  process  simulaIon      UniSim  Design  à  Matlab  à  UniSim  Design  

UniSim  User  Unit  OperaDon  as  a  Carbonator   The  interface  of  carbonator  in  UniSim  

Carbonator  Model  

•   Stream  properIes          •   Carbonator  specificaIons    

•   Capture  efficiency  •   Reactor  volume    •   Pressure  drop  

 

Page 9: Techno-‐Economic Study for Carbon Capture from Cement Plants

9  

SelecIon  of  a  Feed  Stream  

0

10

20

30

40

CO

2 con

cent

ratio

n

(mol

e%)

1st Preheater 2nd Preheater 3rd Preheater 4th Preheater Precalciner Kiln Raw mill

0

200400

600

800

10001200

1400

1600

Tempe

rature  [C

]

Gas

S olid

Raw  Mill   1st  Preheater   2nd  Preheater   3rd  Preheater   4th  Preheater   Pre-­‐Calciner   Kiln   Cooler  

Gas  Flow  ß  

Solid  Flow  à  

RelaDvely  low  (~22  vol%)  

Higher  CO2    concentraDon  (~35  vol%)  

Flue  gas  needs  to  be  heated  up  to  650°C.    

Flue  gas  temperature  is  around  650°C    à  no  preheaDng  is  required.  

*  The  flue  gas  temperature  and  CO2  mole  fracFon  varies  over  the    cement  process  

Page 10: Techno-‐Economic Study for Carbon Capture from Cement Plants

R/M 1st PHE

2nd PHE

3rd PHE

4th PHE Pre-C Kiln Cooler

B/F

F/D

B/F

CoalPet Coke

Air Air Air

Secondary Air

Tertiary Air

Primary Air

Raw Meal

Collected Dust

Air

To Atmosphere

Carb CalCaCO3

CaO

PetCoke

CO2 Comp.

Oxygen

Make-upCaCO3

Steam Cycle

CompressedCO2

Purge

Qcarbonator

B/F

Clinker

Gas FlowSolid Flow

Excess Air

Heat stream

ASU

Excess Air

To Atmosphere

Cooling Air

Ca-­‐looping  Process  IntegraIon  

10  

CSIC  Ca-­‐looping  test  facility  (www.caoling.eu)    

Page 11: Techno-‐Economic Study for Carbon Capture from Cement Plants

Post  combusIon  Amine  Process  

11            

       

•  The  most  convenIonal  technology  for  carbon  capture  based  on  selecIve  absorpIon  of  CO2  by  the  solvent  (MEA)  •  A  combined  heat  and  power  plant  (CHP),  which  is  required  to  supply  stripper  reboiler  with  low  pressure  steam,  has  been  designed  •   A  selecIve  catalyIc  reducIon  (SCR)  unit  for  NOx  removal  and  a  flue-­‐gas  desulfurizaIon  unit  (FGD)  for  SOx  control    are  required    

Flue GasLean Solvent

Rich Solvent / RefluxCooling Water Steam

CondensateWater Wash

Carbon Dioxide

Cement plant + CHPflue gas

Absorber Stripper

Water /Amine Makeup

CO2 product

CO2 depleted flue gas

Ahn  et  al.,  IJGGC,29,  2013    

Page 12: Techno-‐Economic Study for Carbon Capture from Cement Plants

Oxy-­‐combusIon  

12  

•  In  this  opIon,  pure  oxygen  is  supplied  to  the  reactor  instead  of  air  to  obtain  highly  concentrated  CO2  

•  However,  the  concern  is  technical  uncertainty  in  operaIng  a  cement  kiln  under  oxy-­‐combusIon  condiIons  

•  Therefore,  an  oxy-­‐combusIon  system  was  only  applied  to  pre-­‐calciner1  •  The  overall  carbon  capture  rate  is  limited  

1  IEA  CO2  Capture  in  the  Cement  Industry,  July  2008/3,  2008.          

Page 13: Techno-‐Economic Study for Carbon Capture from Cement Plants

Indirect  CalcinaIon  

13  

Limestone(CaCO3)

