takahiro sumi ste lab., nagoya university

57
Study of the Galactic structure and halo dark matter by Gravitational microlensing Takahiro Sumi STE lab., Nagoya University Galactic halo Galactic halo Galactic center Galactic center

Upload: felix-riley

Post on 19-Jan-2018

232 views

Category:

Documents


0 download

DESCRIPTION

Gravitational “Macro”lensing

TRANSCRIPT

Page 1: Takahiro Sumi STE lab., Nagoya University

Study of the Galactic structure and halo dark matter by

Gravitational microlensing

Takahiro Sumi STE lab., Nagoya University

•Galactic haloGalactic halo

•Galactic centerGalactic center

Page 2: Takahiro Sumi STE lab., Nagoya University

Gravitational “Macro”lensing

Page 3: Takahiro Sumi STE lab., Nagoya University

Gravitational “Macro”lensing

Page 4: Takahiro Sumi STE lab., Nagoya University

Gravitational “Micro”lensing

starstar

observerobserver lenslens

distortion of space due to gravity distortion of space due to gravity

arcsec.arcsec. If a lens is a size of a star, elongation of images is an order of 100arcsec.

Just see a star magnified

Page 5: Takahiro Sumi STE lab., Nagoya University

Plastic lensPlastic lens

Page 6: Takahiro Sumi STE lab., Nagoya University

Single lensSingle lens

Page 7: Takahiro Sumi STE lab., Nagoya University

Application of Application of microlensingmicrolensing

Extra galactic 1,halo dark matter of lens galaxy(QSO variability)

Galactic 1,Galactic halo dark matter(towards the LMC & SMC) 2,Galactic center structure (towards the Bulge)

3,exoplanet (towards the Bulge)

Page 8: Takahiro Sumi STE lab., Nagoya University

WMAP resultWMAP result

Dark Dark mattermatter DMDM=0.22=0.22 Baryon 4%:Baryon 4%:

Stars: 7%

Neutral gas: 2%

Cluster hot gas: 3%

Unknown (warm gas?): 88%

Dark energy Dark energy =0.74=0.74

BB=0.04=0.04

Page 9: Takahiro Sumi STE lab., Nagoya University

Galactic rotation curve & dark matter

Kepler: v2=GM/r

Dark Matter

M~3x1011M(R<100kpc)

Page 10: Takahiro Sumi STE lab., Nagoya University

Halo Dark Matter & Paczynski’s Idea 20〜 40 times more dark matter than visible mass.

MAssive Compact Halo Objects (MACHOs) WINPs

•MACHO can be observed by Microlensing.〜10−6 need to observe 1M stars!

( Paczynski 1986)

Page 11: Takahiro Sumi STE lab., Nagoya University

MACHO project (1990~2000)

12 million stars Mt. Stromlo 1.28m telescope

Page 12: Takahiro Sumi STE lab., Nagoya University

First Microlensing event by MACHO & EROS in 1993

Page 13: Takahiro Sumi STE lab., Nagoya University

results toward LMC

Tisserand et al.2006

MACHO 5.7 yrs: 12 events M~0.5M

16% of the mass of a Standard Galactic halo.

EROS 5yrs : 0 event

f<25% of the halo dark matter made of MACHO with 10-7-10 M

f< 10% for 3.5×10-7 -100 M

OGLE-II 4 year: 3 event (1 in SMC) f<20% for 0.4M

f<11% for 0.003-0.2M

OGLE-II (Wyrzykowski et al.2010)

Page 14: Takahiro Sumi STE lab., Nagoya University

That is:

• MACHOs are not major component of Galactic halo dark matter

MACHOs exist as many as visible objects!?

but

Page 15: Takahiro Sumi STE lab., Nagoya University

Degeneracy in parameters

tE RE (M,D)v t

Einstein crossing time :

Page 16: Takahiro Sumi STE lab., Nagoya University

Bottom line:

• There are lens objects towards LMC

Are they really in the halo?

but

Page 17: Takahiro Sumi STE lab., Nagoya University

Halo Dark Matter?or

Self-lensing?

Page 18: Takahiro Sumi STE lab., Nagoya University

MEGAMEGA projectproject

results( preliminary) :

14 eventsf<30%

Andromeda galaxy ( M31 )

Far side

Page 19: Takahiro Sumi STE lab., Nagoya University

SuperMACHO 4m telescope, 1/2 nights for 3 months over 5 years. ~30events

Center OuterCenter OuterE

vent

rate

Eve

nt ra

te

Halo MACHOHalo MACHO

Self-lensing in LMCSelf-lensing in LMC

results ( preliminary ):25events (microling+SN)Self-lensing is negligiblef<30%

LMC

Page 20: Takahiro Sumi STE lab., Nagoya University

SuperMACHOv.s.

