tau pair physics...2009/08/13  · tau pair physics thomas burgess, alette aasvold, ¯rjan svandal,...

40
TAU PAIR PHYSICS Thomas Burgess, Alette Aasvold, Ørjan Svandal, Therese Sjursen Also talking for: Peter Rosendahl, Arshak Tonoyan, Alex Kastanas, Anna Lipniacka, Bjarne Stugu Bergen Particle Physics Seminar Oct 14 2009 (A deeper look at review posters) onsdag den 14 oktober 2009

Upload: others

Post on 23-Oct-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

  • TAU PAIR PHYSICS

    Thomas Burgess, Alette Aasvold, Ørjan Svandal, Therese Sjursen

    Also talking for:Peter Rosendahl, Arshak

    Tonoyan, Alex Kastanas, Anna Lipniacka, Bjarne Stugu

    Bergen Particle Physics Seminar Oct 14 2009(A deeper look at review posters)

    onsdag den 14 oktober 2009

  • THE TAU LEPTON & TAU PAIRS

    onsdag den 14 oktober 2009

  • TAU LEPTONS

    Taus are the heaviest known leptons and decay rapidly (Mτ=1.7 GeV, cτ=87 μm)

    Taus decay to hadrons in ~60% of cases and to leptons in ~35% of cases (remaining mostly Kaons)

    Most hadronic tau decays either has 1 or 3 charged meson tracks (prongs) (76% & 24% of cases respectively)

    Basic Tau Properties

    Tau Characteristicsmτ ∼ 1.7GeVcτ = 87µm

    Hadronic Decays are well

    Collimated Collection of

    Charged and Neutral

    Pions/Kaons

    Most have 1 or 3 Charged

    Tracks

    Leading Pion Direction

    Reproduces τ DirectionWell.

    Tau Lepton Decays very well Understood

    Will be Used as Excellent Probe for ‘New Physics’

    Wolfgang F. Mader (TU Dresden) Tau Combined Performance

    Basic Tau Properties

    Tau Characteristicsmτ ∼ 1.7GeVcτ = 87µm

    Hadronic Decays are well

    Collimated Collection of

    Charged and Neutral

    Pions/Kaons

    Most have 1 or 3 Charged

    Tracks

    Leading Pion Direction

    Reproduces τ DirectionWell.

    Tau Lepton Decays very well Understood

    Will be Used as Excellent Probe for ‘New Physics’

    Wolfgang F. Mader (TU Dresden) Tau Combined Performance

    tau jet

    The most common tau decays

    onsdag den 14 oktober 2009

  • TAU LEPTONS

    Identification and reconstruction of taus is possible in hadronic decays

    Hadronic tau jets are more collimated than normal jets

    The leading prong reproduces the original tau direction well

    Missing energy through neutrino production limits the obtainable accuracy of the reconstruction

    Basic Tau Properties

    Tau Characteristicsmτ ∼ 1.7GeVcτ = 87µm

    Hadronic Decays are well

    Collimated Collection of

    Charged and Neutral

    Pions/Kaons

    Most have 1 or 3 Charged

    Tracks

    Leading Pion Direction

    Reproduces τ DirectionWell.

    Tau Lepton Decays very well Understood

    Will be Used as Excellent Probe for ‘New Physics’

    Wolfgang F. Mader (TU Dresden) Tau Combined Performance

    Basic Tau Properties

    Tau Characteristicsmτ ∼ 1.7GeVcτ = 87µm

    Hadronic Decays are well

    Collimated Collection of

    Charged and Neutral

    Pions/Kaons

    Most have 1 or 3 Charged

    Tracks

    Leading Pion Direction

    Reproduces τ DirectionWell.

