talk 3: nonadiabatic dynamics including triplet states · 2018-01-04 · f. plasser nonadiabatic...

30
Intro Electronic Structure Dynamics SHARC Talk 3: Nonadiabatic dynamics including triplet states Felix Plasser Institute for Theoretical Chemistry, University of Vienna Helsinki, 19 December 2017 F. Plasser Nonadiabatic dynamics 1 / 30

Upload: others

Post on 13-Mar-2020

3 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Talk 3: Nonadiabatic dynamics including triplet states · 2018-01-04 · F. Plasser Nonadiabatic dynamics 16 / 30. IntroElectronic StructureDynamicsSHARC Nonadiabatic couplingSpin-orbit

Intro Electronic Structure Dynamics SHARC

Talk 3:Nonadiabatic dynamics including triplet states

Felix Plasser

Institute for Theoretical Chemistry, University of Vienna

Helsinki, 19 December 2017

F. Plasser Nonadiabatic dynamics 1 / 30

Page 2: Talk 3: Nonadiabatic dynamics including triplet states · 2018-01-04 · F. Plasser Nonadiabatic dynamics 16 / 30. IntroElectronic StructureDynamicsSHARC Nonadiabatic couplingSpin-orbit

Intro Electronic Structure Dynamics SHARC

Introduction

Dynamics on coupled potentialenergy surfaces (PES)

I Photon absorptionI Motion on the PESI Transitions between different PES- Internal conversion(same multiplicity)

- Intersystem crossing(different multiplicity)

GoalI Learn how to simulate these

processes→ Electronic structure ingredients→ Dynamics simulations

F. Plasser Nonadiabatic dynamics 2 / 30

Page 3: Talk 3: Nonadiabatic dynamics including triplet states · 2018-01-04 · F. Plasser Nonadiabatic dynamics 16 / 30. IntroElectronic StructureDynamicsSHARC Nonadiabatic couplingSpin-orbit

Intro Electronic Structure Dynamics SHARC Nonadiabatic coupling Spin-orbit coupling

Photon absorption

I Absorption intensity determined by

Transition dipole moment

µ0I = 〈Ψ0| µ |ΨI〉

, Readily available, Computationally cheap

F. Plasser Nonadiabatic dynamics 3 / 30

Page 4: Talk 3: Nonadiabatic dynamics including triplet states · 2018-01-04 · F. Plasser Nonadiabatic dynamics 16 / 30. IntroElectronic StructureDynamicsSHARC Nonadiabatic couplingSpin-orbit

Intro Electronic Structure Dynamics SHARC Nonadiabatic coupling Spin-orbit coupling

Motion on the PES

I Motion on the PES determined by

Electronic energy gradient

∇EI = ∇〈ΨI | H |ΨI〉

, Readily available/ Cost per gradient ≈ energy evaluation

F. Plasser Nonadiabatic dynamics 4 / 30

Page 5: Talk 3: Nonadiabatic dynamics including triplet states · 2018-01-04 · F. Plasser Nonadiabatic dynamics 16 / 30. IntroElectronic StructureDynamicsSHARC Nonadiabatic couplingSpin-orbit

Intro Electronic Structure Dynamics SHARC Nonadiabatic coupling Spin-orbit coupling

Transitions between PES

Different coupling termsI Nonadiabatic couplingI Spin-orbit couplingI Coupling to an external fieldI ...→ Surface hopping with arbitrary couplings (SHARC)

F. Plasser Nonadiabatic dynamics 5 / 30

Page 6: Talk 3: Nonadiabatic dynamics including triplet states · 2018-01-04 · F. Plasser Nonadiabatic dynamics 16 / 30. IntroElectronic StructureDynamicsSHARC Nonadiabatic couplingSpin-orbit

Intro Electronic Structure Dynamics SHARC Nonadiabatic coupling Spin-orbit coupling

Nonadiabatic coupling

Potential curveI Selenocroleine- Twist around double bond- T2/T1

I T1 - Two minima:nπ∗ and ππ∗ character

I States cross around 55◦

I T1 and T2 exchange character

y z

x

Se

C

C

C

H

H

HH

Se

C

C

1 F. Plasser et al. J. Chem. Theory Comput. 2016, 12, 1207.F. Plasser Nonadiabatic dynamics 6 / 30

Page 7: Talk 3: Nonadiabatic dynamics including triplet states · 2018-01-04 · F. Plasser Nonadiabatic dynamics 16 / 30. IntroElectronic StructureDynamicsSHARC Nonadiabatic couplingSpin-orbit

