talk kent symposium_2013_v01_for_web

56
Anomalous thermodynamic power laws in nodal superconductors arXiv:1302.2161 Bayan Mazidian 1,2 , Jorge Quintanilla 2,3 James F. Annett 1 , Adrian D. Hillier 2 1 University of Bristol 2 ISIS Facility, STFC Rutherford Appleton Laboratory 3 SEPnet and Hubbard Theory Consortium, University of Kent Functional Materials Symposium, University of Kent, Canterbury 2013 Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 1 / 39

Upload: jorge-quintanilla

Post on 06-Jul-2015

46 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Talk kent symposium_2013_v01_for_web

Anomalous thermodynamic power lawsin nodal superconductors

arXiv:1302.2161

Bayan Mazidian1,2, Jorge Quintanilla2,3

James F. Annett1, Adrian D. Hillier2

1University of Bristol2ISIS Facility, STFC Rutherford Appleton Laboratory

3SEPnet and Hubbard Theory Consortium, University of Kent

Functional Materials Symposium, University of Kent, Canterbury 2013

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 1 / 39

Page 2: Talk kent symposium_2013_v01_for_web

PRELUDE - Symmetry

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Unconventional superconductors

Ph

oto

: Ed

die

Hu

i-B

on

-Ho

a, w

ww

.sh

iro

mi.c

om

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: Ken

net

h G

. Lib

bre

cht,

sn

ow

flak

es.c

om

Unconventional superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: co

mm

on

s.w

ikim

edia

.org

Unconventional superconductors

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 2 / 39

Page 3: Talk kent symposium_2013_v01_for_web

PRELUDE - Symmetry

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Unconventional superconductors

Ph

oto

: Ed

die

Hu

i-B

on

-Ho

a, w

ww

.sh

iro

mi.c

om

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: Ken

net

h G

. Lib

bre

cht,

sn

ow

flak

es.c

om

Unconventional superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: co

mm

on

s.w

ikim

edia

.org

Unconventional superconductors

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 2 / 39

Page 4: Talk kent symposium_2013_v01_for_web

PRELUDE - Symmetry

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Unconventional superconductors

Ph

oto

: Ed

die

Hu

i-B

on

-Ho

a, w

ww

.sh

iro

mi.c

om

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: Ken

net

h G

. Lib

bre

cht,

sn

ow

flak

es.c

om

Unconventional superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: co

mm

on

s.w

ikim

edia

.org

Unconventional superconductors

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 2 / 39

Page 5: Talk kent symposium_2013_v01_for_web

PRELUDE - Symmetry

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Unconventional superconductors

Ph

oto

: Ed

die

Hu

i-B

on

-Ho

a, w

ww

.sh

iro

mi.c

om

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: Ken

net

h G

. Lib

bre

cht,

sn

ow

flak

es.c

om

Unconventional superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: co

mm

on

s.w

ikim

edia

.org

Unconventional superconductors

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 2 / 39

Page 6: Talk kent symposium_2013_v01_for_web

PRELUDE - Symmetry

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Unconventional superconductors

Ph

oto

: Ed

die

Hu

i-B

on

-Ho

a, w

ww

.sh

iro

mi.c

om

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: Ken

net

h G

. Lib

bre

cht,

sn

ow

flak

es.c

om

Unconventional superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: co

mm

on

s.w

ikim

edia

.org

Unconventional superconductors

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 2 / 39

Page 7: Talk kent symposium_2013_v01_for_web

PRELUDE - Topology

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 3 / 39

Page 8: Talk kent symposium_2013_v01_for_web

PRELUDE - Topology

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 3 / 39

Page 9: Talk kent symposium_2013_v01_for_web

PRELUDE - Topology

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 3 / 39

Page 10: Talk kent symposium_2013_v01_for_web

PRELUDE - Topology

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 3 / 39

Page 11: Talk kent symposium_2013_v01_for_web

Anomalous thermodynamic power laws in nodalsuperconductors

1 What are they?

2 How to get them

3 An example

4 Take-home message

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 4 / 39

Page 12: Talk kent symposium_2013_v01_for_web

Anomalous thermodynamic power laws in nodalsuperconductors

1 What are they?

2 How to get them

3 An example

4 Take-home message

Page 13: Talk kent symposium_2013_v01_for_web

Power laws in nodal superconductors

Low-temperature specific heat of a superconductor gives information on thespectrum of low-lying excitations:

