tanner tools examples guide (japanese)

59
Copyright © 2009 Tanner Tools v15 – Examples Guide Tanner EDA Division Tanner Research, Inc. 825 South Myrtle Avenue Monrovia, CA 91016-3424 Tel: (626) 471-9700

Upload: agnes-garcia

Post on 18-Jul-2016

113 views

Category:

Documents


2 download

DESCRIPTION

tanner eda japones

TRANSCRIPT

Page 1: Tanner Tools Examples Guide (Japanese)

Copyright © 2009

Tanner Tools v15 – Examples Guide

Tanner EDA Division Tanner Research, Inc. 825 South Myrtle Avenue Monrovia, CA 91016-3424 Tel: (626) 471-9700

Page 2: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

1

TABLE OF CONTENTS Section 1 Designs ..................................................................................... 5

Section 1.1 ADC8 ............................................................................... 5 Section 1.2 ADC – Behavioral ............................................................ 5 Section 1.3 Bargraph .......................................................................... 5 Section 1.4 BusesAndArrays .............................................................. 5

Section 1.4.1 Simple Buses ..................................................................... 5 Section 1.4.2 Splitting Buses .................................................................... 5 Section 1.4.3 Port Bundles ....................................................................... 6 Section 1.4.4 1-Dimensional Arrays ......................................................... 6 Section 1.4.5 2-Dimensional Arrays ......................................................... 6

Section 1.5 CCD Imager .................................................................... 6 Section 1.6 Comparator – One Bit...................................................... 6 Section 1.7 CPU ................................................................................. 6 Section 1.8 DecayMeasurement-Verilog ............................................ 7 Section 1.9 DLatch ............................................................................. 7 Section 1.10 GaAsAmp ........................................................................ 7 Section 1.11 GlobalNets ....................................................................... 7

Section 1.11.1 Simple Global Nets ............................................................. 7 Section 1.11.2 Separate Power Supplies ................................................... 8 Section 1.11.3 Renaming Separate Power Supplies ................................. 9 Section 1.11.4 Renaming Separate Power Supplies – Alternate Method 10

Section 1.12 ICResistors .................................................................... 11 Section 1.13 Inverter .......................................................................... 11

Section 1.13.1 DC Operating Point Analysis ............................................ 11 Section 1.13.2 DC Transfer Analysis and Parameter Sweep ................... 16 Section 1.13.3 Transient Analysis ............................................................ 19

Section 1.14 Lights (Traffic Light Controller) ...................................... 22 Section 1.15 LinearFeedbackShiftRegister ........................................ 22 Section 1.16 MonitorVoltageRange-Verilog ....................................... 22 Section 1.17 MOS_Subthreshold ....................................................... 22 Section 1.18 MultipleSymbolViews..................................................... 22

Section 1.18.1 MOSFET with 4- and 3-terminal symbols ......................... 22 Section 1.18.2 NMOS with IEEE and IEC symbols .................................. 23 Section 1.18.3 Adder with 3 different symbols ......................................... 24

Section 1.19 OpAmp .......................................................................... 24 Section 1.19.1 AC Analysis ...................................................................... 24

Section 1.20 Parameterized_NAND ................................................... 28 Section 1.20.1 Using Subcircuits .............................................................. 28

Section 1.21 PLL-Behavioral .............................................................. 32 Section 1.22 Pseudo-random Bit Sequence-Verilog .......................... 32 Section 1.23 ReadTextFile-Verilog ..................................................... 33 Section 1.24 Resonator ...................................................................... 33 Section 1.25 RingOscillator ................................................................ 33 Section 1.26 RingOscillator-Behavioral .............................................. 33 Section 1.27 RingVCO ....................................................................... 33

Page 3: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

2

Section 1.28 SpiceOutput ................................................................... 33 Section 1.28.1 SPICE Primitives .............................................................. 33 Section 1.28.2 Passing parameters down hierarchy ................................ 35 Section 1.28.3 Subcircuits ........................................................................ 36 Section 1.28.4 SPICE Export Control property ........................................ 39

Section 1.29 Stimuli ............................................................................ 40 Section 1.30 XOR............................................................................... 40

Section 2 Process ................................................................................... 40 Section 2.1 Gallium Arsenide (GaAs) ............................................... 40 Section 2.2 Generic 0.25um ............................................................. 40

Section 2.2.1 Analog Symbols Library ................................................... 40 Section 2.2.2 Device Symbols Library .................................................... 40 Section 2.2.3 I/O Pad Symbols Library .................................................. 40 Section 2.2.4 Logic Gate Symbols Library ............................................. 41 Section 2.2.5 Technology Files .............................................................. 41

Section 2.3 MOSIS Scalable AMIS 0.8um ....................................... 41 Section 2.4 MOSIS Scalable AMIS 1.2um ....................................... 41 Section 2.5 MOSIS Scalable HP 0.5um ........................................... 42 Section 2.6 MOSIS Scalable Orbit 1.2um ........................................ 42 Section 2.7 MOSIS Scalable Orbit 2.0um ........................................ 42 Section 2.8 Native Orbit 1.2um ........................................................ 42 Section 2.9 Native Orbit 2.0um ........................................................ 43 Section 2.10 Generic Standard Libraries ............................................ 43

Section 2.10.1 Device Symbols Library .................................................... 43 Section 2.10.2 Miscellaneous Symbols Library ........................................ 43 Section 2.10.3 SPICE Command Symbols Library .................................. 43 Section 2.10.4 SPICE Element Symbols Library ...................................... 43

Section 3 Automated Operations .......................................................... 44 Section 3.1 S-Edit TCL Scripts ......................................................... 44

Section 3.1.1 Calculator - TK ................................................................. 44 Section 3.1.2 Change Symbol Property Size ......................................... 44 Section 3.1.3 Change WhenNotEval Property ....................................... 44 Section 3.1.4 Copy Cells ........................................................................ 44 Section 3.1.5 Copy Cells – Traverse Hierarchy ...................................... 44 Section 3.1.6 Delete Empty Schematic View ......................................... 44 Section 3.1.7 Delete Property ................................................................ 44 Section 3.1.8 Find Property on Instance - TK ........................................ 44 Section 3.1.9 Find and Rename Instance .............................................. 44 Section 3.1.10 Change Port and Netlabels .............................................. 44 Section 3.1.11 Force Callback ................................................................. 45 Section 3.1.12 Hello World - TK ............................................................... 45 Section 3.1.13 Resizing Text - TK ............................................................ 45

Section 3.2 L-Edit UPI Macros ......................................................... 46 Section 3.2.1 Add to Find ....................................................................... 46 Section 3.2.2 Boolean Operations .......................................................... 46 Section 3.2.3 Capacitor .......................................................................... 47 Section 3.2.4 Change Instance Name to Include Rotation Parameter ... 47

Page 4: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

3

Section 3.2.5 Change Layer ................................................................... 47 Section 3.2.6 Change Layer and Duplicate ............................................ 47 Section 3.2.7 Change Layer and Grow .................................................. 47 Section 3.2.8 Create Contact ................................................................. 47 Section 3.2.9 Copy Layer Rendering ..................................................... 48 Section 3.2.10 Create Derived Layer ....................................................... 48 Section 3.2.11 Delete Layer ..................................................................... 48 Section 3.2.12 Dialog Examples .............................................................. 48 Section 3.2.13 Gear 48 Section 3.2.14 Generate Derived Layer in Subcell .................................. 49 Section 3.2.15 Goto 49 Section 3.2.16 Grow Via ........................................................................... 49 Section 3.2.17 Hello World ....................................................................... 49 Section 3.2.18 Hide Layer with GDS DataType = 1 ................................. 49 Section 3.2.19 Hierarchical Instance Location ......................................... 49 Section 3.2.20 Import GDS Copy Cell ...................................................... 50 Section 3.2.21 Instance and Rotate a T-Cell ............................................ 50 Section 3.2.22 Instance a Cell .................................................................. 50 Section 3.2.23 Interface ........................................................................... 50 Section 3.2.24 Drawing Mode Keyboard Shortcuts .................................. 50 Section 3.2.25 MFC 51 Section 3.2.26 MOSFET .......................................................................... 51 Section 3.2.27 Move 51 Section 3.2.28 Palette .............................................................................. 51 Section 3.2.29 Perimeter .......................................................................... 51 Section 3.2.30 Place Ports ....................................................................... 51 Section 3.2.31 Polar Array ....................................................................... 52 Section 3.2.32 Port List ............................................................................ 52 Section 3.2.33 Properties ......................................................................... 52 Section 3.2.34 Read from Text File and Instance T-Cell .......................... 52 Section 3.2.35 Rename Cell ..................................................................... 52 Section 3.2.36 Resistor ............................................................................ 52 Section 3.2.37 Run L-Edit in Command Mode and Load a Macro ........... 53 Section 3.2.38 Selected Polygon Vertex Summary Report ...................... 53 Section 3.2.39 Set Layer Rendering ........................................................ 53 Section 3.2.40 Spiral 53 Section 3.2.41 Spring ............................................................................... 53

Section 3.3 L-Edit T-Cells ................................................................. 54 Section 3.3.1 Buffer 54 Section 3.3.2 Change T-Cell Name ........................................................ 54 Section 3.3.3 Concentric Tori ................................................................. 54 Section 3.3.4 Decoder ............................................................................ 54 Section 3.3.5 Ellipse ............................................................................... 54 Section 3.3.6 Layout Text Generator ..................................................... 54 Section 3.3.7 Matched Dual Capacitor Array ......................................... 55 Section 3.3.8 MOSFET .......................................................................... 55 Section 3.3.9 Rounded Rectangle .......................................................... 55 Section 3.3.10 Segmented Tori ................................................................ 55 Section 3.3.11 Spiral 55 Section 3.3.12 T-Cell Builder .................................................................... 55 Section 3.3.13 T-Cell Calls Another T-Cell ............................................... 55

Page 5: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

4

Section 3.3.14 Test Pattern Generator ..................................................... 56 Section 3.4 L-Edit Bindkeys ............................................................. 56

Section 3.4.1 Cadence ........................................................................... 56

Section 4 Additional Examples .............................................................. 56 Section 4.1 T-Spice External C Models ............................................ 56

Section 4.1.1 Diode 56 Section 4.1.2 MOS1 ............................................................................... 56 Section 4.1.3 Resistor ............................................................................ 57 Section 4.1.4 Switch ............................................................................... 57 Section 4.1.5 VCO 57

Section 4.2 L-Edit Layer Setup ......................................................... 57 Section 4.2.1 Black Background ............................................................ 57 Section 4.2.2 Multiple Vias ..................................................................... 57 Section 4.2.3 Pastel Colors .................................................................... 58 Section 4.2.4 Stripes .............................................................................. 58

Page 6: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

5

Section 1 Designs

Section 1.1 ADC8

Section 1.2 ADC – Behavioral

Section 1.3 Bargraph

Section 1.4 BusesAndArrays

DesignType: Digital Features: S-Edit Section 1.4.1 Simple Buses

S-Edit Design: \Designs\BusesAndArrays\BusesAndArrays.tanner Cell: Top_SimpleBus This example illustrates the basic syntax and usage of buses and arrays. An 8-bit wide bus, In<1:8>, is split into two buses, one containing the even numbered bits and the other containing the odd numbered bits. The third value in the bus specification, indicating a step value of 2, is used to perform this split. The even numbered bits connect to a 4x array of inverters, and the odd numbered bits connect to a 4x array of buffers. The inverter and the buffer each have a single input and output connection, so the 4x arrays of each of these provides a 4-bit wide input and output connection to match the dimension of the buses that connect to them. When connecting buses to instances or arrays of instances, it is important to make sure that the dimensions match. Invoking Tools > Design Checks will issue warnings for mismatched bus and instance dimensions. The output of the inverters and the output of the buffers are then combined to form an 8-bit wide output bus, Out<1:8>. Section 1.4.2 Splitting Buses

S-Edit Design: \Designs\BusesAndArrays\BusesAndArrays.tanner Cell: Top_SplitBus This example illustrates the labeling requirements when splitting buses. An 8-bit wide bus, In<0:7>, is input to an 8x array of inverters, and an 8-bit wide bus, D<0:7>, is output. The 8-bit bus D<0:7> is then split into a 5-bit wide bus, D<3:7>, and a 3-bit wide bus, D<0:2>. Note that whenever there is a T-junction of buses, all branches of the “T” must be explicitly labeled in order to unambiguously identify the dimension and components of each branch. Individual bits D<2>, D<1>, and D<0> are then ripped from the bus and connected to a buffer, inverter, and another buffer, and output as nets Q, R, and S, respectively.