CaO Air Fuel

High Temperature Solid Stream

Flue GasCO2-rich

Gas

Calciner(930oC)

Combustor(1050oC)

Heat

•  An  external  combustor  is  used  to  generate  heat  for  the  pre-­‐calciner  by  separaIng  CO2  produced  by  calcinaIon  from  combusIon  gases1  

•  Heat  requirement  of  calcinaIon  is  supplied  by  circulaIon  of  hot  CaO  between  the  combustor  and  pre-­‐calciner  

•  Only  capture  the  CO2  involved  in  calcinaIon  but  not  from  fuel  combusIon  •  Moderate  level  of  CO2  recovery  are  achievable  

1  Rodriguez  et  al.  ACS  2011,  50,  2126-­‐2132.          

Page 14: Techno-‐Economic Study for Carbon Capture from Cement Plants

Summary  and  Comparison  

14  

Authors   IEA  1   IEA  1   Rodriguez  et  al.  2   This  study  

 CO2  capture  technology    

Amine-­‐based   Oxy-­‐combusIon   Hot  solid  circulaIon   Ca-­‐looping  

Type  of  integraAon  

The  flue  gases  from  cement  plant  and  a  CHP  plant  are  fed  to  the  amine  process  

Oxy-­‐calciner    (convenIonal  kiln)   Indirect  calcinaIon  

Flue  gases  from  the  3rd  preheater  stage  

are  sent  to  a  carbonator.  

   

Efficiencies  (%)  CO2  avoidance  

     74  

     61  

     33  

     

92  -­‐  99    

Results  Net  power  producDon  

   Specific  thermal  energy  

consumpDon    (GJ/ton  CO2  avoided)  

   CO2  avoided  cost    (€/ton  CO2  avoided)  

   +        9.2      

107.4  

   -­‐        

1.95      

40.2  

   +        

N/A      9.0  

   -­‐/+        

2.5  –  3.0      

25  –  45  

1  IEA  CO2  Capture  in  the  Cement  Industry,  July  2008/3,  2008.  2  Rodriguez  et  al.  ACS  2011,  50,  2126-­‐2132.          

Page 15: Techno-‐Economic Study for Carbon Capture from Cement Plants

Conclusion  

15  

•  A  way  of  capturing  CO2  from  cement  plants  by  integraIng  it  with  carbon  capture  processes  has  been  invesIgated  

•  The  cement  plant  simulaIon  implemented  in  this  study  was  in  an  agreement  with  those  reported  in  the  literatures  

•  The  gas  stream  leaving  the  3rd  preheater  was  selected  to  be  a  feed  suitable  for  Ca-­‐looping  capture  unit  since  o   it  does  not  have  to  be  preheated  o   it  has  a  higher  CO2  parIal  pressure  and  lower  total  volumetric  flow  rate  o   a  simpler  design  of  steam  cycle  for  heat  recovery  is  possible      

•  Among  the  compared  carbon  capture  processes,  the  CO2  capture  target  of  90%  can  be  only  achieved  by  Ca-­‐looping  and  amine-­‐based  capture  processes  

•  Lower  specific  energy  consumpIon  and  cost  per  unit  of  CO2  avoided  have  been  esImated  for  Ca-­‐looping  process  compared  to  the  amine-­‐based  capture  configuraIon  

 

Page 16: Techno-‐Economic Study for Carbon Capture from Cement Plants

16  

Acknowledgements  Financial  Support  o   Turkish  Ministry  of  EducaIon  o   EPSRC  Science  and  InnovaIon  Award,  ‘Carbon  Capture  from  Power  Plant  and  Atmosphere’,  EP/F034520/1  

•   Honeywell  for  providing  the  Unisim  R400  sooware        

Thank  you    

 

Ozcan  D.C.,  Ahn  H.  and  Brandani  S.  Process  IntegraAon  of  a  Ca-­‐looping  Carbon  Capture  Process  in  a  Cement  Plant.  InternaDonal  Journal  of  Greenhouse  Gas  Control,  2013,  in  press.