Fully gapped Point nodes Line nodesCv ∼ e−∆/T Cv ∼ T 3 Cv ∼ T 2

This simple idea has been around for a while.1

Widely used to fit experimental data on unconventional superconductors.2

1Anderson & Morel (1961), Leggett (1975)2Sigrist, Ueda (’89), Annett (’90), MacKenzie & Maeno (’03)Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 6 / 39

Page 14: Talk kent symposium_2013_v01_for_web

Linear nodes

It all comes from the density of states: +

g (E ) ∼ En−1 ⇒ Cv ∼ T n

linearpoint node line node

∆2k = I1

(kx||

2 + ky||

2)

∆2k = I1kx

||2

g(E ) = E2

2(2π)2I1√

I2g(E ) = LE

(2π)3√I1√

I2n = 3 n = 2

Key assumption: linear increase of the gap away from the node

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 7 / 39

Page 15: Talk kent symposium_2013_v01_for_web

Linear nodes

It all comes from the density of states: +

g (E ) ∼ En−1 ⇒ Cv ∼ T n

linearpoint node line node

∆2k = I1

(kx||

2 + ky||

2)

∆2k = I1kx

||2

g(E ) = E2

2(2π)2I1√

I2g(E ) = LE

(2π)3√I1√

I2n = 3 n = 2

Key assumption: linear increase of the gap away from the node

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 7 / 39

Page 16: Talk kent symposium_2013_v01_for_web

Linear nodes

It all comes from the density of states: +

g (E ) ∼ En−1 ⇒ Cv ∼ T n

linearpoint node line node

∆2k = I1

(kx||

2 + ky||

2)

∆2k = I1kx

||2

g(E ) = E2

2(2π)2I1√

I2g(E ) = LE

(2π)3√I1√

I2n = 3 n = 2

Key assumption: linear increase of the gap away from the node

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 7 / 39

Page 17: Talk kent symposium_2013_v01_for_web

Shallow nodesRelax the linear assumption and we also get different exponents:

shallowpoint node line node

∆2k = I1(kx

||2 + ky

||2)2 ∆2

k = I1kx||

4

g(E ) = E2(2π)2√I1

√I2

g(E ) = L√

E

(2π)3I14

1√

I2n = 2 n = 1.5

Shallow point nodes first discussed (speculativebeamer reveal one at atimely) by Leggett [1979].A shallow point node may be required by symmetry e.g. the proposed E2upairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)].A shallow line node may result at the boundary between gapless and line nodebehaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. +

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 8 / 39

Page 18: Talk kent symposium_2013_v01_for_web

Shallow nodesRelax the linear assumption and we also get different exponents:

shallowpoint node line node

∆2k = I1(kx

||2 + ky

||2)2 ∆2

k = I1kx||

4

g(E ) = E2(2π)2√I1

√I2

g(E ) = L√

E

(2π)3I14

1√

I2n = 2 n = 1.5

Shallow point nodes first discussed (speculativebeamer reveal one at atimely) by Leggett [1979].A shallow point node may be required by symmetry e.g. the proposed E2upairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)].A shallow line node may result at the boundary between gapless and line nodebehaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. +

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 8 / 39

Page 19: Talk kent symposium_2013_v01_for_web

Shallow nodesRelax the linear assumption and we also get different exponents:

shallowpoint node line node

∆2k = I1(kx

||2 + ky

||2)2 ∆2

k = I1kx||

4

g(E ) = E2(2π)2√I1

√I2

g(E ) = L√

E

(2π)3I14

1√

I2n = 2 n = 1.5

Shallow point nodes first discussed (speculativebeamer reveal one at atimely) by Leggett [1979].A shallow point node may be required by symmetry e.g. the proposed E2upairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)].A shallow line node may result at the boundary between gapless and line nodebehaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. +

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 8 / 39

Page 20: Talk kent symposium_2013_v01_for_web

Line crossings

A different power law is expected at line crossings(e.g. d-wave pairing on a spherical Fermi surface):

crossingof linear line nodes

∆2k = I1

(kx||

2 − ky||

2)2

or I1kx||

2ky||

2

g(E ) =

E (1+2ln| L+√

E/I141

√E/I

141

|)

(2π)3√I1I2∼ E0.8

n = 1.8 (< 2 !!)