Intro Electronic Structure Dynamics SHARC Nonadiabatic coupling Spin-orbit coupling

Avoided Crossing

ZoomI Avoided crossing at 58◦

- Diabatic states (nπ∗, ππ∗)follow straight lines

- Adiabatic states changecharacter

- No crossing

y z

x

Se

C

C

C

H

H

HH

Se

C

C

F. Plasser Nonadiabatic dynamics 7 / 30

Page 8: Talk 3: Nonadiabatic dynamics including triplet states · 2018-01-04 · F. Plasser Nonadiabatic dynamics 16 / 30. IntroElectronic StructureDynamicsSHARC Nonadiabatic couplingSpin-orbit

Intro Electronic Structure Dynamics SHARC Nonadiabatic coupling Spin-orbit coupling

Nonadiabatic coupling

State overlapI Orthogonal states〈Ψ1(R0)|Ψ2(R0)〉 = 0

I State character changes〈Ψ1(R0)|Ψ2(R1)〉 ≈ 1

I Difference quotient⟨Ψ1(R0)

∣∣∣Ψ2(R1)−Ψ2(R0)R1−R0

⟩≈ 1

R1−R0

I Nonadiabatic coupling⟨Ψ1(R0)

∣∣ ∂∂RΨ2(R0)

⟩≈ 1

R1−R0

R0 = 50◦, R1 = 65◦

F. Plasser Nonadiabatic dynamics 8 / 30

Page 9: Talk 3: Nonadiabatic dynamics including triplet states · 2018-01-04 · F. Plasser Nonadiabatic dynamics 16 / 30. IntroElectronic StructureDynamicsSHARC Nonadiabatic couplingSpin-orbit

Intro Electronic Structure Dynamics SHARC Nonadiabatic coupling Spin-orbit coupling

Nonadiabatic coupling

Trajectory going through the crossing

I Same adiabatic surfaceT2 → T2

→ Different diabatic surfaceππ∗ → nπ∗

I Same diabatic surfaceππ∗ → ππ∗

→ Different adiabatic surfaceT2 → T1

- Surface hop

R0 = 50◦, R1 = 65◦

F. Plasser Nonadiabatic dynamics 9 / 30

Page 10: Talk 3: Nonadiabatic dynamics including triplet states · 2018-01-04 · F. Plasser Nonadiabatic dynamics 16 / 30. IntroElectronic StructureDynamicsSHARC Nonadiabatic couplingSpin-orbit

Intro Electronic Structure Dynamics SHARC Nonadiabatic coupling Spin-orbit coupling

Nonadiabatic coupling

I Transitions determined by

Nonadiabatic coupling vectors

hIJ(R) = 〈ΨI(R)|∇ΨJ(R)〉

/ Only implemented for some quantum chemistry methods / programpackages

/ Computationally expensive- One computation per pair of states

F. Plasser Nonadiabatic dynamics 10 / 30

Page 11: Talk 3: Nonadiabatic dynamics including triplet states · 2018-01-04 · F. Plasser Nonadiabatic dynamics 16 / 30. IntroElectronic StructureDynamicsSHARC Nonadiabatic couplingSpin-orbit

Intro Electronic Structure Dynamics SHARC Nonadiabatic coupling Spin-orbit coupling

Nonadiabatic Interactions

Nonadiabatic coupling vectors

hIJ(R) = 〈ΨI(R)|∇ΨJ(R)〉

R Vector of nuclear coordinates

I Expressed in terms of wavefunction overlaps

SIJ(R,R′) = 〈ΨI(R)|ΨJ(R′)〉hIJ(R) = ∇′ 〈ΨI(R)|ΨJ(R′)〉 |R′=R = ∇′SIJ(R,R′)|R′=R

I Discrete

hIJ(R) ·∆R ≈ SIJ(R,R + ∆R)

I Applicable to trajectory dynamics simulations

F. Plasser Nonadiabatic dynamics 11 / 30

Page 12: Talk 3: Nonadiabatic dynamics including triplet states · 2018-01-04 · F. Plasser Nonadiabatic dynamics 16 / 30. IntroElectronic StructureDynamicsSHARC Nonadiabatic couplingSpin-orbit

Intro Electronic Structure Dynamics SHARC Nonadiabatic coupling Spin-orbit coupling