Page 7: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

6

Section 1.4.3 Port Bundles

S-Edit Design: \Designs\BusesAndArrays\BusesAndArrays.tanner Cell: Top_PortBundle This example illustrates the use of port bundles in a symbol. This example is similar to Top_SplitBus, however here the 8-bit input bus, In<0:7>, is connected to a single instance, Inv8a, rather than to an array. The symbol of Inv8a contains an 8-bit port bundle, A<0:7>, to which the input bus is connected, thereby matching dimensions of the bus with the instance connection. The port bundle can be a single bus, A<0:7>, as is the case in this example, or it could be a collection of buses and nets, such as A<0:4:2>, B<0:3>, C. The output of the instance is an 8-bit port bundle, Out<0:7> which connects to an 8-bit wide bus, Qu, Rb, Su, D<3:7>. The 8-bit bus Qu, Rb, Su, D<3:7> is then split into a 5-bit wide bus, D<3:7>, and a 3-bit wide bus, Qu, Rb, Su. Individual bits Qu, Rb, and Su are then ripped from the bus and connected to a buffer, inverter, and another buffer, and output as nets Q, R, and S, respectively. Section 1.4.4 1-Dimensional Arrays

S-Edit Design: \Designs\BusesAndArrays\BusesAndArrays.tanner Cell: Top_1DArrays This example illustrates how to connect the input and output of an array to form a connection in series. The input into the 5x array of inverters is In, N<0>, N<1>, N<2>, N<3>, and the output is N<0>, N<1>, N<2>, N<3>, Out. Notice the offset by one in the position of N<0:3> in the naming of the input and output buses. This causes the output of one inverter to be connected to the input of the next inverter. The connection is formed by naming the output and input labels with the same name. There does not need to be a wire actually making a connection. In addition, as can be seen for the input, no physical wire connection is made between the In port and the bus. For the output, a wire connection is made and the net is labeled Out to match that of the Out port. Either method will produce the same result. Section 1.4.5 2-Dimensional Arrays

S-Edit Design: \Designs\BusesAndArrays\BusesAndArrays.tanner Cell: Top_2DArrays This example illustrates the usage and syntax of two dimensional arrays. Arrays Left, Top, Bottom, and Right are 1-D arrays which are connected to around the perimeter of a 2-D array Cen using a connection by name, similar to that used in Top_1DArrays.

Section 1.5 CCD Imager

Section 1.6 Comparator – One Bit

Section 1.7 CPU

Page 8: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

7

Section 1.8 DecayMeasurement-Verilog

Section 1.9 DLatch

Section 1.10 GaAsAmp

Section 1.11 GlobalNets

DesignType: Digital Features: S-Edit Section 1.11.1 Simple Global Nets

S-Edit Design: \Designs\GlobalNets\GlobalNets.tanner Cell: Top_GlobalNets Global nets in S-Edit are connected through the design hierarchy, without explicitly placing ports for them at every level. In this example there are two cores, CoreHV_Global and CoreLV_Global instanced in cell Top_GlobalNets. Inside CoreHV_Global, we have instances of Block2 and Block3, and inside CoreLV_Global we have instances of Block1 and Block2. These can be seen in the .subckt definitions of CoreHV_Global and CoreLV_Global in the netlist below. Each schematic of Block1, Block2, and Block3 has a global symbol for Vdd and Gnd. In this design, Vdd and Gnd are global, and are connected through the entire design hierarchy. *************** Subcircuits ***************** .subckt Block1 In Out Gnd Vdd .ends .subckt Block2 In1 In2 Out1 Out2 Gnd Vdd .ends .subckt Block3 In1 In2 Out Gnd Vdd .ends .subckt CoreHV_Global A1 A2 A3 B1 B2 B3 Gnd Vdd XU1 A1 A2 B1 Gnd Vdd Block3 XU2 A2 A3 B2 B3 Gnd Vdd Block2 .ends .subckt CoreLV_Global A1 A2 A3 B1 B2 B3 Gnd Vdd XU1 A1 B1 Gnd Vdd Block1 XU2 A2 A3 B2 B3 Gnd Vdd Block2 .ends

Page 9: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

8

XCoreHV_Global_1 N_3 N_5 N_2 N_4 N_1 N_6 Gnd Vdd CoreHV_Global XCoreLV_Global_1 N_10 N_8 N_11 N_9 N_12 N_7 Gnd Vdd CoreLV_Global .end Section 1.11.2 Separate Power Supplies

S-Edit Design: \Designs\GlobalNets\GlobalNets.tanner Cell: Top_VddIsolation This example illustrates how to isolate the global Vdd nets contained inside two cells. Consider the two core cells in the Top_GlobalNets design. We wish to isolate the global Vdd in CoreHV_Global from the global Vdd in CoreLV_Global. The design in Top_VddIsolation has been modified by adding netcaps for Vdd in CoreHV_VddNetCap and CoreLV_VddNetCap. The name of the netcap must match the name of the net being capped, including case sensitivity, in order for the net to be properly capped. Notice now that Vdd no longer appears in the parameter list for the definition of CoreHV_VddNetCap and CoreLV_VddNetCap in the netlist below, and is correspondingly absent in the calls to CoreHV_VddNetCap and CoreLV_VddNetCap in the main circuit. The Vdd inside subcircuit CoreHV_VddNetCap and the Vdd inside subcircuit CoreLV_VddNetCap are therefore not connected to each other. *************** Subcircuits ***************** .subckt Block1 In Out Gnd Vdd .ends .subckt Block2 In1 In2 Out1 Out2 Gnd Vdd .ends .subckt Block3 In1 In2 Out Gnd Vdd .ends .subckt CoreHV_VddNetCap A1 A2 A3 B1 B2 B3 Gnd XU1 A1 A2 B1 Gnd Vdd Block3 XU2 A2 A3 B2 B3 Gnd Vdd Block2 .ends .subckt CoreLV_VddNetCap A1 A2 A3 B1 B2 B3 Gnd XU1 A1 B1 Gnd Vdd Block1 XU2 A2 A3 B2 B3 Gnd Vdd Block2 .ends XCoreHV_VddNetCap_1 N_2 N_3 N_4 N_1 N_5 N_6 Gnd CoreHV_VddNetCap XCoreLV_VddNetCap_1 N_12 N_11 N_10 N_7 N_8 N_9 Gnd CoreLV_VddNetCap .end

Page 10: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

9

The Vdd nets in CoreHV_VddNetCap and CoreLV_VddNetCap can be reconnected by removing the netcaps, or alternatively by placing the following command in the SPICE netlist: .global Vdd The .global command can be automatically put into the netlist in S-Edit, by creating a symbol with the following property:

SPICE.OUTPUT = .global Vdd

The symbol can then be instanced at the top level of the design. An example of this can be viewed by opening design example Top_VddReconnectNetCap.

Section 1.11.3 Renaming Separate Power Supplies

S-Edit Design: \Designs\GlobalNets\GlobalNets.tanner Cell: Top_VddIsolationRename This example illustrates how to isolate the global Vdd nets in two cells from each other, and to connect to them with unique names. Consider the two core cells in the Top_VddIsolationRename design. In Top_VddIsolation, we isolated the Vdd in CoreHV_VddNetCap from the Vdd in CoreLV_VddNetCap. We now wish to connect to CoreHV_VddNetCap with a net named Vdd_5v and to CoreLV_VddNetCap with a net named Vdd_3v. In this example, the design in Top_VddIsolationRename has been modified by adding “In” ports Vdd_HV and Vdd_LV to cores CoreHV_VddRename and CoreLV_VddRename respectively, both on the schematic and symbol views. On the schematic views, the new ports are connected to the netcaps, thus continuing the propagation of the Vdd net up the hierarchy, but with a different name. In the calls in the main circuit, you can see nets Vdd_5v connecting to cores CoreHV_VddRename and Vdd_3v connecting to CoreLV_VddRename. *************** Subcircuits ***************** .subckt Block1 In Out Gnd Vdd .ends .subckt Block2 In1 In2 Out1 Out2 Gnd Vdd .ends .subckt Block3 In1 In2 Out Gnd Vdd .ends .subckt CoreHV_VddRename A1 A2 A3 B1 B2 B3 Vdd Gnd XU1 A1 A2 B1 Gnd Vdd Block3 XU2 A2 A3 B2 B3 Gnd Vdd Block2 .ends .subckt CoreLV_VddRename A1 A2 A3 B1 B2 B3 Vdd Gnd

Page 11: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

10

XU1 A1 B1 Gnd Vdd Block1 XU2 A2 A3 B2 B3 Gnd Vdd Block2 .ends XCoreHV_VddRename_1 N_2 N_3 N_4 N_1 N_5 N_6 Vdd_5v Gnd CoreHV_VddRename XCoreLV_VddRename_1 N_12 N_11 N_10 N_7 N_8 N_9 Vdd_3v Gnd CoreLV_VddRename .end Section 1.11.4 Renaming Separate Power Supplies – Alternate Method

S-Edit Design: \Designs\GlobalNets\GlobalNets.tanner Cell: Top_VddIsolationRenameAlt This example illustrates another way to isolate the global Vdd nets in two cells from each other, and to connect to them with unique names. Consider the two core cells in the Top_VddIsolation design. In Top_VddIsolation, we isolated the Vdd in CoreHV_Global from the Vdd in CoreLV_Global. We now wish to connect to CoreHV_Global with a net named Vdd_5v and to CoreLV_Global with a net named Vdd_3v. In this example, the design in Top_VddIsolation has been modified by adding “Global” ports Vdd_5v and Vdd_3v to the schematic views of cores CoreHV_VddRenameGlobal and CoreLV_VddRenameGlobal respectively. The new ports are connected to the netcaps, thus continuing the propagation of the Vdd net up the hierarchy, but with a different name. The name of the Global port takes precedence over the name of the netcap. In the calls in the main circuit, you can see net Vdd_5v connecting to CoreHV_VddRenameGlobal and Vdd_3v connecting to CoreLV_VddRenameGlobal. *************** Subcircuits ***************** .subckt Block1 In Out Gnd Vdd .ends .subckt Block2 In1 In2 Out1 Out2 Gnd Vdd .ends .subckt Block3 In1 In2 Out Gnd Vdd .ends .subckt CoreHV_VddRenameGlobal A1 A2 A3 B1 B2 B3 Gnd Vdd XU1 A1 A2 B1 Gnd Vdd Block3 XU2 A2 A3 B2 B3 Gnd Vdd Block2 .ends .subckt CoreLV_VddRenameGlobal A1 A2 A3 B1 B2 B3 Gnd Vdd XU1 A1 B1 Gnd Vdd Block1 XU2 A2 A3 B2 B3 Gnd Vdd Block2 .ends

Page 12: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

11

XCoreLV_VddRenameGlobal_1 N_12 N_11 N_10 N_7 N_8 N_9 Gnd Vdd_3v CoreLV_VddRenameGlobal XCoreHV_VddRenameGlobal_1 N_2 N_3 N_4 N_1 N_5 N_6 Gnd Vdd_5v CoreHV_VddRenameGlobal .end

Section 1.12 ICResistors

Section 1.13 Inverter

DesignType: Digital Features: S-Edit

T-Spice – Analysis Examples – DC_Op_Point, DC_Sweep, Monte_Carlo, Parameter_Sweep, Transient

Section 1.13.1 DC Operating Point Analysis

S-Edit Design: \Designs\Inverter\Inverter.tanner T-Spice Netlist: \Designs\Inverter\SimulationResults\InverterOP.sp Cell: Inverter_TestBench – OperatingPoint Schematic DC operating point analysis finds a circuit’s steady-state condition, obtained (in principle) after the input voltages have been applied for an infinite amount of time. Each of the components visible in the schematic has properties associated with it. Properties are textual elements, created in S-Edit, that are attached to an object and provide key information about its design and simulation commands in T-Spice. If you "push in" to open a specific instance, you can see that the physical dimensions of the component M1n in the inverter are defined by the properties:

M = 1 W = 1.5u L = 0.25u

M1n is an instance of the symbol NMOS_2_5v, which represents an n-channel MOSFET transistor. Properties that describe the operation of a generic n-channel MOSFET are defined at the symbol level. Properties specific to component M1n, such as length and width, are defined when M1n is created. Property values defined at the component level take precedence over default (symbol) values. 1.13.1.1. SPICE Simulation Setup in S-Edit

Prior to running the T-Spice simulation, the analysis commands and all processing options need to be established. This is accomplished using the Setup SPICE Simulation dialog in S-Edit.

Page 13: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

12

Ensure that you are viewing the top level schematic. For this example, the top level cell is named Inverter_TestBench. Right-click on Inverter_TestBench in the Libraries window and use Open View to select the schematic OperatingPoint. Use Setup > SPICE Simulation… to launch the Setup SPICE Simulation dialog. The proper simulation settings for the Inverter_TestBench example have already been entered for you. Note that the DC Operating Point Analysis box is checked. Also note the settings in the General options for File Search Path and Library Files. Export the Netlist to T-Spice.

1.13.1.2. Export Netlist to T-Spice

In the Inverter_Testbench - Operating Point schematic, use Tools > Design Checks > View and Hierarchy to execute the Design Checker. The Design Checker will display any violation or errors in the Command window. There should not be any errors in Inverter_Testbench - Operating Point.