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 9 / 39

Page 21: Talk kent symposium_2013_v01_for_web

Crossing of shallow line nodesWhen shallow lines cross we get an even lower exponent:

crossingof shallow line nodes

∆2k = I1

(kx||

2 − ky||

2)4

or I1kx||

4ky||

4

g (E ) =

√E (1+2ln| L+E

14 /I

181

E14 /I

181

|)

(2π)3I14

1√

I2∼ E0.4

n = 1.4 *

* c.f. gapless excitations of a Fermi liquid: g (E ) = constant⇒ n = 1+

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 10 / 39

Page 22: Talk kent symposium_2013_v01_for_web

Anomalous thermodynamic power laws in nodalsuperconductors

1 What are they?

2 How to get them

3 An example

4 Take-home message

Page 23: Talk kent symposium_2013_v01_for_web

A generic mechanismMore generically, we expect this to happen at topological phase transitions insuperocnductors with multi-component order parameters:

∆ 0

∆ 1Fermi Sea

∆ 0

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 12 / 39

Page 24: Talk kent symposium_2013_v01_for_web

A generic mechanismMore generically, we expect this to happen at topological phase transitions insuperocnductors with multi-component order parameters:

∆ 1Fermi Sea

∆ 0

Sha

llow

no

de

Sha

llow

no

de

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 13 / 39

Page 25: Talk kent symposium_2013_v01_for_web

A generic mechanismMore generically, we expect this to happen at topological phase transitions insuperocnductors with multi-component order parameters:

∆ 1Fermi Sea

∆ 0

Line

ar

node

s

Line

ar

node

sJorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 14 / 39

Page 26: Talk kent symposium_2013_v01_for_web

Anomalous thermodynamic power laws in nodalsuperconductors

1 What are they?

2 How to get them

3 An example

4 Take-home message

Page 27: Talk kent symposium_2013_v01_for_web

Singlet-triplet mixing in noncentrosymmetricsuperconductors

Non-centrosymmetric superconductors are the multi-component orderparameter supercondcutors par excellence:

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

ˆ k 0 0

0 0

dx idy dz

dz dx idy

singlet

[ 0(k) even ]

triplet

[ d(k) odd ]

In practice, there is a varied phenomenology:Some are conventional (singlet) superconductors:BaPtSi33, Re3W4,...Others seem to be correlated triplet superconductors:LaNiC25 (c.f. centrosymmetric LaNiGa26), CePtr3Si (?) 7

3Batkova et al. JPCM (2010)4Zuev et al. PRB (2007)5Adrian D. Hillier, JQ and R. Cywinski PRL (2009)6Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012)7Bauer et al. PRL (2004)Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 16 / 39

Page 28: Talk kent symposium_2013_v01_for_web

Singlet-triplet mixing in noncentrosymmetricsuperconductors

Non-centrosymmetric superconductors are the multi-component orderparameter supercondcutors par excellence:

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

ˆ k 0 0

0 0

dx idy dz

dz dx idy

singlet

[ 0(k) even ]

triplet

[ d(k) odd ]

In practice, there is a varied phenomenology:

Some are conventional (singlet) superconductors:BaPtSi33, Re3W4,...Others seem to be correlated triplet superconductors:LaNiC25 (c.f. centrosymmetric LaNiGa26), CePtr3Si (?) 7

3Batkova et al. JPCM (2010)4Zuev et al. PRB (2007)5Adrian D. Hillier, JQ and R. Cywinski PRL (2009)6Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012)7Bauer et al. PRL (2004)Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 16 / 39

Page 29: Talk kent symposium_2013_v01_for_web

Singlet-triplet mixing in noncentrosymmetricsuperconductors

Non-centrosymmetric superconductors are the multi-component orderparameter supercondcutors par excellence:

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

ˆ k 0 0

0 0

dx idy dz

dz dx idy

singlet

[ 0(k) even ]

triplet

[ d(k) odd ]

In practice, there is a varied phenomenology:Some are conventional (singlet) superconductors:BaPtSi33, Re3W4,...Others seem to be correlated triplet superconductors:LaNiC25 (c.f. centrosymmetric LaNiGa26), CePtr3Si (?) 7

3Batkova et al. JPCM (2010)4Zuev et al. PRB (2007)5Adrian D. Hillier, JQ and R. Cywinski PRL (2009)6Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012)7Bauer et al. PRL (2004)Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 16 / 39

Page 30: Talk kent symposium_2013_v01_for_web

Li2PdxPt3−xB:A superconductor with tunable singlet-triplet mixingThe Li2PdxPt3−xB family (0 ≤ x ≤ 3; cubic point group O) provides a tunablerealisation of this singlet-triplet mixing:

Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K)Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K)

Experimentally, the series is found to gofrom fully-gapped (x = 3) to nodalbehaviour (x = 0):

H.Q. Yuan et al.,Phys. Rev. Lett. 97, 017006 (2006).