    Tau Lepton Decays very well Understood

    Will be Used as Excellent Probe for ‘New Physics’

    Wolfgang F. Mader (TU Dresden) Tau Combined Performance

    tau jet

    The most common tau decays

    onsdag den 14 oktober 2009

  • TAU PAIRS

    We mainly focus on the following tau signals

    Tau pairs are well known from Standard Model Z0➞ττ decays. An understanding of these in data is essential to measure beyond SM ττ

    In low mass SM Higgs boson scenarios (MH

  • TAU PAIR SYSTEM ANALYSIS

    Acquire expertise on the tau reconstruction software by actively developing the code (Thomas Burgess)

    Exploiting symmetry of τ and μ to understand SM backgrounds (Arshak Tonoyan)

    Optimizing tau candidate selection using tools recently developed by the ATLAS tauWG, starting by analyzing Z⁰ signal (Ørjan Svandal)

    Create a tool set to study correlations between energies and variables in the final states of the two taus (Peter Rosendahl)

    Studying invariant mass distributions from the reconstructed tau pair system including corrections from missing energy due to neutrino production (Alette Aasvold)

    Study certain SUSY scenarios with high tau production (Therese Sjursen & Alex Kastanas)

    onsdag den 14 oktober 2009

  • RECONSTRUCTION OF HADRONIC TAU JETS

    onsdag den 14 oktober 2009

  • RECONSTRUCTING HADRONIC TAU JETS

    Tracking and calorimeter seeded reconstruction

    Use high quality track as seed (pT > 6 GeV)Use candidates with 1-8 quality tracks (pT > 1 GeV) within ∆R < 0.2 Reconstruct η, φ using pT-weighting of tracksCheck charge consistency Find matching cone4 jets (ET > 10 GeV, ∆R < 0.2) as calorimeter seed ET using cells from calorimeter seed

    Energy flow algorithm Reconstruct π0 sub-clusters

    Calorimeter only seeded reconstruction

    Use remaining clusters as seed Define η, φ of τ candidate from clusterLooser track quality selection (pT > 1 GeV)

    Tracking only seeded reconstruction

    Very rare events (a few %)

    onsdag den 14 oktober 2009

  • TAUREC MERGING

    tau1P3PToolSet

    seed building

    details calc

    core ID

    tau1P3PToolSet

    seed building

    basic var calc

    tauRecToolSet

    seed building

    basic var calc

    CommonToolSet

    common calc

    core ID

    tauRecToolSet

    seed building

    details calc

    core ID

    The two independent tau reconstruction codes has been merged both in the event data model (rel 15) and the algorithm implementation (rel 15.+)

    onsdag den 14 oktober 2009

  • MUON AND TAU LEPTON SWITCHING

    forArshak Tonoyan

    onsdag den 14 oktober 2009

  • ARSHAK TONOYAN - TAU↔MUON SWITCHING

    At sufficient energy Standard Model processes are symmetric in leptons

    Muon measurements can be used as a control to tau measurements

    An anomalous rate of tau leptons may indicate physics beyond SM

    By switching muons and taus around in known data one can gain a better understanding of SM taus

    Prospects of such swapping methods to use for modeling backgrounds in our ongoing SUSY search are investigated

    Wb

    ντ,μ

    ν

    W

    t

    t

    b

    τ,μ

    onsdag den 14 oktober 2009

  • TAU IDENTIFICATION USING SAFE VARIABLES

    Ørjan Svandal

    onsdag den 14 oktober 2009

  • TAU IDENTIFICATION USING SAFE VARIABLES

    Ørjan Svandal

    Taus are produced in many Standard Model processes Furthermore taus are expected in many beyond SM scenarios Safe variables

    Small correlation and well understood even at the early stages of ATLAS data taking9 safe variablesSeparate background from signal Cut on safe variable

    • Many signatures for new physics in AT-LAS will decay to one or more τ lepton

    • Safe variables

    – Shower Radius in EM calorimeter

    – Isolation Fraction

    – Width in strip layer

    – ET (EM)ET

    – Width of track momenta

    – ETPT

    (Lead track)