Press the T-Spice icon ( ) to export a T-Spice netlist file named InverterOP.sp. S-Edit will launch T-Spice with the InverterOP.sp netlist open: 1.13.1.3. T-Spice Input

********* Simulation Settings - General section ********* .option search="…\Process\Generic250nm\Generic250nmTech"

Page 14: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

13

.lib "Generic_025.lib" TT *-------- Devices: SPICE.ORDER < 0 -------- * Design: Inverter / Cell: Inverter_TestBench / View: OperatingPoint / Page: * Designed by: Tanner EDA Library Development Team * Organization: Tanner EDA - Tanner Research, Inc. * Info: Operating point analysis testbench of an inverter * Date: 10/15/2008 9:49:36 AM * Revision: 46 *************** Subcircuits ***************** .subckt INV A Out Gnd Vdd *-------- Devices: SPICE.ORDER < 0 -------- * Design: Generic250nmLogicGates / Cell: INV / View: Main / Page: * Designed by: Tanner EDA Library Development Team * Organization: Tanner EDA - Tanner Research, Inc. * Info: Inverter * Date: 5/30/2008 4:06:39 PM * Revision: 13 *-------- Devices: SPICE.ORDER == 0 -------- MM1n Out A Gnd 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u MM2p Out A Vdd Vdd PMOS25 W=3u L=250n M=2 AS=3.9p PS=14.6u AD=2.25p PD=7.5u .ends ********* Simulation Settings - Parameters and SPICE Options ********* .param Vpwr = 3.3v *-------- Devices: SPICE.ORDER == 0 -------- XX1 N_2 N_1 Gnd Vdd INV *-------- Devices: SPICE.ORDER > 0 -------- CC1 N_1 Gnd 1p VVin N_2 Gnd DC 1 VVpower Vdd Gnd DC Vpwr ********* Simulation Settings - Analysis section ********* .op ********* Simulation Settings - Additional SPICE commands ********* .end Two transistors, MM2p and MM1n, are defined in InverterOP.sp. These are MOSFETs, as indicated by the key letter M that begins their names. Following each transistor name are the names of its terminals in the required order: drain–gate–source–bulk. Then the model name (PMOS25 or NMOS25 in this example) and physical characteristics, such as length

Page 15: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

14

and width, are specified. A capacitor CC1 (signified by the key letter C) connects nodes N_1 and GND with a capacitance of 1p. Strictly speaking, the capacitor could be omitted from the circuit for this example, since it does not affect the DC operation of the inverter. Two DC voltage sources are defined: VVin, which sets node N_2 to 1.0 volt relative to ground and VVpower, which sets node Vdd to 3.3 volts as defined by the variable Vpwr. Notice that the simulation settings which were entered in the SPICE Simulation Setup dialog resulted in .option, .lib, and .op commands being written to the T-Spice input file. The .lib command causes T-Spice to read the contents of the Generic_025.lib library file for the evaluation of transistors MM2p and MM1n, and the search option identifies the path to the library files. In this case, the library file contains two device .model commands, describing MOSFET models PMOS25 and NMOS25, as shown below for PMOS25: .MODEL PMOS25 PMOS ( LEVEL = 49 +VERSION = 3.1 TNOM = 27 TOX = 5.6E-9 +XJ = 1E-7 NCH = 4.1589E17 VTH0 = '-0.4935548+dVthP' +K1 = 0.6143278 K2 = 6.804492E-4 K3 = 0 +K3B = 5.8844074 W0 = 1E-6 NLX = 6.938169E-9 +DVT0W = 0 DVT1W = 0 DVT2W = 0 +DVT0 = 2.3578746 DVT1 = 0.7014778 DVT2 = -0.1881376 +U0 = 100 UA = 9.119231E-10 UB = 1E-21 +UC = -1E-10 VSAT = 1.782051E5 A0 = 0.9704347 +AGS = 0.1073973 B0 = 2.773991E-7 B1 = 8.423987E-7 +KETA = 0.0104811 A1 = 0.0193128 A2 = 0.3 +RDSW = 694.5830247 PRWG = 0.3169639 PRWB = -0.1958978 +WR = 1 WINT = 0 LINT = 2.971337E-8 +XL = 'dxl' XW = '-4E-8+dxw' DWG = -2.967296E-8 +DWB = -2.31786E-10 VOFF = -0.1152095 NFACTOR = 1.1064678 +CIT = 0 CDSC = 2.4E-4 CDSCD = 0 +CDSCB = 0 ETA0 = 0.3676411 ETAB = -0.0915241 +DSUB = 1.1089801 PCLM = 1.3226289 PDIBLC1 = 9.913816E-3 +PDIBLC2 = -1.499968E-6 PDIBLCB = -1E-3 DROUT = 0.1276027 +PSCBE1 = 8E10 PSCBE2 = 5.772776E-10 PVAG = 0.0135936 +DELTA = 0.01 RSH = 3 MOBMOD = 1 +PRT = 0 UTE = -1.5 KT1 = -0.11 +KT1L = 0 KT2 = 0.022 UA1 = 4.31E-9 +UB1 = -7.61E-18 UC1 = -5.6E-11 AT = 3.3E4 +WL = 0 WLN = 1 WW = 0

Page 16: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

15

+WWN = 1 WWL = 0 LL = 0 +LLN = 1 LW = 0 LWN = 1 +LWL = 0 CAPMOD = 2 XPART = 0.5 +CGDO = 5.59E-10 CGSO = 5.59E-10 CGBO = 5E-10 +CJ = 1.857995E-3 PB = 0.9771691 MJ = 0.4686434 +CJSW = 3.426642E-10 PBSW = 0.871788 MJSW = 0.3314778 +CJSWG = 2.5E-10 PBSWG = 0.871788 MJSWG = 0.3314778 +CF = 0 PVTH0 = 4.137981E-3 PRDSW = 7.2931065 +PK2 = 2.600307E-3 WKETA = 0.0192532 LKETA = -5.972879E-3 ) Generic_025.lib assigns values to various Level 49 MOSFET model parameters for both n- and p-channel devices. T-Spice uses these parameters to evaluate Level 49 MOSFET model equations. The .op command performs a DC operating point calculation and writes the results to the file specified in the Simulation > Run Simulation dialog. 1.13.1.4. Run the Simulation in T-Spice

With InverterOP.sp open in T-Spice, use File > Save to save the file. Click the Run

Simulation button ( ) in the T-Spice simulation toolbar. T-Spice will open a new window displaying the simulation log. 1.13.1.5. Output

The output file lists the DC operating point information for the circuit. You can read this file in T-Spice or any text editor. 1.13.1.6. Open the Output File

If not already displayed, select View > Simulation Manager from the T-Spice menu to open the Simulation Manager:

Right-click the InverterOP.out display line in the window, then click Show Output… to open the output file InverterOP.out in a new T-Spice window. If you prefer to view the output in a text editor, simply open InverterOP.out as a text file. It is located in the same directory as the input file. The output file contains the following DC operating point information (in addition to comments of various kinds, not shown here. (You can also view DC operating voltages, currents and small-signal parameters in S-Edit.)

Page 17: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

16

DC ANALYSIS - temperature=25.0 v(N_1) = 3.1819e+000 v(N_2) = 1.0000e+000 v(Vdd) = 3.3000e+000 i1(VVin) = -0.0000e+000 i2(VVin) = 0.0000e+000 i1(VVpower) = -1.9514e-004 i2(VVpower) = 1.9514e-004 Section 1.13.2 DC Transfer Analysis and Parameter Sweep

S-Edit Design: \Designs\Inverter\Inverter.tanner T-Spice Netlist: \Designs\Inverter\SimulationResults\InverterDC.sp Cell: Inverter_TestBench – DCAnalysis Schematic DC transfer analysis is used to study the voltage or current at one set of points in a circuit as a function of the voltage or current at another set of points. This is done by sweeping the source variables over specified ranges and recording the output. This schematic includes a .print command, which measures and records voltages at the input and output nodes of the circuit. The command is contained within the DC analysis output cell. 1.13.2.1. Run Simulation from S-Edit

Press the S-Edit icon ( ) to run the simulation from S-Edit. S-Edit will automatically launch T-Spice and will create and run a T-Spice netlist file named InverterOP.sp. The netlist will be exported as follows: 1.13.2.2. T-Spice Input

********* Simulation Settings - General section ********* .option search="…\Process\Generic250nm\Generic250nmTech" .probe .option probev .lib "Generic_025.lib" TT *-------- Devices: SPICE.ORDER < 0 -------- * Design: Inverter / Cell: Inverter_TestBench / View: DCAnalysis / Page: * Designed by: Tanner EDA Library Development Team * Organization: Tanner EDA - Tanner Research, Inc. * Info: DC analysis testbench of an inverter * Date: 10/15/2008 9:49:36 AM * Revision: 6 *************** Subcircuits ***************** .subckt INV A Out Gnd Vdd *-------- Devices: SPICE.ORDER < 0 -------- * Design: Generic250nmLogicGates / Cell: INV / View: Main / Page: * Designed by: Tanner EDA Library Development Team

Page 18: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

17

* Organization: Tanner EDA - Tanner Research, Inc. * Info: Inverter * Date: 5/30/2008 4:06:39 PM * Revision: 13 *-------- Devices: SPICE.ORDER == 0 -------- MM1n Out A Gnd 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u MM2p Out A Vdd Vdd PMOS25 W=3u L=250n M=2 AS=3.9p PS=14.6u AD=2.25p PD=7.5u .ends ********* Simulation Settings - Parameters and SPICE Options ********* .param Vpwr = 3.3v *-------- Devices: SPICE.ORDER == 0 -------- XX1 In Out Gnd Vdd INV *-------- Devices: SPICE.ORDER > 0 -------- CC1 Out Gnd 1p VVin In Gnd DC 1 VVpower Vdd Gnd DC Vpwr .PRINT DC V(Out) .PRINT DC V(In) ********* Simulation Settings - Analysis section ********* .dc lin VVin 0.0 Vpwr 0.02 .step lin Vpwr 2.3 4.3 0.5 ********* Simulation Settings - Additional SPICE commands ********* .end The .DC command, indicating transfer analysis, is followed by the parameter lin, which specifies a linear sweep. Next is a list of sources to be swept, and the voltage ranges across which the sweeps are to take place. In this example, VVin will be swept from 0 to Vpwr volts in 0.02 volt increments. The .step command then sweeps Vpwr from 2.3 to 4.3 volts in 0.5 volt increments. The transfer analysis will be performed as follows: Vpwr will be set at 2.3 volts and VVin will be swept over its specified range; Vpwr will then be incremented to 2.5 volts and VVin will be reswept over its range; and so on, until Vpwr reaches the upper limit of its range. The .DC command ignores the values assigned to the voltage sources Vpwr and VVin in the voltage source statements; however, they must be declared in those statements. The resulting voltages for nodes “In” and “Out” are reported by the .PRINT DC command to the specified destination. 1.13.2.3. Output

Page 19: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

18

When W-Edit launches, simulation results of the same data type, which in this case is voltage, are automatically plotted on a single chart. In this example, traces were separated into different charts and reorganized (according to data type) using the commands in Chart > Expand Chart (page 109) of the W-Edit menu. The charts below show input and output voltages to the circuit, with separate traces for each sweep of v(Out). To view detailed information about a trace, double-click on the trace or on the trace label located in the upper right corner of the chart.

The Trace Properties dialog displays the value of parameter v(Out) corresponding to each trace, as well as labels and line properties. For more information on trace properties, see "Properties" on page 100 of the W-Edit User Guide.