Overlaps

Wave function overlaps

SIJ = 〈ΨI(R)|ΨJ(R′)〉

Many-electron wave functionsI Expansion into Slater determinants

|ΨI〉 =

nCI∑k=1

dkI |Φk〉

I Expansion into MOs- α and β spin

|Φk〉 = |ϕ1 . . . ϕnα ϕnα+1 . . . ϕn|

F. Plasser Nonadiabatic dynamics 12 / 30

Page 13: Talk 3: Nonadiabatic dynamics including triplet states · 2018-01-04 · F. Plasser Nonadiabatic dynamics 16 / 30. IntroElectronic StructureDynamicsSHARC Nonadiabatic couplingSpin-orbit

Intro Electronic Structure Dynamics SHARC Nonadiabatic coupling Spin-orbit coupling

Overlaps

I Overlap as double sum over Slater determinant overlaps

SIJ = 〈ΨI |Ψ′J〉 =

nCI∑k=1

n′CI∑l=1

dkId′lJ 〈Φk|Φ′l〉

I Computed as determinant over MO overlaps〈Φk|Φ′l〉 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⟨ϕ1

∣∣ϕ′1⟩ . . .⟨ϕ1

∣∣∣ϕ′nα⟩...

. . .... 0⟨

ϕnα∣∣ϕ′1⟩ . . .

⟨ϕnα

∣∣∣ϕ′nα⟩ ⟨ϕnα+1

∣∣∣ϕ′nα+1

⟩. . .

⟨ϕnα+1

∣∣∣ϕ′l(n)

⟩0

.

.

.. . .

.

.

.⟨ϕn

∣∣∣ϕ′nα+1

⟩. . .

⟨ϕn∣∣ϕ′n⟩

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣I Formal scaling: O(nCIn

′CIn

3el)

I Simplifications?

F. Plasser Nonadiabatic dynamics 13 / 30

Page 14: Talk 3: Nonadiabatic dynamics including triplet states · 2018-01-04 · F. Plasser Nonadiabatic dynamics 16 / 30. IntroElectronic StructureDynamicsSHARC Nonadiabatic couplingSpin-orbit

Intro Electronic Structure Dynamics SHARC Nonadiabatic coupling Spin-orbit coupling

Overlaps

I Two independent factors for α and β spin

〈Φk|Φ′l〉 =∣∣∣∣∣∣∣⟨ϕ1

∣∣ϕ′1⟩ . . .⟨ϕ1

∣∣∣ϕ′nα⟩...

. . ....⟨

ϕnα∣∣ϕ′1⟩ . . .

⟨ϕnα

∣∣∣ϕ′nα⟩∣∣∣∣∣∣∣×∣∣∣∣∣∣∣⟨ϕnα+1

∣∣∣ϕ′nα+1

⟩. . .

⟨ϕnα+1

∣∣∣ϕ′l(n)

⟩...

. . ....⟨

ϕn

∣∣∣ϕ′nα+1

⟩. . .

⟨ϕn∣∣ϕ′n⟩

∣∣∣∣∣∣∣= SklSkl

I Spin-factors reappearI Strategy: Precompute and store these factors

F. Plasser Nonadiabatic dynamics 14 / 30

Page 15: Talk 3: Nonadiabatic dynamics including triplet states · 2018-01-04 · F. Plasser Nonadiabatic dynamics 16 / 30. IntroElectronic StructureDynamicsSHARC Nonadiabatic couplingSpin-orbit

Intro Electronic Structure Dynamics SHARC Nonadiabatic coupling Spin-orbit coupling

Overlaps

SIJ

ContractUnique factorsSkl, Skl

Precompute

Sort

Slater De-terminants|Φk〉 ,

∣∣Φ′l⟩CI-coefficientsdkI , d

′lJ

MO overlaps⟨ϕp|ϕ′q

MO coefficientsCpµ, C

′qν

Double moleculeAO overlaps⟨χµ|χ′ν

F. Plasser Nonadiabatic dynamics 15 / 30

Page 16: Talk 3: Nonadiabatic dynamics including triplet states · 2018-01-04 · F. Plasser Nonadiabatic dynamics 16 / 30. IntroElectronic StructureDynamicsSHARC Nonadiabatic couplingSpin-orbit

Intro Electronic Structure Dynamics SHARC Nonadiabatic coupling Spin-orbit coupling

Verification

Y

C

C

C

H

H

HH

Se

C

C

Verification for selenoacroleine torsionI New code1 against existing state-of-the-art code2