    – ET (Had)�PT

    – ET (EM)�PT

    –�

    PT

    ET

    1

    onsdag den 14 oktober 2009

  • effektivitetEntries 20

    Mean 0.39

    RMS 0.2621

    Underflow 0

    Overflow 0

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    effektivitetEntries 20

    Mean 0.39

    RMS 0.2621

    Underflow 0

    Overflow 0

    TEM over ETZtautau E withCutEntries 1300180

    Mean 0.7194

    RMS 0.2481

    Underflow 0.01027

    Overflow 0.02326

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    withCutEntries 1300180

    Mean 0.7194

    RMS 0.2481

    Underflow 0.01027

    Overflow 0.02326

    TEM over ETZtautau E

    effektivitetEntries 10

    Mean 0.04987

    RMS 0.05005

    Underflow 0

    Overflow 0

    0 0.05 0.1 0.15 0.2 0.25 0.30

    0.2

    0.4

    0.6

    0.8

    1

    effektivitetEntries 10

    Mean 0.04987

    RMS 0.05005

    Underflow 0

    Overflow 0

    Ztautau EMRadius withCutEntries 650090

    Mean 0.0872

    RMS 0.05199

    Underflow 0.001048

    Overflow 0.000493

    0 0.05 0.1 0.15 0.2 0.25 0.30

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    withCutEntries 650090

    Mean 0.0872

    RMS 0.05199

    Underflow 0.001048

    Overflow 0.000493

    Ztautau EMRadius

    effektivitetEntries 60

    Mean -19.23

    RMS 13.21

    Underflow 0

    Overflow 0

    -40 -30 -20 -10 0 10 200

    0.2

    0.4

    0.6

    0.8

    1

    effektivitetEntries 60

    Mean -19.23

    RMS 13.21

    Underflow 0

    Overflow 0

    Ztautau Likelihood variable for tau-candidats withCutEntries 3900540

    Mean -0.3642

    RMS 9.523

    Underflow 0.08164

    Overflow 0.005451

    -40 -30 -20 -10 0 10 200

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    0.035

    withCutEntries 3900540

    Mean -0.3642

    RMS 9.523

    Underflow 0.08164

    Overflow 0.005451

    Ztautau Likelihood variable for tau-candidats

    2

    effektivitetEntries 20

    Mean 0.39

    RMS 0.2621

    Underflow 0

    Overflow 0

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    effektivitetEntries 20

    Mean 0.39

    RMS 0.2621

    Underflow 0

    Overflow 0

    TEM over ETZtautau E withCutEntries 1300180

    Mean 0.7194

    RMS 0.2481

    Underflow 0.01027

    Overflow 0.02326

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    withCutEntries 1300180

    Mean 0.7194

    RMS 0.2481

    Underflow 0.01027

    Overflow 0.02326

    TEM over ETZtautau E

    effektivitetEntries 10

    Mean 0.04987

    RMS 0.05005

    Underflow 0

    Overflow 0

    0 0.05 0.1 0.15 0.2 0.25 0.30

    0.2

    0.4

    0.6

    0.8

    1

    effektivitetEntries 10

    Mean 0.04987

    RMS 0.05005

    Underflow 0

    Overflow 0

    Ztautau EMRadius withCutEntries 650090

    Mean 0.0872

    RMS 0.05199

    Underflow 0.001048

    Overflow 0.000493

    0 0.05 0.1 0.15 0.2 0.25 0.30

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    withCutEntries 650090

    Mean 0.0872

    RMS 0.05199

    Underflow 0.001048

    Overflow 0.000493

    Ztautau EMRadius

    effektivitetEntries 60

    Mean -19.23

    RMS 13.21

    Underflow 0

    Overflow 0

    -40 -30 -20 -10 0 10 200

    0.2

    0.4

    0.6

    0.8

    1

    effektivitetEntries 60

    Mean -19.23

    RMS 13.21

    Underflow 0

    Overflow 0

    Ztautau Likelihood variable for tau-candidats withCutEntries 3900540

    Mean -0.3642

    RMS 9.523

    Underflow 0.08164

    Overflow 0.005451

    -40 -30 -20 -10 0 10 200