Page 20: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

19

Section 1.13.3 Transient Analysis

S-Edit Design: \Designs\Inverter\Inverter.tanner T-Spice Netlist: \Designs\Inverter\SimulationResults\InverterTRAN.sp Cell: Inverter_TestBench – TransientAnalysis Schematic Transient analysis provides information on how circuit elements vary with time. The basic T-Spice command for transient analysis has three modes. In the Op mode (default), the DC operating point is computed, and T-Spice uses this as the starting point for the transient simulation. This example illustrates this option. The other startup modes, Powerup and Preview, are shown in the proceeding examples titled Transient Analysis, Powerup Mode and Transient Analysis, Preview Mode. 1.13.3.1. Run Simulation from S-Edit

Press the S-Edit icon ( ) to run the simulation from S-Edit. S-Edit will automatically launch T-Spice and will create and run a T-Spice netlist file named InverterTRAN.sp. The netlist will be exported as follows: 1.13.3.2. T-Spice Input

********* Simulation Settings - General section *********

Page 21: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

20

.option search="…\Process\Generic250nm\Generic250nmTech"

.probe

.option probev

.option probei

.lib "Generic_025.lib" TT *-------- Devices: SPICE.ORDER < 0 -------- * Design: Inverter / Cell: Inverter_TestBench / View: TransientAnalysis / Page: * Designed by: Tanner EDA Library Development Team * Organization: Tanner EDA - Tanner Research, Inc. * Info: Transient analysis testbench of an inverter * Date: 10/15/2008 9:49:36 AM * Revision: 8 *************** Subcircuits ***************** .subckt INV A Out Gnd Vdd *-------- Devices: SPICE.ORDER < 0 -------- * Design: Generic250nmLogicGates / Cell: INV / View: Main / Page: * Designed by: Tanner EDA Library Development Team * Organization: Tanner EDA - Tanner Research, Inc. * Info: Inverter * Date: 5/30/2008 4:06:39 PM * Revision: 13 *-------- Devices: SPICE.ORDER == 0 -------- MM1n Out A Gnd 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u MM2p Out A Vdd Vdd PMOS25 W=3u L=250n M=2 AS=3.9p PS=14.6u AD=2.25p PD=7.5u .ends ********* Simulation Settings - Parameters and SPICE Options ********* .param Vpwr = 3.3v *-------- Devices: SPICE.ORDER == 0 -------- XX1 In Out Gnd Vdd INV *-------- Devices: SPICE.ORDER > 0 -------- CC1 Out Gnd 1p VVpower Vdd Gnd DC Vpwr VVin In Gnd PULSE(0 Vpwr 0 1n 1n 49n 100n) .PRINT TRAN V(Out) .PRINT TRAN V(In) .MEASURE TRAN RiseDelay_MeasureDelay_1 TRIG v(In) VAL='(Vpwr-0)*50/100+0' TD='0' RISE=1 TARG v(Out) VAL='(Vpwr-0)*50/100+0' TD='0' FALL=1 OFF .MEASURE TRAN FallDelay_MeasureDelay_1 TRIG v(In) VAL='(Vpwr-0)*50/100+0' TD='0' FALL=1 TARG v(Out) VAL='(Vpwr-0)*50/100+0' TD='0' RISE=1 OFF .MEASURE TRAN AvgDelay PARAM='(RiseDelay_MeasureDelay_1+FallDelay_MeasureDelay_1)/2.0' ON

Page 22: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

21

.MEASURE TRAN RiseTime TRIG v(Out) VAL='(Vpwr-0)*10/100+0' TD=0 RISE=1 TARG v(Out) VAL='(Vpwr-0)*90/100+0' TD=0 RISE=1 ON .MEASURE TRAN FallTime TRIG v(Out) VAL='(Vpwr-0)*90/100+0' TD=0 Fall=1 TARG v(Out) VAL='(Vpwr-0)*10/100+0' TD=0 FALL=1 ON ********* Simulation Settings - Analysis section ********* .tran 250p 300n ********* Simulation Settings - Additional SPICE commands ********* .end This circuit is similar to that of DC Operating Point Analysis, except that voltage source VVin in this schematic generates a pulse (indicated by the keyword PULSE) to “In”, rather than setting a constant value. The times and voltages that define the “legs” of the waveform are specified in the arguments to PULSE. The initial current is zero amperes and the peak current is Vpwr, with an initial delay of zero seconds. The rise and fall times are one nanosecond, with a pulse width of 49 nanoseconds and a pulse period of 100 nanoseconds. The .tran command specifies the characteristics of the transient analysis to be performed. In this example, the maximum time step allowed is 250 pico with a total duration of 300 nanoseconds. 1.13.3.3. Output

Page 23: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

22

Section 1.14 Lights (Traffic Light Controller)

DesignType: Digital Features: S-Edit

L-Edit – SPR, StdDRC, StdExtract, HiPer Verify LVS

S-Edit Design: \Designs\Lights\Lights.tanner Cell: Lights This example shows the organization of a project into libraries. Here Lights is the main design. The schematic can be exported to a TPR netlist for use in Standard Place and Route in L-Edit. L-Edit Design: \Designs\Lights\Lights.tdb Cell: Lights This example shows how to perform Standard Cell Place and Route. Use netlist file Lights.tpr exported from S-Edit with Standard Cell Library Lightslb.tdb to perform SPR. DRC can be performed using Standard DRC or HiPer DRC using \Process\Generic250nm\Generic250nmTech\Generic_025-DRC.cal Completed layout can be extracted with Standard Extraction using extraction definition file Lights.ext. LVS Database : \Designs\Lights\Lights.vdb Compare the extracted layout netlist Lights.spc with the schematic netlist Lights.sp to track down any discrepancies.

Section 1.15 LinearFeedbackShiftRegister

Section 1.16 MonitorVoltageRange-Verilog

Section 1.17 MOS_Subthreshold

Section 1.18 MultipleSymbolViews

DesignType: Digital Features: S-Edit Section 1.18.1 MOSFET with 4- and 3-terminal symbols

Page 24: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

23

S-Edit Design: \Designs\MultipleSymbolViews\MultipleSymbolViews.tanner Cell: Toplevel, Devices\NMOS This example illustrates the use of multiple views in a cell. The cell NMOS in the Devices library is an NMOS MOSFET, and there is a 4-terminal symbol and a 3-terminal symbol whose fourth terminal is automatically connected to ground. Cell NMOS consists of two interface views and two symbol views, as follows:

4-terminal NMOS MOSFET interface view: NMOS4 4-terminal NMOS MOSFET symbol view: NMOS4 3-terminal NMOS MOSFET interface view: NMOS3 3-terminal NMOS MOSFET symbol view: NMOS3

There is no schematic view for cell NMOS as the cell is a SPICE primitive.

The fourth terminal of the 3-terminal MOSFET in view NMOS3 is connected to ground by writing 0 in the SPICE.OUTPUT property. Compare the SPICE properties of each symbol. 4-terminal SPICE.OUTPUT properties (Note that SPICE.OUTPUT is omitted):

SPICE.PREFIX = M SPICE.PINORDER = D G S B SPICE.MODEL = $Model SPICE.PARAMETERS = W= L= M~ AS= PS= AD= PD= NRD~ NRS~ RDC~ RSC~ RSH~ GEO~ TABLES~

3-terminal SPICE.OUTPUT properties:

SPICE.PREFIX = M SPICE.PINORDER = D G S SPICE.MODEL = $Model SPICE.PARAMETERS = W= L= M~ AS= PS= AD= PD= NRD~ NRS~ RDC~ RSC~ RSH~ GEO~ TABLES~ SPICE.OUTPUT = ${SPICE.PREFIX}$Name %% 0 $Model $$

Cell PMOS is a 4- and 3-terminal PMOS MOSFET, analogous to NMOS. Section 1.18.2 NMOS with IEEE and IEC symbols

S-Edit Design: \Designs\MultipleSymbolViews\MultipleSymbolViews.tanner Cell: NOR2 This example illustrates the use of multiple symbol views in a cell. The cell NOR2 is a NOR gate, and there is an IEEE and IEC symbol view. Cell NOR2 consists of one interface view, two symbol views, and one schematic view, as follows:

Interface view: Main IEEE symbol view: IEEE IEC symbol view: IEC Schematic view: Main

Page 25: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

24

Both symbols IEEE and IEC each reference the same interface and the same schematic. The only difference is how the symbol will look when instanced into a schematic. Section 1.18.3 Adder with 3 different symbols

S-Edit Design: \Designs\MultipleSymbolViews\MultipleSymbolViews.tanner Cell: Adder This example illustrates the use of multiple symbol views in a cell. The cell is an Adder, and there are three symbol views, one interface view, and one schematic view, as follows:

Interface view: Main Schematic view: Main Symbol view sequentially ordered: Pins_Sequential Symbol view interleaved: Pins_Interleaved Symbol view bus: Pins_Bus

When drawing a schematic, it is sometimes convenient to have the pins of a symbol arranged in one particular order for making connections, and at other times one wants the pins arranged in a different order. This can be accomplished by having multiple symbol views, each of which has a different arrangement of pins. Here, one symbol (Pins_Sequential) has input pins ordered on the left side as A0, A1, A2, A3, B0, B1, B2, B3, a second symbol (Pins_Interleaved) has pins ordered as A0, B0, A1, B1, A2, B2, A3, B3, and a third symbol (Pins_Bus) has pins grouped in busses. This is purely for drawing convenience, and does not affect the order of pins as written to SPICE.

Section 1.19 OpAmp

DesignType: Analog Features: S-Edit

T-Spice – Analysis Examples – AC, AC_Noise, DC_Op_Point, DC_Sweep

Section 1.19.1 AC Analysis

S-Edit Design: \Designs\OpAmp\Inverter.tanner T-Spice Netlist: \Designs\OpAmp\SimulationResults\OpAmpAC.sp Cell: OpAmp_TestBench – AC_Noise_Analysis Schematic AC analysis characterizes the circuit’s behavior dependence on small-signal input frequency. It involves three steps: (1) calculating the DC operating point; (2) linearizing the circuit; and (3) solving the linearized circuit for each frequency. This example involves a standard operational amplifier, consisting of one PMOS, one NMOS, a transconductance amplifier and one capacitor. 1.19.1.1. T-Spice Input

********* Simulation Settings - General section ********* .option Accurate

Page 26: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

25

.option search="…\Process\Generic250nm\Generic250nmTech"

.probe

.option probev

.option probei

.lib "Generic_025.lib" TT *-------- Devices: SPICE.ORDER < 0 -------- * Design: OpAmp / Cell: OpAmp_TestBench / View: AC_Noise_Analysis / Page: * Designed by: Tanner EDA Library Development Team * Organization: Tanner EDA - Tanner Research, Inc. * Info: AC & Noise Testbench for Op Amp * Date: 10/15/2008 9:48:41 AM * Revision: 7 *************** Subcircuits ***************** .subckt TransAmp in1 in2 out vbias Gnd Vdd *-------- Devices: SPICE.ORDER < 0 -------- * Design: OpAmp / Cell: TransAmp / View: Main / Page: * Designed by: Tanner EDA Library Development Team * Organization: Tanner EDA - Tanner Research, Inc. * Info: Transconductance Amplifier * Date: 10/15/2008 9:24:13 AM * Revision: 4 *-------- Devices: SPICE.ORDER > 0 -------- MMN1 vm1 in1 vn1 0 NMOS25 W=2u L=2u AS=1.8p PS=5.8u AD=1.8p PD=5.8u MMN2 out in2 vn1 0 NMOS25 W=2u L=2u AS=1.8p PS=5.8u AD=1.8p PD=5.8u MMN3 vn1 vbias Gnd 0 NMOS25 W=2u L=3u AS=1.8p PS=5.8u AD=1.8p PD=5.8u MMP1 vm1 vm1 Vdd Vdd PMOS25 W=2u L=2u AS=1.8p PS=5.8u AD=1.8p PD=5.8u MMP2 out vm1 Vdd Vdd PMOS25 W=2u L=2u AS=1.8p PS=5.8u AD=1.8p PD=5.8u .ends .subckt OpAmp Out in1 in2 vbias Gnd Vdd *-------- Devices: SPICE.ORDER < 0 -------- * Design: OpAmp / Cell: OpAmp / View: Main / Page: * Designed by: Tanner EDA Library Development Team * Organization: Tanner EDA - Tanner Research, Inc. * Info: Operational Amplifier * Date: 10/15/2008 9:24:13 AM * Revision: 54 *-------- Devices: SPICE.ORDER == 0 -------- XX1 in1 in2 vf1 vbias Gnd Vdd TransAmp *-------- Devices: SPICE.ORDER > 0 -------- CComp vf1 Out 200f MMN1 Out vbias Gnd 0 NMOS25 W=3u L=2u AS=2.7p PS=7.8u AD=2.7p PD=7.8u

Page 27: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

26

MMP1 Out vf1 Vdd Vdd PMOS25 W=6u L=2u AS=5.4p PS=13.8u AD=5.4p PD=13.8u .ends ********* Simulation Settings - Parameters and SPICE Options ********* .param Vpwr = 3.3v *-------- Devices: SPICE.ORDER == 0 -------- XX1 Out in1 in2 Bias Gnd Vdd OpAmp *-------- Devices: SPICE.ORDER > 0 -------- CCout Out Gnd 200f VVcm in2 Gnd DC Vpwr/2 VVbias Bias Gnd DC 700m VVpwrPos Vdd Gnd DC Vpwr VVdiff in1 in2 DC 0 AC 1 0 .PRINT AC Vdb(Out) .PRINT AC Vp(Out) .PRINT NOISE INOISE .PRINT NOISE ONOISE .PRINT NOISE TRANSFER dn(XX1.XX1.MMN3) .MEASURE AC Gain<db> MAX vdb(Out) ON .MEASURE AC PhaseMargin<deg> FIND 'vp(Out)' WHEN vdb(Out)=0 ON .MEASURE AC UnityGainFrequency<Hz> WHEN Vdb(Out)=0 ON .MEASURE AC MeasureGainBandwidthProduct_1_Gain MAX vdb(Out) OFF .MEASURE AC MeasureGainBandwidthProduct_1_UGFreq WHEN Vdb(Out)=0 OFF .MEASURE AC GainBandwidth<Hz> PARAM='MeasureGainBandwidthProduct_1_Gain*MeasureGainBandwidthProduct_1_UGFreq' ON .MEASURE NOISE InputNoise<nv/Hz^0.5> FIND 'inoise/1E-9' WHEN Vdb(Out)=0 ON ********* Simulation Settings - Analysis section ********* .op .ac dec 10 1 100Meg .noise v(Out) VVdiff 5 ********* Simulation Settings - Additional SPICE commands ********* .end Three voltage sources (in addition to Vdd) are defined. Vdiff sets the DC voltage difference between nodes “in2” and “in1” to 0 volts. The AC magnitude is 1 volt and its AC phase is 0 degrees. Vcm sets node “in2” to 2 volts, relative to GND. Vbias sets node “vbias” to 700 millevolts, relative to GND. The .ac command performs an AC analysis. Following the .ac keyword is information concerning the frequencies to be swept during the analysis. In this case, the frequency is swept logarithmically, by decades (dec); 10 data points are to be included per decade; the

Page 28: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

27

starting frequency is 1 Hz and the ending frequency is 100 MHz. The .PRINT command writes the voltage magnitude (in decibels) and phase (in degrees), respectively, for the node “Out” to the specified file. The other print and measurement commands are discussed in alternate examples. 1.19.1.2. Output

The AC simulation will result in AC small-signal model parameters being written to the output file, in addition to all output generated from the .print statements.