Implem. Method 〈T1(50◦)|T1(55◦)〉 〈T1(50◦)|T2(55◦)〉 tCPU (s)current CASSCF(6,5) 0.6873547950 0.7107005295 0Ref. 2 CASSCF(6,5) 0.6873547949 0.7107005297 0current MR-CIS(4,3) 0.9839833569 0.1084043350 33Ref. 2 MR-CIS(4,3) 0.9839833570 0.1084043349 43769

I Quantitative agreementI 1000 times faster

1 FP, M. Ruckenbauer, S. Mai, M. Oppel, P. Marquetand, L. González JCTC 2016, 12,1207.

2 J. Pittner et al. Chem. Phys. 2009, 356, 147-152.F. Plasser Nonadiabatic dynamics 16 / 30

Page 17: Talk 3: Nonadiabatic dynamics including triplet states · 2018-01-04 · F. Plasser Nonadiabatic dynamics 16 / 30. IntroElectronic StructureDynamicsSHARC Nonadiabatic couplingSpin-orbit

Intro Electronic Structure Dynamics SHARC Nonadiabatic coupling Spin-orbit coupling

Performance

Tim

e(core

seco

nds)

0.1

1

10

100

1,000

10,000

100,000

npair

1e+05 1e+06 1e+07 1e+08 1e+09 1e+10 1e+11 1e+12

I Uniform performanceI Over 7 orders of magnitude in problem sizeI For various wave function models

I 2-3 orders of magnitude faster than previous code (X)

F. Plasser Nonadiabatic dynamics 17 / 30

Page 18: Talk 3: Nonadiabatic dynamics including triplet states · 2018-01-04 · F. Plasser Nonadiabatic dynamics 16 / 30. IntroElectronic StructureDynamicsSHARC Nonadiabatic couplingSpin-orbit

Intro Electronic Structure Dynamics SHARC Nonadiabatic coupling Spin-orbit coupling

Overlaps

I Integration into the SHARC dynamics code1

I Interface to various other electronic structure codes

Multireference methods Columbus, MolcasCorrelated single-reference methods Turbomole2

Time-dependent DFT ADF, GaussianI Photoelectron spectra / Dyson orbitals3

I Wavefunction analysis4

1 S. Mai, P. Marquetand, L. González IJQC 2015, 115, 1215, https://sharc-md.org/.2 S. Mai, FP, M. Pabst, A. Köhn, L. González JCP 2017, 147, 184109.3 M. Ruckenbauer, S. Mai, P. Marquetand, L. González Sci. Rep. 2016, 6, 35522.4 FP, L. L. González JCP 2016, 145, 021103.

F. Plasser Nonadiabatic dynamics 18 / 30

Page 19: Talk 3: Nonadiabatic dynamics including triplet states · 2018-01-04 · F. Plasser Nonadiabatic dynamics 16 / 30. IntroElectronic StructureDynamicsSHARC Nonadiabatic couplingSpin-orbit

Intro Electronic Structure Dynamics SHARC Nonadiabatic coupling Spin-orbit coupling

Nonadiabatic coupling

I Transitions determined by

Wave function overlaps

SIJ = 〈ΨI(R)|ΨJ(R′)〉

, Transferable to any method / program package, Computationally efficient

F. Plasser Nonadiabatic dynamics 19 / 30

Page 20: Talk 3: Nonadiabatic dynamics including triplet states · 2018-01-04 · F. Plasser Nonadiabatic dynamics 16 / 30. IntroElectronic StructureDynamicsSHARC Nonadiabatic couplingSpin-orbit

Intro Electronic Structure Dynamics SHARC Nonadiabatic coupling Spin-orbit coupling

Spin-orbit coupling

I Relativistic effect- Exact equation not known (combination of quantum mechanics andrelativity)

- Good approximations exist

Breit-Pauli Hamiltonian

HSO,BP =1

2c2

nel∑i=1

nnuc∑K=1

ZK(riK × pi) · sir3iK

1

2c2

nel∑i,j 6=i

(rij × pi) · sir3ij

+1

2c2

nel∑i,j 6=i

(rij × pi) · sjr3ij

I Spin-orbit coupling

(r× p) · s = L · s

F. Plasser Nonadiabatic dynamics 20 / 30

Page 21: Talk 3: Nonadiabatic dynamics including triplet states · 2018-01-04 · F. Plasser Nonadiabatic dynamics 16 / 30. IntroElectronic StructureDynamicsSHARC Nonadiabatic couplingSpin-orbit