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    0.035

    withCutEntries 3900540

    Mean -0.3642

    RMS 9.523

    Underflow 0.08164

    Overflow 0.005451

    Ztautau Likelihood variable for tau-candidats

    2

    effektivitetEntries 20

    Mean 0.39

    RMS 0.2621

    Underflow 0

    Overflow 0

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    effektivitetEntries 20

    Mean 0.39

    RMS 0.2621

    Underflow 0

    Overflow 0

    TEM over ETZtautau E withCutEntries 1300180

    Mean 0.7194

    RMS 0.2481

    Underflow 0.01027

    Overflow 0.02326

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    withCutEntries 1300180

    Mean 0.7194

    RMS 0.2481

    Underflow 0.01027

    Overflow 0.02326

    TEM over ETZtautau E

    effektivitetEntries 10

    Mean 0.04987

    RMS 0.05005

    Underflow 0

    Overflow 0

    0 0.05 0.1 0.15 0.2 0.25 0.30

    0.2

    0.4

    0.6

    0.8

    1

    effektivitetEntries 10

    Mean 0.04987

    RMS 0.05005

    Underflow 0

    Overflow 0

    Ztautau EMRadius withCutEntries 650090

    Mean 0.0872

    RMS 0.05199

    Underflow 0.001048

    Overflow 0.000493

    0 0.05 0.1 0.15 0.2 0.25 0.30

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    withCutEntries 650090

    Mean 0.0872

    RMS 0.05199

    Underflow 0.001048

    Overflow 0.000493

    Ztautau EMRadius

    effektivitetEntries 60

    Mean -19.23

    RMS 13.21

    Underflow 0

    Overflow 0

    -40 -30 -20 -10 0 10 200

    0.2

    0.4

    0.6

    0.8

    1

    effektivitetEntries 60

    Mean -19.23

    RMS 13.21

    Underflow 0

    Overflow 0

    Ztautau Likelihood variable for tau-candidats withCutEntries 3900540

    Mean -0.3642

    RMS 9.523

    Underflow 0.08164

    Overflow 0.005451

    -40 -30 -20 -10 0 10 200

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    0.035

    withCutEntries 3900540

    Mean -0.3642

    RMS 9.523

    Underflow 0.08164

    Overflow 0.005451

    Ztautau Likelihood variable for tau-candidats

    2

    onsdag den 14 oktober 2009

  • SAFE CUTS

    Cut variables

    Cut loose(0.7)

    Cut medium (0.5)

    Cut tight (0.3)

    Next steps

    Look at cut variables (loose, medium and tight)

    Make cuts on safe variables

    Look at di jet background and H−> ττ

    onsdag den 14 oktober 2009

  • TAU HELICITY CORRELATION STUDIES

    forPeter Rosendahl

    onsdag den 14 oktober 2009

  • WHY STUDY TAU POLARIZATION?

    Generate multipurpose tool for athena to calculate the tau polarization.

    Some of the use cases will be

    Measuring tau pair polarization correlations

    Enhance Higgs/Z-boson discrimination

    Enhance SUSY selection

    onsdag den 14 oktober 2009

  • HOW TO RECONSTRUCTPOLARIZATION?

    No truth polarization kept in the event record! Therefore we must first calculate the true polarization in order to be able to verify our reconstructed results.

    Reconstruction of the tau polarization is done be studying the decay angle and energy sharing of the decay products.

    So far I concentrate on the following decay modes:

    The pion channel:

    The rho channel:

    τ− → π− + ντ

    τ− → ρ− + ντ → π− + π0 + ντ

    onsdag den 14 oktober 2009

  • THE PION CHANNEL

    Polarized taus have a preferred decay direction

    Therefore studying the decay angle θ in the tau rest frame will give us information about the tau polarization

    The decay angle can be expressed following detector frame values: plo

    ts ta

    ken

    from

    ta

    lk b

    y Z.