Page 29: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

28

Section 1.20 Parameterized_NAND

DesignType: Digital Features: S-Edit

T-Spice – Analysis Examples – Transient Section 1.20.1 Using Subcircuits

S-Edit Design: \Designs\Parameterized_NAND\Parameterized_NAND.tanner T-Spice Netlist: \Designs\Parameterized_NAND\SimulationResults\SubcircuitTRAN.spCell: Subcircuit_TestBench Subcircuit definitions allow arbitrarily complex arrangements of nodes and devices to be easily reused multiple times in a circuit. A subcircuit definition in S-Edit is contained within a cell definition, and is comprised of both a schematic view and a symbol view. Each instance of the symbol encapsulates the subcircuit schematic, allowing a simple but complete representation of subcircuit dynamics. This example uses a NAND gate to illustrate the use of subcircuit definitions and subcircuit parameters. An instance of the subcircuit NAND2C is created in the schematic and labeled X1. To access NAND2C from the main schematic, double-click on the NAND2C item in the Libraries list.

Page 30: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

29

As discussed in DC Operating Point Analysis, symbol properties are used to define component properties such as length and width. This example introduces a new symbol property, SPICE.PARAMETERS, which allows parameters to be passed through a hierarchical netlist. The symbol that represents NAND2C has the SPICE parameter property:

SPICE.PARAMETER = L= NW= PW= This property specifies that the cell properties L, NW, and PW are subcircuit parameters of NAND2C. The cell also contains the three additional property definitions:

L = 0.5u NW = 4.0u PW = 8.0u

These parameters define properties of all n-channel and p-channel MOSFETS within the subcircuit such that L represents the length property of both n- and p-channel MOSFETS, NW represents n-channel width and PW represents p-channel width. Attaching these parameters to NAND2C allows component properties within the subcircuit definition to be controlled in the subcircuit call. 1.20.1.1. T-Spice Input

********* Simulation Settings - General section ********* .option search="…\TannerToolsShippingFiles.NEW\Process\Generic250nm\Generic250nmTech" .probe .option probev .option probei .lib "Generic_025.lib" TT *-------- Devices: SPICE.ORDER < 0 -------- * Design: Parameterized_NAND / Cell: Subcircuit_TestBench / View: Main / Page: * Designed by: Tanner EDA Library Development Team * Organization: Tanner EDA - Tanner Research, Inc. * Info: Testbench for subcircuit example * Date: 1/12/2009 10:57:20 AM * Revision: 9 *************** Subcircuits ***************** .subckt NAND2C A B Out Outbar Gnd Vdd L=0.5u NW=4.0u PW=8.0u *-------- Devices: SPICE.ORDER < 0 -------- * Design: Parameterized_NAND / Cell: NAND2C / View: Main / Page: * Designed by: Tanner EDA Library Development Team * Organization: Tanner EDA - Tanner Research, Inc. * Info: 2 Input NAND with complementary output. * Date: 1/12/2009 2:09:59 PM * Revision: 12 *-------- Devices: SPICE.ORDER == 0 --------

Page 31: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

30

MM4p Out B Vdd Vdd PMOS25 W=PW L=L M=2 AS='if(0, (650n*if(0,PW/1,PW)+floor(2/2)*750n*if(0,PW/1,PW)), (2*650n*if(0,PW/1,PW)+(floor(2/2)-1)*750n*if(0,PW/1,PW)))' PS='if(0, (2*650n+if(0,PW/1,PW)+if(0,PW/1,PW)*1+floor(2/2)*2*(750n+if(0,PW/1,PW)*1)), (2*2*650n+if(0,PW/1,PW)+if(0,PW/1,PW)*1+(floor(2/2)-1)*2*(750n+if(0,PW/1,PW)*1)))' AD='if(0, (650n*if(0,PW/1,PW)+floor(2/2)*750n*if(0,PW/1,PW)), floor(2/2)*750n*if(0,PW/1,PW))' PD='if(0, (2*650n+if(0,PW/1,PW)+if(0,PW/1,PW)*1+floor(2/2)*2*(750n+if(0,PW/1,PW)*1)), floor(2/2)*2*(750n+if(0,PW/1,PW)*1))' MM2n Out A 1 0 NMOS25 W=NW L=L AS='if(1, (650n*if(0,NW/1,NW)+floor(1/2)*750n*if(0,NW/1,NW)), (2*650n*if(0,NW/1,NW)+(floor(1/2)-1)*750n*if(0,NW/1,NW)))' PS='if(1, (2*650n+if(0,NW/1,NW)+if(0,NW/1,NW)*1+floor(1/2)*2*(750n+if(0,NW/1,NW)*1)), (2*2*650n+if(0,NW/1,NW)+if(0,NW/1,NW)*1+(floor(1/2)-1)*2*(750n+if(0,NW/1,NW)*1)))' AD='if(1, (650n*if(0,NW/1,NW)+floor(1/2)*750n*if(0,NW/1,NW)), floor(1/2)*750n*if(0,NW/1,NW))' PD='if(1, (2*650n+if(0,NW/1,NW)+if(0,NW/1,NW)*1+floor(1/2)*2*(750n+if(0,NW/1,NW)*1)), floor(1/2)*2*(750n+if(0,NW/1,NW)*1))' MM3p Out A Vdd Vdd PMOS25 W=PW L=L M=2 AS='if(0, (650n*if(0,PW/1,PW)+floor(2/2)*750n*if(0,PW/1,PW)), (2*650n*if(0,PW/1,PW)+(floor(2/2)-1)*750n*if(0,PW/1,PW)))' PS='if(0, (2*650n+if(0,PW/1,PW)+if(0,PW/1,PW)*1+floor(2/2)*2*(750n+if(0,PW/1,PW)*1)), (2*2*650n+if(0,PW/1,PW)+if(0,PW/1,PW)*1+(floor(2/2)-1)*2*(750n+if(0,PW/1,PW)*1)))' AD='if(0, (650n*if(0,PW/1,PW)+floor(2/2)*750n*if(0,PW/1,PW)), floor(2/2)*750n*if(0,PW/1,PW))' PD='if(0, (2*650n+if(0,PW/1,PW)+if(0,PW/1,PW)*1+floor(2/2)*2*(750n+if(0,PW/1,PW)*1)), floor(2/2)*2*(750n+if(0,PW/1,PW)*1))' MM1n 1 B Gnd 0 NMOS25 W=NW L=L AS='if(1, (650n*if(0,NW/1,NW)+floor(1/2)*750n*if(0,NW/1,NW)), (2*650n*if(0,NW/1,NW)+(floor(1/2)-1)*750n*if(0,NW/1,NW)))' PS='if(1, (2*650n+if(0,NW/1,NW)+if(0,NW/1,NW)*1+floor(1/2)*2*(750n+if(0,NW/1,NW)*1)), (2*2*650n+if(0,NW/1,NW)+if(0,NW/1,NW)*1+(floor(1/2)-1)*2*(750n+if(0,NW/1,NW)*1)))' AD='if(1, (650n*if(0,NW/1,NW)+floor(1/2)*750n*if(0,NW/1,NW)), floor(1/2)*750n*if(0,NW/1,NW))' PD='if(1, (2*650n+if(0,NW/1,NW)+if(0,NW/1,NW)*1+floor(1/2)*2*(750n+if(0,NW/1,NW)*1)), floor(1/2)*2*(750n+if(0,NW/1,NW)*1))' MM5n Outbar Out Gnd 0 NMOS25 W=NW L=L AS='if(1, (650n*if(0,NW/1,NW)+floor(1/2)*750n*if(0,NW/1,NW)), (2*650n*if(0,NW/1,NW)+(floor(1/2)-1)*750n*if(0,NW/1,NW)))' PS='if(1, (2*650n+if(0,NW/1,NW)+if(0,NW/1,NW)*1+floor(1/2)*2*(750n+if(0,NW/1,NW)*1)), (2*2*650n+if(0,NW/1,NW)+if(0,NW/1,NW)*1+(floor(1/2)-1)*2*(750n+if(0,NW/1,NW)*1)))' AD='if(1, (650n*if(0,NW/1,NW)+floor(1/2)*750n*if(0,NW/1,NW)), floor(1/2)*750n*if(0,NW/1,NW))' PD='if(1, (2*650n+if(0,NW/1,NW)+if(0,NW/1,NW)*1+floor(1/2)*2*(750n+if(0,NW/1,NW)*1)), floor(1/2)*2*(750n+if(0,NW/1,NW)*1))' MM6p Outbar Out Vdd Vdd PMOS25 W=PW L=L M=2 AS='if(0, (650n*if(0,PW/1,PW)+floor(2/2)*750n*if(0,PW/1,PW)),

Page 32: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

31

(2*650n*if(0,PW/1,PW)+(floor(2/2)-1)*750n*if(0,PW/1,PW)))' PS='if(0, (2*650n+if(0,PW/1,PW)+if(0,PW/1,PW)*1+floor(2/2)*2*(750n+if(0,PW/1,PW)*1)), (2*2*650n+if(0,PW/1,PW)+if(0,PW/1,PW)*1+(floor(2/2)-1)*2*(750n+if(0,PW/1,PW)*1)))' AD='if(0, (650n*if(0,PW/1,PW)+floor(2/2)*750n*if(0,PW/1,PW)), floor(2/2)*750n*if(0,PW/1,PW))' PD='if(0, (2*650n+if(0,PW/1,PW)+if(0,PW/1,PW)*1+floor(2/2)*2*(750n+if(0,PW/1,PW)*1)), floor(2/2)*2*(750n+if(0,PW/1,PW)*1))' .ends ********* Simulation Settings - Parameters and SPICE Options ********* .param Vpwr = 3.3v *-------- Devices: SPICE.ORDER == 0 -------- XX1 A N_1 Out N_2 Gnd Vdd NAND2C L=0.5u NW=4.0u PW=8.0u *-------- Devices: SPICE.ORDER > 0 -------- VVb N_1 Gnd DC 5 VVpower Vdd Gnd DC Vpwr VVin A Gnd PULSE(0 Vpwr 0 1n 1n 49n 100n) .PRINT TRAN V(Out) .PRINT TRAN V(A) .PRINT TRAN V(X1/1) ********* Simulation Settings - Analysis section ********* .tran/Powerup 250p 300n ********* Simulation Settings - Additional SPICE commands ********* .end Subcircuits are defined by blocks of device statements bracketed with the .subckt and .ends commands, and instanced by statements beginning with the key letter X. The .subckt command includes the name of the subcircuit being defined (NAND2C), a list of terminals, and three subcircuit parameters. The terminals do not have a predefined order, but whatever order is used in the definition must be used in instances. Parameters can be written in any order in both the definition and the instances. If a parameter value is not specified in the instance the value in the definition is used as the default. Within the subcircuit definition, four MOSFETs are defined in the usual manner—and in these statements the order of terminals is important: drain–gate–source–bulk. Node 1 is the source of transistor MM2n and the drain of transistor MM1n. Subcircuit parameters, enclosed by single quotes, are used in place of numerical values.After the subcircuit is defined, you can create an instance of the subcircuit. The instance statement begins with the key letter X. The name of the instance, by which it is to be identified in the rest of the input file, is X1 (not "XX1.") The list of terminals in the instance statement must have the same order as on the first line of the

Page 33: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

32

subcircuit definition so that A B Out Gnd in the definition corresponds to Vin N_1 OUT Gnd in the instance. The next argument of the instance statement is the original subcircuit name NAND. The default subcircuit parameter values, as specified by the definition, are overridden by instancespecific value assignments, which can appear in any order. Any parameters omitted from the instance statement retains its default value. A standard DC operating point calculation (.OP) analysis is carried out on this circuit, with a duration of 300 nanoseconds and a maximum timestep of 250 picoseconds. The .param command sets the initial node voltages to 3.3 volts. The .PRINT command reports simulation results for the voltages at nodes Vin, OUT, and X1/N_1. 1.20.1.2. Output