Super Nova

Page 21: Takahiro Sumi STE lab., Nagoya University

MOA (since 1995)

( Microlensing Observation in Astrophysics)

( New Zealand/Mt. John Observatory, Latitude: 44S, Alt: 1029m )

Page 22: Takahiro Sumi STE lab., Nagoya University

If you want to visit NZ free, join to MOA If you want to visit NZ free, join to MOA contact: contact: [email protected]

New Zealand

If you want to visit NZ free, join to MOA If you want to visit NZ free, join to MOA contact: contact: [email protected]

Page 23: Takahiro Sumi STE lab., Nagoya University

MOA (until ~1500) ( the world largest bird in NZ)

height:3.5height:3.5 mmweight:240kgweight:240kgcan not flycan not flyExtinct 500 years Extinct 500 years agoago

(( MaoriMaori ate ate them)them)

Page 24: Takahiro Sumi STE lab., Nagoya University

MOA-II 1.8m telescope

First light: First light: 2005/32005/3Survey start:Survey start: 2006/42006/4

Mirror : 1.8mCCD : 80M pix. FOV : 2.2 deg.2

Page 25: Takahiro Sumi STE lab., Nagoya University

Observational targets

LMCLMC

50kpc50kpc

     event rate:event rate: LMC,SMC : LMC,SMC : ~2~2 events/yr (events/yr (~10~10-7-7 ))

Bulge : Bulge : ~500~500events/yr (events/yr (~10~10-6-6 ))     Planetary event : Planetary event : ~10~10-2-2

88 kpc, GCkpc, GC

Page 26: Takahiro Sumi STE lab., Nagoya University

Observation towards LMC by MOA-II

~3obs/night~3obs/night

~10obs/night~10obs/night

Page 27: Takahiro Sumi STE lab., Nagoya University

Difference Image Analysis (DIA)

Observed Observed subtractedsubtracted

Page 28: Takahiro Sumi STE lab., Nagoya University

Dynamical constraint Dynamical constraint ((Carr & Sakellariadou ’99Carr & Sakellariadou ’99))

open & globular clusters open & globular clusters 10103 3 <M<10<M<1066

binary stars binary stars 101000 <M<10 <M<107 7

solar system objects 1010-3-3<M <M

impact on EarthEarth M<10M<10-13-13 halo halo M<10M<10-12 -12 disk disk

Requiring an universality of the Galaxy!Requiring an universality of the Galaxy!

Variability in lensed QSO Variability in lensed QSO EROS and MACHO (LMC)EROS and MACHO (LMC)

Schmidt et al ’98 Schmidt et al ’98 Excluded (in MExcluded (in M):):1010-7-7 <M< <M< 1010-1-1

Gravitational microlensingGravitational microlensing::

Other constraints on MACHOsOther constraints on MACHOs

Page 29: Takahiro Sumi STE lab., Nagoya University

Microlensing of QSOs

QSOmacrolens

microlenses

image A

image B

Page 30: Takahiro Sumi STE lab., Nagoya University

SUb-Lunar-mass Compact Objects (SULCOs)

-16 -14 -12 -10 -80

-1

-2

Log(M/Ms)

Log

CO

MACHOUnconstrained

CDM = SULCOs 10-16<M<10-7 ? Black hole annihilation

Page 31: Takahiro Sumi STE lab., Nagoya University

Current limit on compact objects Current limit on compact objects in universe from lensing studiesin universe from lensing studies

(1)microlensing of QSO Dalcanton, et al ’94(2,4)multiple image of compact radio sources.Wilkinson et al ’01 Augusto ’01 (3)multiple gamma-ray bursts Nemiroff et al ’01(5)multiple image of QSO Nemiroff 91

Constraint on MACHOs in cosmologyConstraint on MACHOs in cosmology

Page 32: Takahiro Sumi STE lab., Nagoya University

(10-13) <M<10-7 M

SUb-Lunar-mass Compact Objects

( SULCO )

planetesimal, PBH

MAssive Stellar-massCompact Objects

(MASCO)

102 <M< 104M

primordial stars, BH, PBH

Two windows

Page 33: Takahiro Sumi STE lab., Nagoya University

Summary 1

MACHOs are not major component of Galactic halo dark matter (<20%)

There are lens objects towards LMC

Are they really in the halo?MOA-II is trying to solve this problem

Two windows for MACHOs (SULCO, MASCO)

Page 34: Takahiro Sumi STE lab., Nagoya University

Galactic centerGalactic center

Page 35: Takahiro Sumi STE lab., Nagoya University

Galactic Bar

de Vaucouleur,1964, gas kinematicsBlitz&Spergel,1991, 2.4 IR luminosity asymmetryWeiland et al.,1994, COBE-DIRBE,confirmed the asymmetry.Nakada et al.,1991,   distribution of IRAS bulge starsWhitelock&Catchpole, 1992, distribution of MiraKiraga &Paczynski,1994 Microlening Optical depth

m

θ

8kpc

Page 36: Takahiro Sumi STE lab., Nagoya University

COBE-DIRBE Weiland et al.,1994, confirmed the asymmetry.