    Czy

    czul

    a

    θ � x = E(π−)

    E(τ−)

    onsdag den 14 oktober 2009

  • THE PION CHANNEL

    Since the Higgs boson produces a pair of taus with opposite helicity we expect a flat distribution of x when summing over all taus from Higgs bosons

    Since Z bosons produces tau pairs with the same helicity and only are “slightly” polarized, we expect an “almost” flat distribution of x when summing over all taus from Z bosons

    onsdag den 14 oktober 2009

  • PION CHANNEL

    Initial studies shows

    The expected distribution from Z bosons

    But not the expected from Higgs bosons

    onsdag den 14 oktober 2009

  • RHO CHANNEL

    For the rho decay channel we study the angle between the rho and the charged pion

    This angle will reflect the polarization of the rho

    onsdag den 14 oktober 2009

  • TAU PAIR INVARIANT MASS CORRECTIONS

    Alette Aasvold

    onsdag den 14 oktober 2009

  • INVARIANT MASS

    If a particle Z0 is decaying into two particles τ- and τ+, the invariant mass of Z0 can be reconstructed from the measured momenta of τ- and τ+

    The invariant mass can be calculate with the equation below

    The histogram shows the Monte Carlo simulated truth information

    Invariant mass, Reco tau

    Entries 179652

    Mean 42.88

    RMS 21.96

    / ndf 2 50.37 / 27

    Constant 14.5! 2950

    Mean 0.29! 31.76

    Sigma 0.69! 23.56

    Invariant mass (GeV)0 10 20 30 40 50 60 70 80 90 100

    Num

    ber o

    f eve

    nts

    0

    500

    1000

    1500

    2000

    2500

    3000 Invariant mass, Reco tauEntries 179652

    Mean 42.88

    RMS 21.96

    / ndf 2 50.37 / 27

    Constant 14.5! 2950

    Mean 0.29! 31.76

    Sigma 0.69! 23.56

    )-+Reconstructed taus (Z

    Invariant mass, Reco tau

    Entries 179652

    Mean 42.88

    RMS 21.96

    / ndf 2 50.37 / 27

    Constant 14.5! 2950

    Mean 0.29! 31.76

    Sigma 0.69! 23.56

    Invariant mass, True tau

    Entries 122246

    Mean 89.42

    RMS 5.845

    / ndf 2 874.5 / 3

    Constant 114! 2.396e+04

    Mean 0.01! 91.06

    Sigma 0.006! 1.438

    Invariant mass (GeV)60 65 70 75 80 85 90 95 100

    Num

    ber o

    f eve

    nts

    0

    5000

    10000

    15000

    20000

    25000 Invariant mass, True tauEntries 122246

    Mean 89.42

    RMS 5.845

    / ndf 2 874.5 / 3

    Constant 114! 2.396e+04

    Mean 0.01! 91.06

    Sigma 0.006! 1.438

    Monte Carlo truth taus

    Invariant mass, True tau

    Entries 122246

    Mean 89.42

    RMS 5.845

    / ndf 2 874.5 / 3

    Constant 114! 2.396e+04

    Mean 0.01! 91.06

    Sigma 0.006! 1.438

    mZ = 2(mτ )2 + 2

    (m2τ + !p2

    τ+)(m2τ + !p

    2

    τ−) − 2!pτ+ · !pτ− (1)

    1

    Peak at 91 GeV!

    onsdag den 14 oktober 2009

  • NEUTRINO ENERGY LOSS

    The taus are decaying so fast that we cant reconstruct their tracks

    Instead we reconstruct the taus from the tau decay products, and from the reconstructed tau pair we calculate MZ