Section 1.21 PLL-Behavioral

Section 1.22 Pseudo-random Bit Sequence-Verilog

Page 34: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

33

Section 1.23 ReadTextFile-Verilog

Section 1.24 Resonator

Section 1.25 RingOscillator

Section 1.26 RingOscillator-Behavioral

Section 1.27 RingVCO

Section 1.28 SpiceOutput

DesignType: Digital Features: S-Edit Section 1.28.1 SPICE Primitives

S-Edit Design: \Designs\SpiceOutput\SpiceOutput.tanner Cell: NMOS4, PMOS4, INV This example illustrates the use of the SPICE.OUTPUT property to output SPICE for a primitive device. A primitive device is the lowest level device, for which there is no schematic, and the output to SPICE is determined by the SPICE.OUTPUT property on the symbol. The symbol of cell NMOS4 (an NMOS transistor), view NMOS4, has several properties:

AD = ${W}*1.25u*${M} AS = ${W}*1.25u*${M}} L = 0.25u M = 1 Model = NMOS NRD = 0 NRS = 0 PD = 2*(${W}+1.25u)*${M} PS = 2*(${W}+1.25u)*${M} RDC = 0 RSC = 0 RSH = 0 W = 2.50u

A SPICE.OUTPUT property on the symbol specifies the SPICE call written for each instance of the symbol, and a SPICE.PRIMITIVE property set to “True” on the symbol indicates that

Page 35: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

34

the device is a primitive. The SPICE.OUTPUT and SPICE.PRIMITIVE properties for the symbol are as follows:

SPICE.OUTPUT = M${Name} %{D} %{G} %{S} %{B} ${Model} W=${W} L=${L} M=${M} AS=${AS} PS=${PS} AD=${AD} PD=${PD} SPICE.PRIMITIVE = True

The SPICE Export Control Property to enter when exporting SPICE is the name of the property that contains the sub properties OUTPUT and PRIMITIVE. In this case, the word “SPICE” is the Export Control property. Inspecting the SPICE.OUTPUT statement in detail, each element of the property is written out as follows:

M Write “M” literally ${Name} Write the name of the instance %{D}, %{G}, %{S}, %{B} Write the net names connected to pins D, G, S, and B ${Model} Write the value of the property “Model” on this instance W= Write “W=” literally ${W} Write the value of the property “W” on this instance L= Write “L=” literally ${L} Write the value of the property “L” on this instance M= Write “M=” literally ${M} Write the value of the property “M” on this instance AS= Write “AS=” literally ${AS} Write the value of the property “AS” on this instance PS= Write “PS=” literally ${PS} Write the value of the property “PS” on this instance AD= Write “AD=” literally ${AD} Write the value of the property “AD” on this instance PD= Write “PD=” literally ${PD} Write the value of the property “PD” on this instance

The symbol of cell PMOS4, view PMOS4, has similar properties and a similar SPICE.OUTPUT property as cell NMOS4, view NMOS4. Cell INV makes use of cells NMOS4, view NMOS4 and PMOS4, view PMOS4. The SPICE output for the schematic of INV is as follows: MP1 Out A Vdd Vdd PMOS W=2.5u L='0.25u-(10n*match)' M=1 AS=3.125p PS=7.5u AD=3.125p PD=7.5u MN1 Out A Gnd Gnd NMOS W=2.5u L='0.25u-(10n*match)' M=1 AS=3.125p PS=7.5u AD=3.125p PD=7.5u We can see the substitutions of the instance name, net names, and property values in each SPICE call line, according to the table above. An alternate method that may be used instead of defining one SPICE.OUTPUT property to specify the SPICE call is to define the SPICE.PREFIX, SPICE.PINORDER, SPICE.MODEL, and SPICE.PARAMETERS properties. These four properties when used in conjunction with each other will also specify the SPICE call written for each instance of the symbol. An example of this is shown in symbol NMOS4, view NMOS4_Expand. The SPICE.PREFIX, SPICE.PINORDER, SPICE.MODEL, and SPICE.PARAMETERS properties are as follows:

Page 36: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

35

SPICE.PREFIX = M SPICE.PINORDER = D G S B SPICE.MODEL = $Model SPICE.PARAMETERS = W= L= M~ AS= PS= AD= PD= NRD~ NRS~ RDC~ RSC~ RSH~

Inspecting the SPICE.PREFIX statement, the property is written out as follows: M Write “M” literally followed by the name of the instance

The output of SPICE.PREFIX will be followed by the SPICE.PINORDER statement, the SPICE.PINORDER property is written out as follows:

D G S B Write the net names connected to pins D, G, S, and B

The output of SPICE.PINORDER will be followed by the SPICE.MODEL statement, the SPICE.MODEL property is written out as follows:

$Model Write the value of the property “Model” on this instance

The output of SPICE.MODEL will be followed by the SPICE.PARAMETERS statement, the .PARAMETERS property is written out as follows:

W= Write “W=” literally followed by the value of the property “W” on this instance L= Write “L=” literally followed by the value of the property “L” on this instance M~ Write “M=” literally followed by the value of the property “M” on this instance

only if the value of M differs from its default value AS= Write “AS=” literally followed by the value of the property “AS” on this

instance PS= Write “PS=” literally followed by the value of the property “PS” on this

instance AD= Write “AD=” literally followed by the value of the property “AD” on this

instance PD= Write “PD=” literally followed by the value of the property “PD” on this

instance NRD~ Write “NRD=” literally followed by the value of the property “NRD” on this

instance only if the value of NRD differs from its default value NRS~ Write “NRS=” literally followed by the value of the property “NRS” on this

instance only if the value of NRS differs from its default value RDC~ Write “RDC=” literally followed by the value of the property “RDC” on this

instance only if the value of RDC differs from its default value RSC~ Write “RSC=” literally followed by the value of the property “RSC” on this

instance only if the value of RSC differs from its default value RSH~ Write “RSH=” literally followed by the value of the property “RSH” on this

instance only if the value of RSH differs from its default value

Section 1.28.2 Passing parameters down hierarchy

S-Edit Design: \Designs\SpiceOutput\SpiceOutput.tanner Cell: Top_Inverters

Page 37: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

36

This example illustrates how parameters can be passed down the hierarchy and written to SPICE. Cell Top_Inverters contains three instances of cell INV. The symbol for INV contains a property:

match=0 The first instance has no local override of match; the second instance has a local override:

match=1 The third instance has a local override:

match=2 The SPICE output for the schematic of Top_Inverters is as follows: .subckt INV A Out Gnd Vdd match=0 MP1 Out A Vdd Vdd PMOS W=2.5u L='0.25u-(10n*match)' M=1 AS=3.125p PS=7.5u AD=3.125p PD=7.5u MN1 Out A Gnd Gnd NMOS W=2.5u L='0.25u-(10n*match)' M=1 AS=3.125p PS=7.5u AD=3.125p PD=7.5u .ends XINV1 In Out1 Gnd Vdd INV match=0 XINV2 In Out2 Gnd Vdd INV match=1 XINV3 In Out3 Gnd Vdd INV match=2 Section 1.28.3 Subcircuits

S-Edit Design: \Designs\SpiceOutput\SpiceOutput.tanner Cell: Dig0, Dig1, Dig2, Top_Subcircuits This example illustrates how to use the SPICE.OUTPUT and SPICE.DEFINITION properties to control the SPICE output written for a subcircuit. A subcircuit is a symbol that is not a primitive. The symbol for cell Dig0 has no SPICE.OUTPUT or SPICE.DEFINITION properties. When no SPICE.DEFINITION property is present, the subcircuit definition will contain all pins listed in alphabetical order, with global ports listed last, also in alphabetical order. When no SPICE.OUTPUT property is present (nor the SPICE.PREFIX, SPICE.PINORDER, SPICE.MODEL, or SPICE.PARAMETERS properties), the SPICE written, corresponding to each symbol instance, will contain all pins followed by all interface parameters. An interface parameter is a parameter with sub-property:

IsInterface = True

Exporting SPICE for cell Top_Subcircuits, we see the definition and call for Dig0 appears as follows: .subckt Dig0 Clk Data<0> Data<1> Data<2> Data<3> Out<0> Out<1> Out<2> Out<3> Vdd .ends ...

Page 38: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

37

XXdig0 Clock A<0> A<1> A<2> A<3> BA<0> BA<1> BA<2> BA<3> PWR Dig0 Now consider cell Dig1. Cell Dig1 demonstrates the use of the SPICE.DEFINITION property to pass parameters to the definition of a subcircuit. The symbol for cell Dig1 has a SPICE.DEFINITION property as follows:

SPICE.DEFINITION = .subckt $Cell %% $$ Level = 5

Inspecting the SPICE.DEFINITION statement in detail, each element of the property is written out on the SPICE definition interface as follows:

subckt Write “.subckt” literally $Cell Write the name of the cell %% Write the names of the ports on the symbol in the default order. $$ Write all interface properties, written as “property_name1 = property_value1

…” Level = 5 Write “Level = 5” literally

Exporting the SPICE for cell Top_Subcircuits, we see the definition and call for Dig1 appears as follows: .subckt Dig1 Clk Data<0> Data<1> Data<2> Data<3> Out<0> Out<1> Out<2> Out<3> Vdd P1=10 P2=20 Level = 5 .ends ... XXdig1 Clock A<0> A<1> A<2> A<3> BB<0> BB<1> BB<2> BB<3> PWR Dig1 P1=10 P2=20 Now consider cell Dig2. Cell Dig2 demonstrates the use of the SPICE.OUTPUT and SPICE.DEFINITION properties to customize the pin order and to add special syntax to the definition and call for a subcircuit. The symbol for cell Dig2 has a SPICE.DEFINITION and SPICE.OUTPUT property as follows:

SPICE.DEFINITION = .subckt $Cell (%{Data<3:0>}) %{Vdd} %{Clk} (%{Out<0:3>}) SPICE.OUTPUT = X${Name} (%{Data<3:0>}) %{Vdd} %{Clk} (%{Out<0:3>}) $MasterCell

Inspecting the SPICE.DEFINITION statement in detail, each element of the property is written out on the SPICE definition interface as follows:

.subckt Write “.subckt” literally $Cell Write the name of the cell ( Write “(“ literally %{Data<3:0>} Write Data ports, reversing the default order ) Write “)” literally %{Vdd} Write Vdd port %{Clk} Write Clk port ( Write “(“ literally %{Out<0:3>} Write “Out” ports ) Write “)” literally

Page 39: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

38

Inspecting the SPICE.OUTOUT statement in detail, each element is similarly constructed. Exporting the SPICE for cell Top_Subcircuits, we see the definition and call for Dig2 appears as follows:

.subckt Dig2 (Data<3> Data<2> Data<1> Data<0>) Vdd Clk (Out<0> Out<1> Out<2> Out<3>) .ends ... XXdig2 (A<3> A<2> A<1> A<0>) PWR Clock (BC<0> BC<1> BC<2> BC<3>) Dig2

Page 40: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

39

Section 1.28.4 SPICE Export Control property

S-Edit Design: \Designs\SpiceOutput\SpiceOutput.tanner Cell: PMOS4 This example illustrates the use of the SPICE Export Control Property to control the SPICE output for a device. For a given device, one may want to define several SPICE output properties, for example a default property, a basic property, and a detailed property. Each property might have different parameters for different levels of simulation. The SPICE Export Control property determines which output property is used when writing out a SPICE netlist. When a list of property names is entered in the Export Control Property, SPICE will be written according to the first Export Control Property in the list that exists on the device being written. The Export Control Property can be set in the File > Export > Export SPICE… − Property Name field or in the Setup > SPICE Simulation… − Netlisting Options − SPICE Export Control Property field. Consider cell PMOS4 (a PMOS transistor), view PMOS4. Three SPICE.OUTPUT properties are defined, as shown below. The SPICE Export Control Properties for these Output properties are SPICE_BASIC, SPICE, and SPICE_DETAILED.