NMR suggests the nodal state is atriplet:

M.Nishiyama et al.,Phys. Rev. Lett. 98, 047002 (2007)

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 17 / 39

Page 31: Talk kent symposium_2013_v01_for_web

Li2PdxPt3−xB:A superconductor with tunable singlet-triplet mixingThe Li2PdxPt3−xB family (0 ≤ x ≤ 3; cubic point group O) provides a tunablerealisation of this singlet-triplet mixing:

Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K)Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K)

Experimentally, the series is found to gofrom fully-gapped (x = 3) to nodalbehaviour (x = 0):

H.Q. Yuan et al.,Phys. Rev. Lett. 97, 017006 (2006).

NMR suggests the nodal state is atriplet:

M.Nishiyama et al.,Phys. Rev. Lett. 98, 047002 (2007)

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 17 / 39

Page 32: Talk kent symposium_2013_v01_for_web

Li2PdxPt3−xB:A superconductor with tunable singlet-triplet mixingThe Li2PdxPt3−xB family (0 ≤ x ≤ 3; cubic point group O) provides a tunablerealisation of this singlet-triplet mixing:

Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K)Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K)

Experimentally, the series is found to gofrom fully-gapped (x = 3) to nodalbehaviour (x = 0):

H.Q. Yuan et al.,Phys. Rev. Lett. 97, 017006 (2006).

NMR suggests the nodal state is atriplet:

M.Nishiyama et al.,Phys. Rev. Lett. 98, 047002 (2007)

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 17 / 39

Page 33: Talk kent symposium_2013_v01_for_web

Li2PdxPt3−xB:A superconductor with tunable singlet-triplet mixingThe Li2PdxPt3−xB family (0 ≤ x ≤ 3; cubic point group O) provides a tunablerealisation of this singlet-triplet mixing:

Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K)Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K)

Experimentally, the series is found to gofrom fully-gapped (x = 3) to nodalbehaviour (x = 0):

H.Q. Yuan et al.,Phys. Rev. Lett. 97, 017006 (2006).

NMR suggests the nodal state is atriplet:

M.Nishiyama et al.,Phys. Rev. Lett. 98, 047002 (2007)

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 17 / 39

Page 34: Talk kent symposium_2013_v01_for_web

Li2PdxPt3−xB: Phase diagram

Assume the order parameter corresponds to the most symmetric (A1)irreducible representation:

∆0 (k) = ∆0

d(k) = ∆0 × {A (x) (kx , ky , kz )− B (x)

[kx(k2

y + k2z), ky

(k2

z + k2x), kz(k2

x + k2y)]}

Treat A and B as in dependent tuning parameters and study quasiparticlespectrum.

+

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 18 / 39

Page 35: Talk kent symposium_2013_v01_for_web

Li2PdxPt3−xB: Phase diagramWe find a very rich phase diagram with topollogically-distinct phases.8

8C. Beri, PRB (2010); A. Schnyder, S. Ryu, PRB(R) (2011); A. Schnyder et al.,PRB (2012); B. Mazidian, JQ, A.D. Hillier, J.F. Annett, arXiv:1302.2161.

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 19 / 39

Page 36: Talk kent symposium_2013_v01_for_web

Li2PdxPt3−xB: Phase diagramWe find a very rich phase diagram with topollogically-distinct phases.9

9C. Beri, PRB (2010); A. Schnyder, S. Ryu, PRB(R) (2011); A. Schnyder et al.,PRB (2012); B. Mazidian, JQ, A.D. Hillier, J.F. Annett, arXiv:1302.2161.