Intro Electronic Structure Dynamics SHARC Nonadiabatic coupling Spin-orbit coupling

Spin-orbit coupling

Breit-Pauli Hamiltonian

HSO =1

2c2

nel∑i=1

nnuc∑K=1

ZK(riK × pi) · sir3iK

1

2c2

nel∑i,j 6=i

(rij × pi) · sir3ij

+1

2c2

nel∑i,j 6=i

(rij × pi) · sjr3ij

I One- and two-electron terms→ Cost reduced through mean-field approximation- SOMF (Spin-orbit mean field)- AMFI (Atomic mean field integrals)

1 A. Berning, M. Schweizer, H. Werner, et al. Mol. Phys. 2000, 98, 1823.2 F. Neese J. Chem. Phys. 2005, 122, 034107.

F. Plasser Nonadiabatic dynamics 21 / 30

Page 22: Talk 3: Nonadiabatic dynamics including triplet states · 2018-01-04 · F. Plasser Nonadiabatic dynamics 16 / 30. IntroElectronic StructureDynamicsSHARC Nonadiabatic couplingSpin-orbit

Intro Electronic Structure Dynamics SHARC Nonadiabatic coupling Spin-orbit coupling

Spin-orbit coupling

I Spin-orbit coupling/ Complicated underlying theoryI Determined in mean-field approximation→ One-electron operator, Transferable, Low computational cost

F. Plasser Nonadiabatic dynamics 22 / 30

Page 23: Talk 3: Nonadiabatic dynamics including triplet states · 2018-01-04 · F. Plasser Nonadiabatic dynamics 16 / 30. IntroElectronic StructureDynamicsSHARC Nonadiabatic couplingSpin-orbit

Intro Electronic Structure Dynamics SHARC Nonadiabatic coupling Spin-orbit coupling

Spin-orbit coupling

I Quasi-degenerate perturbation theory

Spin-orbit Hamiltonian matrix

HSOC =

E0 〈Ψ0| HSO |Ψ1〉 . . .

〈Ψ1| HSO |Ψ0〉 E1 . . .

〈Ψ2| HSO |Ψ0〉 〈Ψ2| HSO |Ψ1〉 . . ....

. . .

EI Eigenvalues of molecular Coulomb Hamiltonian (MCH), “spin-free” energies

F. Plasser Nonadiabatic dynamics 23 / 30

Page 24: Talk 3: Nonadiabatic dynamics including triplet states · 2018-01-04 · F. Plasser Nonadiabatic dynamics 16 / 30. IntroElectronic StructureDynamicsSHARC Nonadiabatic couplingSpin-orbit

Intro Electronic Structure Dynamics SHARC Nonadiabatic coupling Spin-orbit coupling

Spin-orbit coupling

Diagonalization

UTHSOCU =

ε0 0 0 . . .0 ε1 0 . . .0 0 ε2 . . ....

. . .

εα Diagonal energiesU Diagonal/MCH transformation matrix

F. Plasser Nonadiabatic dynamics 24 / 30

Page 25: Talk 3: Nonadiabatic dynamics including triplet states · 2018-01-04 · F. Plasser Nonadiabatic dynamics 16 / 30. IntroElectronic StructureDynamicsSHARC Nonadiabatic couplingSpin-orbit

Intro Electronic Structure Dynamics SHARC Example

Representations

Spectr.

1ππ∗ 1nπ∗

3nπ∗E

nerg

y MCH

S1

S2

T1

Coordinate

Diagonal

1

2 345

I Spectroscopic, state character 1nπ∗,1 ππ∗,3 ππ∗, . . .

- Potential couplings, spin-orbit couplings- Quasidiabatic → beneficial for quantum dynamicsI Molecular Coulomb Hamiltonian (MCH)- Nonadiabatic couplings, spin-orbit couplings- Usually used in quantum chemistry computationsI Diagonal- Nonadiabatic couplings→ Beneficial for surface hopping dynamics

F. Plasser Nonadiabatic dynamics 25 / 30

Page 26: Talk 3: Nonadiabatic dynamics including triplet states · 2018-01-04 · F. Plasser Nonadiabatic dynamics 16 / 30. IntroElectronic StructureDynamicsSHARC Nonadiabatic couplingSpin-orbit