SPICE_BASIC.OUTPUT = M${Name} %{D} %{G} %{S} %{B} ${Model} W=${W} L=${L} SPICE.OUTPUT = M${Name} %{D} %{G} %{S} %{B} ${Model} W=${W} L=${L} M=${M} AS=${AS} PS=${PS} AD=${AD} PD=${PD} SPICE_DETAILED.OUTPUT = M${Name} %{D} %{G} %{S} %{B} ${Model} W=${W} L=${L} M=${M} AS=${AS} PS=${PS} AD=${AD} PD=${PD} NRD=${NRD} NRS=${NRS} RDC=${RDC} RSC=${RSC} RSH=${RSH}

If we export SPICE from cell INV, and enter SPICE_DETAILED, SPICE, SPICE_BASIC for the SPICE Control Property, we get the following output: MP1 Out A Vdd Vdd PMOS W=2.5u L='0.25u-(10n*match)' M=1 AS=3.125p PS=7.5u AD=3.125p PD=7.5u NRD=0 NRS=0 RDC=0 RSC=0 RSH=0 MN1 Out A Gnd Gnd NMOS W=2.5u L='0.25u-(10n*match)' M=1 AS=3.125p PS=7.5u AD=3.125p PD=7.5u The SPICE_DETAILED.OUTPUT property was used to export the PMOS4 instance because it was first in the SPICE Control Property list and it existed on the PMOS4 instance. No SPICE_DETAILED.OUTPUT property exists on the NMOS4 instance, so the next property in the list was used, which is the SPICE.OUTPUT property. If we export SPICE from cell INV, and enter SPICE_BASIC, SPICE for the SPICE Control Property, we get the following output: MP1 Out A Vdd Vdd PMOS W=2.5u L='0.25u-(10n*match)' MN1 Out A Gnd Gnd NMOS W=2.5u L='0.25u-(10n*match)' M=1 AS=3.125p PS=7.5u AD=3.125p PD=7.5u The SPICE_BASIC.OUTPUT property was used to export the PMOS4 instance because it was first in the SPICE Control Property list and was present on the PMOS4 instance. No

Page 41: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

40

SPICE_BASIC.OUTPUT property exists on the NMOS4 instance, so the next property in the list was used, which is the SPICE.OUTPUT property. If we export SPICE from Cell INV and enter only SPICE for the SPICE Control Property, we get the following output: MP1 Out A Vdd Vdd PMOS W=2.5u L='0.25u-(10n*match)' M=1 AS=3.125p PS=7.5u AD=3.125p PD=7.5u MN1 Out A Gnd Gnd NMOS W=2.5u L='0.25u-(10n*match)' M=1 AS=3.125p PS=7.5u AD=3.125p PD=7.5u The SPICE.OUTPUT property was used for both the PMOS4 and NMOS4 instances.

Section 1.29 Stimuli

Section 1.30 XOR

Section 2 Process

Section 2.1 Gallium Arsenide (GaAs)

Folder Path: \Process\ProcessName\GaAs\GaAsTech GaAs.tdb Description Description

Section 2.2 Generic 0.25um

Section 2.2.1 Analog Symbols Library

Folder Path: \Process\Generic250nm\Generic250nmAnalogLib Generic250nmAnalogLib.tanner Description Description Section 2.2.2 Device Symbols Library

Folder Path: \Process\Generic250nm\Generic250nmDevices Generic250nmDevices.tanner Description Description Section 2.2.3 I/O Pad Symbols Library

Page 42: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

41

Folder Path: \Process\Generic250nm\Generic250nmIO_Pads Generic250nmIO_Pads.tanner Description Description Section 2.2.4 Logic Gate Symbols Library

Folder Path: \Process\Generic250nm\Generic250nmLogicGates Generic250nmLogicGates.tanner Description Description Section 2.2.5 Technology Files

Folder Path: \Process\Generic250nm\Generic250nmTech Calibre025_4M.drc Description Dracula025_4M.drc Generic025umTCells.dll Generic_025.drf Generic_025.ext Generic_025.lib Generic_025.tdb Generic_025.tf Generic_025.xst Generic_025-Ant.cal Generic_025-Density.cal Generic_025-DRC.cal Generic_025-Ext.cal SpecialDevices.md Description

Section 2.3 MOSIS Scalable AMIS 0.8um

Folder Path: \Process\MOSIS_Scalable_AMIS_0800nm\ MOSIS_Scalable_AMIS_0800nmTech

mamin08.ext Description mamin08.tdb Description mamin08.xst Description Description

Section 2.4 MOSIS Scalable AMIS 1.2um

Page 43: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

42

Folder Path: \Process\MOSIS_Scalable_AMIS_1200nm\ MOSIS_Scalable_AMIS_1200nmTech

mamin12.ext Description mamin12.tdb Description mamin12.xst Description Description

Section 2.5 MOSIS Scalable HP 0.5um

Folder Path: \Process\MOSIS_Scalable_HP_500nm\ MOSIS_Scalable_HP_500nmTech

mhp_n05.ext Description mhp_n05.tdb Description mhp_n05.xst Description mhp_n05-soft.ext Description Description

Section 2.6 MOSIS Scalable Orbit 1.2um

Folder Path: \Process\MOSIS_Scalable_Orbit_1200nm\ MOSIS_Scalable_Orbit_1200nmTech

morbn12.ext Description morbn12.tdb Description morbn12.xst Description Description

Section 2.7 MOSIS Scalable Orbit 2.0um

Folder Path: \Process\MOSIS_Scalable_Orbit_2000nm\ MOSIS_Scalable_Orbit_2000nmTech

morb20cc.ext Description morbn20.ext Description morbn20.xst Description Description

Section 2.8 Native Orbit 1.2um

Folder Path: \Process\Orbit_1200nm\Orbit_1200nmTech orbtn12.ext Description orbtn12.tdb Description orbtn12.xst Description orbtp12.ext Description orbtp12.tdb Description orbtp12.xst Description

Page 44: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

43

Description

Section 2.9 Native Orbit 2.0um

Folder Path: \Process\Orbit_2000nm\Orbit_2000nmTech orbtn20.ext Description orbtn20.tdb Description orbtn20.xst Description orbtp20.ext Description orbtp20.tdb Description orbtp20.xst Description Description

Section 2.10 Generic Standard Libraries

Section 2.10.1 Device Symbols Library

Folder Path: \Process\StdLibraries\Devices Devices.tanner Description Description Section 2.10.2 Miscellaneous Symbols Library

Folder Path: \Process\StdLibraries\Misc Misc.tanner Description Description Section 2.10.3 SPICE Command Symbols Library

Folder Path: \Process\StdLibraries\SPICE_Commands SPICE_Commands.tanner Description Description Section 2.10.4 SPICE Element Symbols Library

Folder Path: \Process\StdLibraries\SPICE_Elements SPICE_Elements.tanner Description Description

Page 45: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

44

Section 3 Automated Operations

Section 3.1 S-Edit TCL Scripts

Section 3.1.1 Calculator - TK

TCL Script Path: \Features By Tool\S-Edit\Calculator_TK.tcl Section 3.1.2 Change Symbol Property Size

TCL Script Path: \Features By Tool\S-Edit\ChangeSymbolPropertySize.tcl Section 3.1.3 Change WhenNotEval Property

TCL Script Path: \Features By Tool\S-Edit\ChangeWhenNotEvalProperty.tcl Section 3.1.4 Copy Cells

TCL Script Path: \Features By Tool\S-Edit\CopyCells.tcl Section 3.1.5 Copy Cells – Traverse Hierarchy

TCL Script Path: \Features By Tool\S-Edit\CopyCells_Traverse.tcl Section 3.1.6 Delete Empty Schematic View

TCL Script Path: \Features By Tool\S-Edit\DeleteEmptySchematicView.tcl Section 3.1.7 Delete Property

TCL Script Path: \Features By Tool\S-Edit\DeleteProperty.tcl Section 3.1.8 Find Property on Instance - TK

TCL Script Path: \Features By Tool\S-Edit\FindInstance_TK.tcl Section 3.1.9 Find and Rename Instance

TCL Script Path: \Features By Tool\S-Edit\FindInstance_ModifyName.tcl Section 3.1.10 Change Port and Netlabels

TCL Script Path: \Features By Tool\S-Edit\TCLScripts\Fixup_Vdd_Labels.tcl This sample TCL script illustrates how to cycle over all schematic views in the design, and change all ports and netlabels called “vdd” to “VDD”. After loading the script, there are two functions:

Page 46: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

45

fix_vdd_names: Renames ports and net labels in the current cell from

“vdd” to “VDD” ForEachSchematicView Iterates through all schematic views in the database,

calling “fix_vdd_names” fixall: Calls “ForEachSchematicView” so that it will in-turn call

“fix_vdd_names” To run this script, first drag and drop it into the command window, then enter fixall to run the script. A full list of S-Edit TCL commands is available by typing help in the Command window. Help on any specific command, as well as a list of subcommands and options, can be obtained by entering the command name followed by -help.

Section 3.1.11 Force Callback

TCL Script Path: \Features By Tool\S-Edit\ForceCallback.tcl Section 3.1.12 Hello World - TK

TCL Script Path: \Features By Tool\S-Edit\ HelloWorld_TK.tcl Section 3.1.13 Resizing Text - TK

TCL Script Path: \Features By Tool\S-Edit\TCLScripts\ResizeText.tcl This sample TCL script illustrates how to cycle through all views in a design (schematic and symbol views) and modify the size of Ports, Netlabels, and Textlabels. It also shows how to use TK to write a dialog to enter parameters into a script. Note the use of the toplevel command to declare a window to write into. This is required for all TK scripts as the default toplevel window is the S-Edit application window, which the user is not permitted to modify. After loading the script by dragging-and-dropping it into the command window, the following dialog appears:

Enter appropriate text sizes, then press OK to resize Ports, Netlabels, and Textlabels in all views. A button to run the script can be created on a toolbar by removing the comment symbol (#) from the workspace command. Also comment out the ResizeText command so the script does not execute immediately when it is loaded, but only when the button is pressed.

Page 47: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

46

… workspace userbutton set ResizeText # ResizeText

The button can then be added to the toolbar by right-clicking the toolbar and selecting Customize…, selecting the Commands tab and then the category Custom. Drag the command Execute button text as Tcl to the location the button should appear on the toolbar. Right-Click the new button and change the name to ResizeText. To use the button the TCL script must first be loaded by dragging-and-dropping it into the command window.

If this is a commonly used script, it can be placed in the scripts\startup folder to automatically load when S-Edit starts up. The location of the startup folder is:

C:\Documents and Settings\<username>\Application Data\Tanner EDA\scripts\startup Scripts can also be loaded automatically whenever a design is opened, or when S-Edit is shutdown. The location of the folders for these scripts is: C:\Documents and Settings\<username>\Application Data\Tanner EDA\scripts\open.design C:\Documents and Settings\<username>\Application Data\Tanner EDA\scripts\shutdown

Section 3.2 L-Edit UPI Macros

Section 3.2.1 Add to Find

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\AddToFind\Filename.c Layout Path: \Features By Tool\L-Edit\UPIMacros\AddToFind\Filename.tdb Description Section 3.2.2 Boolean Operations

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\ BooleanOpSelectObjects\Filename.c

Layout Path: \Features By Tool\L-Edit\UPIMacros\ BooleanOpSelectObjects\Filename.tdb

Description

Page 48: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

47

Section 3.2.3 Capacitor

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\Capacitor\capacitr.c DLL Path: \Features By Tool\L-Edit\UPIMacros\Capacitor\release\capacitr.dll Description Section 3.2.4 Change Instance Name to Include Rotation Parameter

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\ ChangeInstanceNameToIncludeRotationParameter\Filename.c

Layout Path: \Features By Tool\L-Edit\UPIMacros\ ChangeInstanceNameToIncludeRotationParameter\Filename.tdb

DLL Path: \Features By Tool\L-Edit\UPIMacros\ ChangeInstanceNameToIncludeRotationParameter\Filename.dll

Description Section 3.2.5 Change Layer

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\ ChangeLayer\chnglayr.c.c

DLL Path: \Features By Tool\L-Edit\UPIMacros\ ChangeLayer\release\chnglayr.dll.dll

Description Section 3.2.6 Change Layer and Duplicate

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\ ChangeLayerAndDuplicate\Filename.c

Layout Path: \Features By Tool\L-Edit\UPIMacros\ ChangeLayerAndDuplicate\Filename.tdb

DLL Path: \Features By Tool\L-Edit\UPIMacros\ ChangeLayerAndDuplicate\release\Filename.dll

Description Section 3.2.7 Change Layer and Grow

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\ ChangeLayerAndGrow\Filename.c

Layout Path: \Features By Tool\L-Edit\UPIMacros\ ChangeLayerAndGrow\Filename.tdb

DLL Path: \Features By Tool\L-Edit\UPIMacros\ ChangeLayerAndGrow\release\Filename.dll

Description Section 3.2.8 Create Contact

Page 49: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

48

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\Contact\Contact.c Description Section 3.2.9 Copy Layer Rendering

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\ CopyRendering\Filename.c

Layout Path: \Features By Tool\L-Edit\UPIMacros\ CopyRendering\Filename.tdb

DLL Path: \Features By Tool\L-Edit\UPIMacros\ CopyRendering\release\Filename.dll

Description Section 3.2.10 Create Derived Layer

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\ CreateDerivedLayer\Filename.c

Layout Path: \Features By Tool\L-Edit\UPIMacros\ CreateDerivedLayer\Filename.tdb

DLL Path: \Features By Tool\L-Edit\UPIMacros\ CreateDerivedLayer\release\Filename.dll

Description Section 3.2.11 Delete Layer

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\DeleteLayer\Filename.c Layout Path: \Features By Tool\L-Edit\UPIMacros\DeleteLayer\Filename.tdb DLL Path: \Features By Tool\L-Edit\UPIMacros\DeleteLayer\release\Filename.dll Description Section 3.2.12 Dialog Examples