3030 l

all extinction correct disk subtracted

1010 b

Page 37: Takahiro Sumi STE lab., Nagoya University

Optical Gravitational Optical Gravitational Lensing ExperimentLensing Experiment

(OGLE)(OGLE)Las Campanas Altitude: 2300mSeeing ~ 1.3”

)'4270,'0029( ES

OGLE-I : 1991~1996 : 1m, 2kx2k CCD 19 eventsOGLE-II : 1997~2000 : 1.3m, 2kx2k CCD, 14’x14’ 500 eventsOGLE-III: 2001~ : 1.3m, 8kx8k mosaic CCD 600 events/yr : 35’x35’

Page 38: Takahiro Sumi STE lab., Nagoya University

Pieces of informationMicrolensing Optical depth, and Event Timescale, tE=RE/Vt, (Sumi et al.

2006)

Brightness of Red Clump Giant (RCG) and RRLyrae stars, (Stanek et al. 1997, Sumi

2004; Collinge, Sumi & Fabrycky, 2006)

Proper motions of RCG, (Sumi, Eyer & Wozniak, 2003; Sumi et al. 2004), Proper motion of 5M stars, I<18 mag,

~1mas/yr

Page 39: Takahiro Sumi STE lab., Nagoya University

1,the Galactic Bar structure

(face on, from North)

8kpc

G.C.Obs.

Page 40: Takahiro Sumi STE lab., Nagoya University

1,the Galactic Bar structure

(face on, from North)

8kpc

G.C.Obs.

1, 1, Microlensing Optical depth, Microlensing Optical depth, (Alcock et al. 2000; Afonso et al.2003; Sumi et al. 2003;Popowski (Alcock et al. 2000; Afonso et al.2003; Sumi et al. 2003;Popowski et al. 2004; et al. 2004; HamadacheHamadache et al. 2006;Sumi et al. 2006) et al. 2006;Sumi et al. 2006)

M=1.61010M,

axis ratio (1:0.3:0.2),

~20

Page 41: Takahiro Sumi STE lab., Nagoya University

2.Red Clump Giants Metal-rich horizontal branch stars Small intrinsic width in luminosity function (~0.2mag)

Stanek et al. 1997=20-30=20-30, axis ratio 1:0.4:0.3, axis ratio 1:0.4:0.3

Page 42: Takahiro Sumi STE lab., Nagoya University

RCG by IR (Babusiaux & Gilmore, 2005)

Deep survery by Cambridge IR survery instrument (CIRSI)

=225.5

Page 43: Takahiro Sumi STE lab., Nagoya University

3.Streaming motions of the bar with RCG

Sumi (Princeton) , Eyer (Geneva Obs.) & Wozniak (Los Alamos), 2003

Sun

faint

Vrot=~50km/s

Color Magnitude Diagram

Sumi, Eyer & Wozniak, 2003

bright

Page 44: Takahiro Sumi STE lab., Nagoya University

summary2All three results are consistent with the Bar with

M=1.61010M(Md=0.7x1010)

axis ratio (1:0.3:0.2) =20, (Han & Gould, 1995)

Vrot~50km/s •Little space for Dark Matter•Prefer Core than cusp dark matter (Binney & Evans 2001)

MOA-II constrain strongerρ r∝ -α

observation Halo+disk

Halo

disk

Page 45: Takahiro Sumi STE lab., Nagoya University

Dark matter density profile at center of galaxy & galaxy cluster : Cusp: ρ r ∝ -1.5 or Core: ρ const∝ ?Simulation: Collisionless CMD reproduces nicely the observed large scale structure of the universe (r>>1Mpc)

NFW universal density profile ρ r∝ -1.5 with central cusp (Navarro, Frenk& White 1997)

Observation: rotation curve for CDM dominatedDwarf and low surface brightness (LSB)galaxieshigh surface brightness disc galaxies (Salucci 2001) have a density profile with flat central core.

