table of contents list of figures 8 list of ...9.2.2 description of condition: kv b 154 / motorway...

37
TABLE OF CONTENTS 5 TABLE OF CONTENTS LIST OF FIGURES ................................................................................................. 8 LIST OF TABLES ................................................................................................. 20 LIST OF ABBREVIATIONS ............................................................................... 23 FOREWORD ......................................................................................................... 30 1 INTRODUCTION ...................................................................................... 35 2 RESEARCH METHODS .......................................................................... 41 3 HISTORY OF ROUNDABOUTS ............................................................. 43 4 ELEMENTS OF THE ROUNDABOUT .................................................. 46 4.1 Definitions .................................................................................................... 46 4.2 Design principles .......................................................................................... 47 4.2.1 Outer diameter .............................................................................................. 47 4.2.2 Circulatory roadway, roundabout pavement, truck apron ............................ 48 4.2.3 Central Island (AUT) / District Island (GER) .............................................. 49 4.2.4 Median traffic island..................................................................................... 55 4.2.5 Bypass........................................................................................................... 55 5 DISTRIBUTION OF THE ROUNDABOUT TRAFFIC ........................ 58 5.1 Distribution of the roundabouts according to size ........................................ 58 5.2 Distribution of roundabouts according to purpose ....................................... 60 5.3 Distribution of roundabouts according to the number of roundabout arms . 60 5.4 Distribution of roundabouts according to the number of traffic lanes ......... 64 5.5 Distribution of roundabouts according to traffic levels ................................ 65 5.5.1 Roundabout in a traffic level with adjoining roads ...................................... 66 5.5.2 Roundabout on a different level than adjoining roads.................................. 66 5.6 Turbo roundabouts........................................................................................ 69 6 DRAINAGE OF THE ROUNDABOUTS ................................................ 72 6.1 Drainage of the roundabout pavement to the outside ................................... 72 6.2 One-sided drainage of the roundabout pavement ......................................... 74 7 DAMAGE TO THE ASPHALT PAVEMENT ........................................ 76 7.1 Causes of damage in asphalt pavements ...................................................... 76 7.2 Unevenness in the asphalt in a longitudinal direction .................................. 77 7.3 Unevenness in the asphalt in the transverse direction .................................. 78 7.4 Crack formation in asphalt ........................................................................... 79

Upload: others

Post on 03-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • TABLE OF CONTENTS 5

    TABLE OF CONTENTS

    LIST OF FIGURES ................................................................................................. 8

    LIST OF TABLES ................................................................................................. 20

    LIST OF ABBREVIATIONS ............................................................................... 23

    FOREWORD ......................................................................................................... 30

    1 INTRODUCTION ...................................................................................... 35

    2 RESEARCH METHODS .......................................................................... 41

    3 HISTORY OF ROUNDABOUTS ............................................................. 43

    4 ELEMENTS OF THE ROUNDABOUT .................................................. 46

    4.1 Definitions .................................................................................................... 46

    4.2 Design principles .......................................................................................... 47

    4.2.1 Outer diameter .............................................................................................. 47

    4.2.2 Circulatory roadway, roundabout pavement, truck apron ............................ 48

    4.2.3 Central Island (AUT) / District Island (GER) .............................................. 49

    4.2.4 Median traffic island ..................................................................................... 55

    4.2.5 Bypass ........................................................................................................... 55