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\DialogExamples\Filename.c Layout Path: \Features By Tool\L-Edit\UPIMacros\DialogExamples\Filename.tdb DLL Path: \Features By Tool\L-Edit\UPIMacros\

DialogExamples\release\Filename.dll Description Section 3.2.13 Gear

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\Gear\Filename.c Layout Path: \Features By Tool\L-Edit\UPIMacros\Gear\Filename.tdb DLL Path: \Features By Tool\L-Edit\UPIMacros\Gear\release\Filename.dll Description

Page 50: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

49

Section 3.2.14 Generate Derived Layer in Subcell

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\ GenerateDerivedLayerInSubCell\Filename.c

Layout Path: \Features By Tool\L-Edit\UPIMacros\ GenerateDerivedLayerInSubCell\Filename.tdb

DLL Path: \Features By Tool\L-Edit\UPIMacros\ GenerateDerivedLayerInSubCell\release\Filename.dll

Description Section 3.2.15 Goto

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\goto\goto.c DLL Path: \Features By Tool\L-Edit\UPIMacros\goto\release\goto.dll Description Section 3.2.16 Grow Via

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\GrowVia\Filename.c Layout Path: \Features By Tool\L-Edit\UPIMacros\GrowVia\Filename.tdb DLL Path: \Features By Tool\L-Edit\UPIMacros\GrowVia\release\Filename.dll Description Section 3.2.17 Hello World

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\HelloWorld\HelloWorld.c DLL Path: \Features By Tool\L-Edit\UPIMacros\HelloWorld\

Release-VC6\HelloWorld-VC6.dll Description Section 3.2.18 Hide Layer with GDS DataType = 1

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\ HideLayerWithGDSDataType1\Filename.c

Layout Path: \Features By Tool\L-Edit\UPIMacros\ HideLayerWithGDSDataType1\Filename.tdb

DLL Path: \Features By Tool\L-Edit\UPIMacros\ HideLayerWithGDSDataType1\release\Filename.dll

Description Section 3.2.19 Hierarchical Instance Location

Page 51: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

50

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\ HierarchicalInstanceLocation\Filename.c

Layout Path: \Features By Tool\L-Edit\UPIMacros\ HierarchicalInstanceLocation\Filename.tdb

DLL Path: \Features By Tool\L-Edit\UPIMacros\ HierarchicalInstanceLocation\release\Filename.dll

Description Section 3.2.20 Import GDS Copy Cell

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\ImportGDSCopyCell\Filename.c Layout Path: \Features By Tool\L-Edit\UPIMacros\

ImportGDSCopyCell\Filename.tdb DLL Path: \Features By Tool\L-Edit\UPIMacros\

ImportGDSCopyCell\release\Filename.dll Description Section 3.2.21 Instance and Rotate a T-Cell

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\ Instance&RotateT-Cell\Filename.c

Layout Path: \Features By Tool\L-Edit\UPIMacros\ Instance&RotateT-Cell\Filename.tdb

DLL Path: \Features By Tool\L-Edit\UPIMacros\ Instance&RotateT-Cell\release\Filename.dll

Description Section 3.2.22 Instance a Cell

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\InstanceCell\Filename.c Layout Path: \Features By Tool\L-Edit\UPIMacros\InstanceCell\Filename.tdb DLL Path: \Features By Tool\L-Edit\UPIMacros\InstanceCell\release\Filename.dll Description Section 3.2.23 Interface

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\Interface\intrface.c DLL Path: \Features By Tool\L-Edit\UPIMacros\Interface\release\ intrface.dll Description Section 3.2.24 Drawing Mode Keyboard Shortcuts

Page 52: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

51

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\ Layer-DrawingMode Keyboard Shortcuts\Filename.c

Layout Path: \Features By Tool\L-Edit\UPIMacros\ Layer-DrawingMode Keyboard Shortcuts\Filename.tdb

DLL Path: \Features By Tool\L-Edit\UPIMacros\ Layer-DrawingMode Keyboard Shortcuts\release\Filename.dll

Description Section 3.2.25 MFC

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\MFC\mfcupi.cpp DLL Path: \Features By Tool\L-Edit\UPIMacros\MFC\release\mfcupi.dll Description Section 3.2.26 MOSFET

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\Mosfet\Mosfet.c Layout Path: \Features By Tool\L-Edit\UPIMacros\Mosfet\Filename.tdb DLL Path: \Features By Tool\L-Edit\UPIMacros\Mosfet\release\Filename.dll Description Section 3.2.27 Move

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\Move\move.c DLL Path: \Features By Tool\L-Edit\UPIMacros\Move\release\move.dll Description Section 3.2.28 Palette

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\Palette\Palette.c DLL Path: \Features By Tool\L-Edit\UPIMacros\Palette\release\Palette.dll Description Section 3.2.29 Perimeter

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\Perimeter\perimetr.c DLL Path: \Features By Tool\L-Edit\UPIMacros\Perimeter\release\perimetr.dll Description Section 3.2.30 Place Ports

Page 53: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

52

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\PlacePorts\Filename.c Layout Path: \Features By Tool\L-Edit\UPIMacros\PlacePorts\Filename.tdb DLL Path: \Features By Tool\L-Edit\UPIMacros\PlacePorts\release\Filename.dll Description Section 3.2.31 Polar Array

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\PolarArray\PolarArray.c DLL Path: \Features By Tool\L-Edit\UPIMacros\

PolarArray\VC++7\Release\PolarArray.dll Description Section 3.2.32 Port List

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\PortList\Filename.c Layout Path: \Features By Tool\L-Edit\UPIMacros\PortList\Filename.tdb DLL Path: \Features By Tool\L-Edit\UPIMacros\PortList\release\Filename.dll Description Section 3.2.33 Properties

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\Properties\Filename.c Layout Path: \Features By Tool\L-Edit\UPIMacros\Properties\Filename.tdb DLL Path: \Features By Tool\L-Edit\UPIMacros\Properties\release\Filename.dll Description Section 3.2.34 Read from Text File and Instance T-Cell

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\ ReadfromFileAndInstanceT-Cell\Filename.c

Layout Path: \Features By Tool\L-Edit\UPIMacros\ ReadfromFileAndInstanceT-Cell\Filename.tdb

DLL Path: \Features By Tool\L-Edit\UPIMacros\ ReadfromFileAndInstanceT-Cell\release\Filename.dll

Description Section 3.2.35 Rename Cell

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\RenameCell\Filename.c Layout Path: \Features By Tool\L-Edit\UPIMacros\RenameCell\Filename.tdb DLL Path: \Features By Tool\L-Edit\UPIMacros\RenameCell\release\Filename.dll Description Section 3.2.36 Resistor

Page 54: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

53

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\Resistor\Resistor.c DLL Path: \Features By Tool\L-Edit\UPIMacros\Resistor\release\Resistor.dll Description Section 3.2.37 Run L-Edit in Command Mode and Load a Macro

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\ RunL-EditCmdModeLoadMacro\Filename.c

Layout Path: \Features By Tool\L-Edit\UPIMacros\ RunL-EditCmdModeLoadMacro\Filename.tdb

DLL Path: \Features By Tool\L-Edit\UPIMacros\ RunL-EditCmdModeLoadMacro\release\Filename.dll

Description Section 3.2.38 Selected Polygon Vertex Summary Report

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\ SelectedPolygonVertexSummary\Filename.c

Layout Path: \Features By Tool\L-Edit\UPIMacros\ SelectedPolygonVertexSummary\Filename.tdb

DLL Path: \Features By Tool\L-Edit\UPIMacros\ SelectedPolygonVertexSummary\release\Filename.dll

Description Section 3.2.39 Set Layer Rendering

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\SetRendering\Filename.c Layout Path: \Features By Tool\L-Edit\UPIMacros\SetRendering\Filename.tdb DLL Path: \Features By Tool\L-Edit\UPIMacros\

SetRendering\release\Filename.dll Description Section 3.2.40 Spiral

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\Spiral\Spiral.c DLL Path: \Features By Tool\L-Edit\UPIMacros\Spiral\release\Spiral.dll Description Section 3.2.41 Spring

UPI Macro Path: \Features By Tool\L-Edit\UPIMacros\Spring\Spring.c DLL Path: \Features By Tool\L-Edit\UPIMacros\Spring\release\Spring.dll Description

Page 55: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

54

Section 3.3 L-Edit T-Cells

Section 3.3.1 Buffer

T-Cell Layout Path:

\Features By Tool\L-Edit\TCells\Buffer.tdb

Cell: BUFFER Generator Description Section 3.3.2 Change T-Cell Name

T-Cell Layout Path:

\Features By Tool\L-Edit\TCells\ChangeTCellName.tdb

Cell: Rules Description Section 3.3.3 Concentric Tori

T-Cell Layout Path:

\Features By Tool\L-Edit\TCells\ConcentricTori.tdb

Cell: Concentric Tori Description Section 3.3.4 Decoder

T-Cell Layout Path:

\Features By Tool\L-Edit\TCells\Decoder.tdb

Cell: Decoder Generator Description Section 3.3.5 Ellipse

T-Cell Layout Path:

\Features By Tool\L-Edit\TCells\Ellipse.tdb

Cell: Ellipse Generator Description Section 3.3.6 Layout Text Generator

T-Cell Layout Path:

\Features By Tool\L-Edit\TCells\LayoutText.tdb

Cell: LayoutText Generator Description

Page 56: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

55

Section 3.3.7 Matched Dual Capacitor Array

T-Cell Layout Path:

\Features By Tool\L-Edit\TCells\MatchedDualCapacitorArray.tdb

Cell: MatchedDualCapacitorArray Description Section 3.3.8 MOSFET

T-Cell Layout Path:

\Features By Tool\L-Edit\TCells\Mosfet.tdb

Cell: NFET Generator Description Section 3.3.9 Rounded Rectangle

T-Cell Layout Path:

\Features By Tool\L-Edit\TCells\RoundedRectangle.tdb

Cell: Rounded Rectangle Description Section 3.3.10 Segmented Tori

T-Cell Layout Path:

\Features By Tool\L-Edit\TCells\SegmentedTori.tdb

Cell: Segmented2Torii, SegmentedTest, SegmentedTest2, SegmentedTest3, SegmentedTest4, SegmentedTorus

Description Section 3.3.11 Spiral

T-Cell Layout Path:

\Features By Tool\L-Edit\TCells\Spiral.tdb

Cell: Spiral Generator Description Section 3.3.12 T-Cell Builder

T-Cell Layout Path:

\Features By Tool\L-Edit\TCells\T-CellBuilder.tdb

Cell: Contacts, MOSFET, Res Description Section 3.3.13 T-Cell Calls Another T-Cell

Page 57: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

56

T-Cell Layout Path:

\Features By Tool\L-Edit\TCells\T-CellCallsT-Cell.tdb

Cell: TCellCallTCell Description Section 3.3.14 Test Pattern Generator

T-Cell Layout Path:

\Features By Tool\L-Edit\TCells\TestPatternGen_v2.2.tdb

Cell: LineGrating, LineGratingVaryWidth, TestPatternGenerator Description

Section 3.4 L-Edit Bindkeys

Section 3.4.1 Cadence

Bindkey Path: \ Features By Tool\L-Edit\BindKeys\Cadence\Cadence.ini Description

Section 4 Additional Examples

Section 4.1 T-Spice External C Models

Section 4.1.1 Diode

C Model Path: \Features By Tool\T-Spice\External_C_Models\Diode Diode.c Description Diode.dll Description Diode_DLL.sp Description Diode_Interpreted.sp Description Description Section 4.1.2 MOS1

C Model Path: \Features By Tool\T-Spice\External_C_Models\MOS1\ mos1.c Description mos1.dll Description mos1_DLL.sp Description mos1_Interpreted.sp Description

Page 58: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

57

Description Section 4.1.3 Resistor

C Model Path: \Features By Tool\T-Spice\External_C_Models\Resistor\ resistor.c Description resistor.dll Description Resistor_DLL.sp Description Resistor_Interpreted.sp Description Description Section 4.1.4 Switch

C Model Path: \Features By Tool\T-Spice\External_C_Models\Switch\ switch.c Description switch.dll Description Switch_DLL.sp Description Switch_Interpreted.sp Description Description Section 4.1.5 VCO

C Model Path: \Features By Tool\T-Spice\External_C_Models\VCO\ vco.c Description vco.dll Description VCO_DLL.sp Description VCO_Interpreted.sp Description Description

Section 4.2 L-Edit Layer Setup

Section 4.2.1 Black Background

Layout Path: \Features By Tool\L-Edit\LayerSetup\BlackBackground.tdb Description Section 4.2.2 Multiple Vias

Layout Path: \Features By Tool\L-Edit\LayerSetup\Multivias.tdb Description

Page 59: Tanner Tools Examples Guide (Japanese)

Tanner Tools v15 – Examples Guide

58

Section 4.2.3 Pastel Colors

Layout Path: \Features By Tool\L-Edit\LayerSetup\Pastel.tdb Description Section 4.2.4 Stripes

Layout Path: \Features By Tool\L-Edit\LayerSetup\Stripe.tdb Description