Cusp-Core problem in cold dark matter (CDM) halo

Log(radius)

Log(

dens

ity)

Page 46: Takahiro Sumi STE lab., Nagoya University

Density profile of Milky way (Sofue et al. 2009)

disk

bulge

NFW(cusp)

Isothermal(core)

Burkert(core)

Page 47: Takahiro Sumi STE lab., Nagoya University

(Moore et al. 1999; de Blok et al. 2000; Salucci & Burkert 2000;Salucci&Martin 2009)

Dark halo density in ESO 116+G12Observed simulation (NFW)

Cusp-core problem in dwarf spirals to giant low surface brightness galaxies (CDM dominated in center)

rotation curve of dwarf spiral DDO47

Cusp (NFW)

Core

Prefer core

Page 48: Takahiro Sumi STE lab., Nagoya University

Lensing probability with image separation Δθ (Lin & Chen 2009)

Lensing image in 0047-281 (Koopmans 2003)

Observed galaxy subtracted

Cusp-core problem in giant elliptical galaxies;(Baryon dominated in center )

Core

Prefer cusp

Cusp, ρ r ∝ -1.9

Observation

Cusp (NFW)

Singular isothermal sphere

Page 49: Takahiro Sumi STE lab., Nagoya University

Cusp-core problem in giant elliptical galaxies & galaxy cluster;(Baryon dominated in center )

•Statistics of QSO multiple images(Wyithe Wyithe, Turner & , Spergel 2001; Keeton & Madau 2001;Li & Ostriker 2001; Takahashi & Chiba 2001)

•Arc statistics of clusters of galaxies(Bartelmann et al. 1998; Molikawa & Hattori 2001;Oguri , Taruya + Suto 2001, Oguri, Lee + Suto 2003)

•Time-delay statistics of QSO multiple images(Oguri, Taruya, Suto + Turner 2002)

X-ray observation of galaxy cluster

⇒ generally favor a steep cusp ( α ~ - 1.5)

Page 50: Takahiro Sumi STE lab., Nagoya University

Cusp-core problem:solutionSelf interacting dark matter(Spergel & Steinhardt 1999 ):σ/m~1cm2/g (10-(21−24) cm2 (Mx/GeV))make core and spherical halo(Yoshida etal. 2000)

Weaker interaction doesn’t work; largerinteraction leads to halo core collapse onHubble time (e.g., Moore et al. 2000, 2002; Yoshidaet al. 2002; Burkert 2000; Kochanek & White 2000)

Page 51: Takahiro Sumi STE lab., Nagoya University

Cusp-core problem: solution

Barion-CDM interaction (BCDMIs)•Dynamical friction of substructure (El-Zant et al.2001;Tonini et al., 2006;Romano-Diaz et al.2008)

•Stellar bar-CDM interaction (Weinberg&Katz, 2002;Holley-Beckelmann et al.2005)

•Baryon energy fedback(Mashchenko et al., 2006; Peirani et al. 2008)

Nonsingular, trancated isothermal sphere (NTIS) Cosmological, from collapsend virialization (shapiro et al. 1999; Iliev&Shapiro, 2001)

Explain core in rotation curves, but cannot explain the steep & cuspy center of massive galaxies favored by Lensing and X-ray observation (just seeing cuspy baryon?).

Page 52: Takahiro Sumi STE lab., Nagoya University

Mbulge=1.8x1010M, Rbulge=0.5kpcMdisk=7x1010M , Rdisk=3.5kpcTruncated Isothermal dark halo with h= 5.5kpc, vrot=200km/s

the Milky Way rotation curve (HI,CO,optical, VERA)

NFW(cusp)

Isothermal(core)

Burkert(core)

(Sufue et al. 2009)

Page 53: Takahiro Sumi STE lab., Nagoya University

Summary MACHOs are not major component of Galactic halo dark

matter (<20%) except two windows (SULCO, MASCO) but there are lens objects towards LMC, important for

astrophysical point of view

dark matter density profile in the galaxy may be core rather than cusp

microlensing contribute to constrain

Page 54: Takahiro Sumi STE lab., Nagoya University
Page 55: Takahiro Sumi STE lab., Nagoya University

Microlensing by SULCOs in Galactic halo

DM33 = 790kpc

Small source size 8*10-9 (star radius /106 km) arcsec

DLMC = 50kpc

M33

(Total event) ~103 for 10-8Ms, sec         ~1 for 10-11Ms , secFor 80hours obs. by SUBARU/Suprime-cam

Page 56: Takahiro Sumi STE lab., Nagoya University

A B

C D

MASCOs M=103 if MASCO=m

2.5mas

N=1.7(M/104)-1 mas-2 Inoue & Chiba ApJ ’03

Page 57: Takahiro Sumi STE lab., Nagoya University

Distribution of surface brightness

resolution= 0.025mas