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 20 / 39

Page 37: Talk kent symposium_2013_v01_for_web

Li2PdxPt3−xB: Phase diagram

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 21 / 39

Page 38: Talk kent symposium_2013_v01_for_web

Li2PdxPt3−xB: Phase diagram

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 22 / 39

Page 39: Talk kent symposium_2013_v01_for_web

Li2PdxPt3−xB: Phase diagram

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 23 / 39

Page 40: Talk kent symposium_2013_v01_for_web

Li2PdxPt3−xB: Phase diagram

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 24 / 39

Page 41: Talk kent symposium_2013_v01_for_web

Detecting the topological transitions

3 734

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 25 / 39

Page 42: Talk kent symposium_2013_v01_for_web

Detecting the topological transitions

3 734

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 26 / 39

Page 43: Talk kent symposium_2013_v01_for_web

Li2PdxPt3−xB: predicted specific heat power-laws

334

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 27 / 39

Page 44: Talk kent symposium_2013_v01_for_web

Li2PdxPt3−xB: predicted specific heat power-laws

jn = 2

n = 1.8

n = 1.4

n = 2

3

4

5

11

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 28 / 39

Page 45: Talk kent symposium_2013_v01_for_web

Li2PdxPt3−xB: predicted specific heat power-laws

3

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 29 / 39

Page 46: Talk kent symposium_2013_v01_for_web

Li2PdxPt3−xB: predicted specific heat power-laws

jn = 2

n = 1.8

n = 1.4

n = 2

3

4

5

11

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 30 / 39

Page 47: Talk kent symposium_2013_v01_for_web

Anomalous power laws throughout the phase diagrampPut these curves on a density plot:

The influence of the topological transition extends throughout the phasediagram (c.f. quantum critical endpoints)

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 31 / 39

Page 48: Talk kent symposium_2013_v01_for_web

Anomalous thermodynamic power laws in nodalsuperconductors

1 What are they?

2 How to get them

3 An example

4 Take-home message

Page 49: Talk kent symposium_2013_v01_for_web

Topological transitions in nodal superconductorshave clear signatures in bulk thermodynamic properties.

THANKS!

www.cond-mat.org

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 33 / 39

Page 50: Talk kent symposium_2013_v01_for_web

Topological transitions in nodal superconductorshave clear signatures in bulk thermodynamic properties.

THANKS!

www.cond-mat.org

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 33 / 39

Page 51: Talk kent symposium_2013_v01_for_web

ADDITIONAL INFORMATION

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 34 / 39

Page 52: Talk kent symposium_2013_v01_for_web

Power laws in nodal superconductors

Let’s remember where this came from:

Cv = T(

dSdT

)=

12kBT 2 ∑

k

Ek − T dEkdT︸︷︷︸≈0

Ek sech2 Ek2kBT︸ ︷︷ ︸

≈4e−Ek /KBT

∼ T−2∫

dEg (E )E2e−E/kBT at low T

g (E ) ∼ En−1 ⇒ Cv ∼ T−2T 1+2+n−1∫

dεε2+n−1e−ε︸ ︷︷ ︸a number

∼ T n

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 35 / 39

Page 53: Talk kent symposium_2013_v01_for_web

Power laws in nodal superconductors

Ek =√

ε2k + ∆2

k

≈√

I2k2⊥ + ∆

(kx|| , k

y||

)2

on the Fermi surface k||

x

k||

y

k|_ ∆(k

||

x,k||

y)

Compute density of states:

g(E ) =∫ ∫ ∫

δ(Ek − E )dkx dky dkz

Q.E.D.

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 36 / 39

Page 54: Talk kent symposium_2013_v01_for_web

Shallow line nodes in pnictides

back

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 37 / 39

Page 55: Talk kent symposium_2013_v01_for_web

Numerics

1

1.5

2

2.5

3

3.5

4

4.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

n

T / Tc

linear point nodeshallow point node

linear line nodecrossing of linear line nodes

shallow line nodecrossing of shallow line nodes

back

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 38 / 39

Page 56: Talk kent symposium_2013_v01_for_web

Li2PdxPt3−xB: Phase diagram

Bogoliubov Hamiltonian with Rashba spin-orbit coupling:

H(k) =(

h(k) ∆(k)∆†(k) −hT (−k)

)h(k) = εk I+ γk · σ

Assuming |εk| � |γk| � |d (k)| the quasi-particle spectrum is

E = ±√(εk − µ± |γk |)2 + |∆0 ± d(k)|2.

Take the most symmetric (A1) irreducible representation

d(k)/∆0 = A (X ,Y ,Z )− B(X(Y 2 + Z2) ,Y (Z2 + X2) ,Z (X2 + Y 2))

back

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 39 / 39