Intro Electronic Structure Dynamics SHARC Example

Propagation

SHARC method1

I Nuclei propagated on diagonal surfaces→ Gradients of several MCH states needed

I Electronic coefficients propagated in the MCH representation

Three-step propagator

cdiag(t)U−→ cMCH(t)

Prop.−−−→ cMCH(t+ ∆t)UT

−−→ cdiag(t+ ∆t)

1 S. Mai, P. Marquetand, L. González IJQC 2015, 115, 1215.F. Plasser Nonadiabatic dynamics 26 / 30

Page 27: Talk 3: Nonadiabatic dynamics including triplet states · 2018-01-04 · F. Plasser Nonadiabatic dynamics 16 / 30. IntroElectronic StructureDynamicsSHARC Nonadiabatic couplingSpin-orbit

Intro Electronic Structure Dynamics SHARC Example

Example

I H2CS

Exp

erim

ent

MRCISD+P(12,10)

MS-C

ASPT2(12,10)

ADC(2)

SCS-A

DC(2)

SOS-A

DC(2)

CC2

SCS-C

C2

SOS-C

C2

MS-C

ASPT2(10,6)

SA-C

ASSCF(10,6)

BP86

PBE

B3LY

P

mPW

1PW

BHHLY

P

1.5

2.0

2.5

3.0

3.5

4.0

Method

Energy(eV)

S1(1nπ∗) T1(

3nπ∗) T2(3ππ∗)

? Are the dynamics similar?

F. Plasser Nonadiabatic dynamics 27 / 30

Page 28: Talk 3: Nonadiabatic dynamics including triplet states · 2018-01-04 · F. Plasser Nonadiabatic dynamics 16 / 30. IntroElectronic StructureDynamicsSHARC Nonadiabatic couplingSpin-orbit

Intro Electronic Structure Dynamics SHARC Example

Dynamics

I Reference CASPT2→ No ISC

! ISC for for other methods- SA-CASSCF- B3LYP- BHLYP

MS-CASPT2(10,6)

0.01

0.02

0.03

0.04

0.05S0 S1 T1 T2

SA-CASSCF(10,6)

0.01

0.02

0.03

0.04

0.05

BP86

0.01

0.02

0.03

0.04

Population PBE

0.01

0.02

0.03

0.04

Population

B3LYP

0.01

0.02

0.03

0.04 BHHLYP

200 4000.00

0.05

0.10

0.15

Propagation Time (fs)ADC(2)

200 4000.00

0.01

0.02

0.03

0.04

Propagation Time (fs)

F. Plasser Nonadiabatic dynamics 28 / 30

Page 29: Talk 3: Nonadiabatic dynamics including triplet states · 2018-01-04 · F. Plasser Nonadiabatic dynamics 16 / 30. IntroElectronic StructureDynamicsSHARC Nonadiabatic couplingSpin-orbit

Intro Electronic Structure Dynamics SHARC Example

Potential Curves

I Different behavior afterdouble bond is broken

→ Multireference methodsneeded

- Pure DFT better thanhybrids

MRCISD+P(12,10)

1

2

3

4

5MS-CASPT2(12,10)

ADC(2)

1GS (1nπ∗) (3nπ∗) (3ππ∗)

SCS-ADC(2) SOS-ADC(2)

1

2

3

4

5

MS-CASPT2(10,6)

1

2

3

4

En

erg

y(e

V)

SA-CASSCF(10,6)

CC2 SCS-CC2 SOS-CC2

1

2

3

4

En

erg

y(e

V)

BP86

1.6 1.90

1

2

3

4

PBE

1.6 1.9

B3LYP

1.6 1.9

C-S Distance (A)

mPW1PW

1.6 1.9

BHHLYP

1.6 1.9 2.20

1

2

3

4

F. Plasser Nonadiabatic dynamics 29 / 30

Page 30: Talk 3: Nonadiabatic dynamics including triplet states · 2018-01-04 · F. Plasser Nonadiabatic dynamics 16 / 30. IntroElectronic StructureDynamicsSHARC Nonadiabatic couplingSpin-orbit

Intro Electronic Structure Dynamics SHARC

Software

SHARC - Surface hopping with arbitrary couplings

I Couplings- Nonadiabatic couplings- Spin-orbit couplings- Coupling to external field

I Various quantum chemistry methods- CASSCF - Molpro, MOLCAS- MRCI - Columbus- TDDFT - ADF, Gaussian- ADC(2) - Turbomole

I New release coming soon ...

F. Plasser Nonadiabatic dynamics 30 / 30