    However we do not have all the energy as neutrinos escapes with some of it

    Because of this the resulting observed MZ is lower than expected

    invmass from recoEntries 89826Mean 49.23RMS 31.45

    / ndf 2 10.8 / 12Constant 20.5! 2964 Mean 0.45! 31.55 Sigma 1.09! 24.38

    Invariant mass (GeV)0 20 40 60 80 100 120 140 160 180 200

    Num

    ber o

    f eve

    nts

    0

    500

    1000

    1500

    2000

    2500

    3000 invmass from recoEntries 89826Mean 49.23RMS 31.45

    / ndf 2 10.8 / 12Constant 20.5! 2964 Mean 0.45! 31.55 Sigma 1.09! 24.38

    )-+Reconstructed taus (Zlinapp from recoEntries 89826

    Mean 91.4

    RMS 42.59

    / ndf 2 16.7 / 20

    Constant 6.4! 403.9

    Mean 0.7! 85.6

    Sigma 1.64! 28.26

    Invariant mass (GeV)0 20 40 60 80 100 120 140 160 180 200

    Num

    ber o

    f eve

    nts

    0

    50

    100

    150

    200

    250

    300

    350

    400

    linapp from recoEntries 89826

    Mean 91.4

    RMS 42.59

    / ndf 2 16.7 / 20

    Constant 6.4! 403.9

    Mean 0.7! 85.6

    Sigma 1.64! 28.26

    Collinear approximation with missing energy

    linapp from recoEntries 89826

    Mean 91.4

    RMS 42.59

    / ndf 2 16.7 / 20

    Constant 6.4! 403.9

    Mean 0.7! 85.6

    Sigma 1.64! 28.26

    Peak at 32 GeV!

    onsdag den 14 oktober 2009

  • COLLINEAR APPROXIMATION

    ETMiss

    τ1

    τ2

    ET1Miss

    ET2Miss

    invmass from recoEntries 89826Mean 49.23RMS 31.45

    / ndf 2 10.8 / 12Constant 20.5! 2964 Mean 0.45! 31.55 Sigma 1.09! 24.38

    Invariant mass (GeV)0 20 40 60 80 100 120 140 160 180 200

    Num

    ber o

    f eve

    nts

    0

    500

    1000

    1500

    2000

    2500

    3000 invmass from recoEntries 89826Mean 49.23RMS 31.45

    / ndf 2 10.8 / 12Constant 20.5! 2964 Mean 0.45! 31.55 Sigma 1.09! 24.38

    )-+Reconstructed taus (Zlinapp from recoEntries 89826

    Mean 91.4

    RMS 42.59

    / ndf 2 16.7 / 20

    Constant 6.4! 403.9

    Mean 0.7! 85.6

    Sigma 1.64! 28.26

    Invariant mass (GeV)0 20 40 60 80 100 120 140 160 180 200

    Num

    ber o

    f eve

    nts

    0

    50

    100

    150

    200

    250

    300

    350

    400

    linapp from recoEntries 89826

    Mean 91.4

    RMS 42.59

    / ndf 2 16.7 / 20

    Constant 6.4! 403.9

    Mean 0.7! 85.6

    Sigma 1.64! 28.26

    Collinear approximation with missing energy

    linapp from recoEntries 89826

    Mean 91.4

    RMS 42.59

    / ndf 2 16.7 / 20

    Constant 6.4! 403.9

    Mean 0.7! 85.6

    Sigma 1.64! 28.26

    By assuming the missing energy is from only neutrinos and that the neutrinos are collinear with the taus the invariant mass can be corrected

    Peak at 87 GeV!

    onsdag den 14 oktober 2009

  • MEASURING SUSY WITH TAUS IN ATLAS

    Therese Sjursen

    onsdag den 14 oktober 2009

  • U N

    I V E R S I T A S

    B E R G E N S I

    S

    SU1-point in the Coannihilation region

    �qL → q�χ02 → qτ�τ → qτ±τ∓�χ01 , (1)

    Parameters Values Particle Mass [GeV]

    m0 70GeV eχ02 262.0m1/2 350GeV eχ01 136.7A0 0GeV eτ1 147.7tan(β) 10 eτ2 253.2sgn µ + euL, edL ∼ 765.0

    Table: mSUGRA parameters of SU1 together with some sparticle masses at the EWscale.

    onsdag den 14 oktober 2009

  • U N

    I V E R S I T A S

    B E R G E N S I

    S

    Maximum value of invariant mass distributions

    (mmaxττ )2 =

    (m2eχ02−m2eτ ) · (m2eτ −m2eχ01)

    m2eτ

    (mmaxqττ )2 =

    (m2eqL −m2eχ02

    ) · (m2eχ02 −m2eχ01

    )

    m2eχ02

    (mmaxqτnear )2 =

    (m2eqL −m2eχ02

    ) · (m2eχ02 −m2eτ1)

    m2eχ02

    (mmaxqτfar )2 =

    (m2eqL −m2eχ02

    ) · (m2eτ1 −m2eχ01

    )

    m2eχ01

    (2)

    onsdag den 14 oktober 2009

  • onsdag den 14 oktober 2009

  • U N

    I V E R S I T A S

    B E R G E N S I

    S

    And what do we measure?

    Figure: Invariant mass distribution of two taus.

    onsdag den 14 oktober 2009

  • U N

    I V E R S I T A S

    B E R G E N S I

    S

    Selecting the right jet is not straightforward

    Figure: The signal decay chain indicating from which SM particles invariant massdistributions are constructed.

    Figure: Information from GLVL on how to select the right jet. Right side: The rightjet is in pink.

    onsdag den 14 oktober 2009

  • U N

    I V E R S I T A S

    B E R G E N S I

    S

    Inv. mass distributions involving a jet

    Figure: Invariant mass distribution of two taus.

    onsdag den 14 oktober 2009

  • U N

    I V E R S I T A S

    B E R G E N S I

    S

    Figure: Invariant mass distributions of τF (τL) and q (jet).

    onsdag den 14 oktober 2009

  • U N

    I V E R S I T A S

    B E R G E N S I

    S

    Figure: Invariant mass distributions of τN (τH) and q (jet).

    onsdag den 14 oktober 2009

  • U N

    I V E R S I T A S

    B E R G E N S I

    S

    And what can we learn from this?

    � So, can we extract some useful information from this, or is thesituation hopeless?

    � we need a (plausible) method to convert the endpoint fromreconstructed data to the one we observe from the pure MCgenerated data.

    � if possible, we should optimise the jet selection criteria! Wehave studied various angular distributions between the threeparticles, but without useful results. Suggestions are welcome!

    onsdag den 14 oktober 2009

  • U N

    I V E R S I T A S

    B E R G E N S I

    S

    Possible method to convert endpoint to the MC value; use a function that fitsthe entire distribution returning an inflection point (IP):

    The IP can be converted to some value corresponding to the “MC endpoint”with help from a calibration curve

    onsdag den 14 oktober 2009

  • U N

    I V E R S I T A S

    B E R G E N S I

    S

    Is this valid for all possible outcomes?

    � This however should be done very carefully!� We need to check the validity in a wide range of mSUGRA

    points.

    � So we change the mSUGRA parameters (m0,m1/2, tan(β)),simulate new data sets and repeat the analysis)

    � We choose points where branching fraction of �χ02 → �ττ isenhanced w.r.t other l�l-pair production

    onsdag den 14 oktober 2009

  • SUMMARY AND CONCLUSIONS

    onsdag den 14 oktober 2009

  • MORE SEMINARS AHEAD

    Upcoming deeper looks at our posters

    3D and the lab - Dominic, Lars-Halvor, Kristine

    Black holes, BS➞μμ, Magnetic field perturbations - Maren, Jørn

    Particle Physics Theory - Mahdi & Nils-Erik

    DAMARA - Heidis proposal presentation :)

    onsdag den 14 oktober 2009