    5 DISTRIBUTION OF THE ROUNDABOUT TRAFFIC ........................ 58

    5.1 Distribution of the roundabouts according to size ........................................ 58

    5.2 Distribution of roundabouts according to purpose ....................................... 60

    5.3 Distribution of roundabouts according to the number of roundabout arms . 60

    5.4 Distribution of roundabouts according to the number of traffic lanes ......... 64

    5.5 Distribution of roundabouts according to traffic levels ................................ 65

    5.5.1 Roundabout in a traffic level with adjoining roads ...................................... 66

    5.5.2 Roundabout on a different level than adjoining roads .................................. 66

    5.6 Turbo roundabouts ........................................................................................ 69

    6 DRAINAGE OF THE ROUNDABOUTS ................................................ 72

    6.1 Drainage of the roundabout pavement to the outside ................................... 72

    6.2 One-sided drainage of the roundabout pavement ......................................... 74

    7 DAMAGE TO THE ASPHALT PAVEMENT ........................................ 76

    7.1 Causes of damage in asphalt pavements ...................................................... 76

    7.2 Unevenness in the asphalt in a longitudinal direction .................................. 77

    7.3 Unevenness in the asphalt in the transverse direction .................................. 78

    7.4 Crack formation in asphalt ........................................................................... 79

  • TABLE OF CONTENTS 6

    7.5 Surface damage in asphalt ............................................................................ 81

    8 RECOMMENDATIONS FOR THE SELECTION OF THE "RIGHT"

    ASPHALT CONSTRUCTION FOR THE ROUNDABOUT

    PAVEMENT ............................................................................................... 83

    8.1 Asphalt mix - structure, composition and properties .................................... 83

    8.2 The conventional road bitumen or the polymer modified bitumen (PmB)? 86

    8.2.1 Methods for testing bitumen properties ........................................................ 87

    8.2.2 Test methods for hot asphalt - wheel tracking (EN 12697-22, 2020) ........ 103

    8.2.3 Interpretation of the results of bitumen tests .............................................. 105

    8.3 Influence of shear forces when choosing the right asphalt mix for a roundabout .................................................................................................. 107

    8.3.1 Driving dynamics and driving geometry when driving in the roundabout pavement of a roundabout .......................................................................... 107

    8.3.2 Numerical simulation to determine the plastic deformations in the bituminous layer package ........................................................................... 115

    8.4 Construction of asphalt pavement structure for roundabouts ..................... 116

    8.4.1 Structure of road body ................................................................................ 116

    8.4.2 Determination of the relevant traffic load .................................................. 128

    8.4.3 Asphalt pavement construction for roundabouts ........................................ 140

    8.4.4 Asphalt pavement structures for the roundabouts in the rest of Austria and Switzerland ................................................................................................. 159

    8.4.5 Mastic asphalt as pavement construction for roundabouts ......................... 178

    8.4.6 Asphalt with added hydrated lime for roundabouts ................................... 194

    8.4.7 Semi-rigid wearing courses as a variant when asphalting the roundabout pavement ..................................................................................................... 198

    9 DESCRIPTION AND ANALYSIS OF THE ROUNDABOUT INSTALLATIONS CARRIED OUT ...................................................... 208

    9.1 Roundabout on the B 145 / highway A1 in Regau (Upper Austria) .......... 209

    9.1.1 Relevant roundabout data: KV B 145 / highway A1 in Regau .................. 209

    9.1.2 Description of condition: KV B 145 / highway A1 in Regau .................... 215

    9.2 Roundabout on the B 154 / highway A1 in Mondsee (Upper Austria) ...... 217

    9.2.1 Relevant roundabout data: KV B 154 / highway A1 in Mondsee .............. 217

    9.2.2 Description of condition: KV B 154 / motorway A1 in Mondsee ............. 222

    9.3 Two roundabouts on the B 151 Lenzing bypass (Upper Austria) .............. 224

    9.3.1 Relevant roundabout data: KV North and KV South - B 151 Lenzing bypass 224

    9.3.2 Status description: KV Nord, B 151 Lenzing bypass ................................. 229

    9.3.3 Status description: KV South, B 151 Lenzing bypass ................................ 234

    9.4 Roundabout Imst on Arzil at the junction B 171/ B 189 (TIR) .................. 236

    9.4.1 Relevant roundabout data: KV Imst on Arzil B 171/B 189 ....................... 236

    9.4.2 Description of condition: KV on Arzil at the junction B 171 / B 189 ........ 242

  • TABLE OF CONTENTS 7

    9.5 Roundabout B 9 / Krücklstraße Hainburg (Lower Austria) ....................... 244

    9.5.1 Relevant roundabout data: KV B 9 / Krücklstraße Hainburg ..................... 244

    9.5.2 Status description: KV B 9 / Krücklstraße in Hainburg ............................. 249

    9.6 Roundabout on the L 1101/L 1026 in Schwand (Upper Austria) .............. 251

    9.6.1 Relevant roundabout data: KV L 1101/L 1026 Schwand .......................... 251

    9.6.2 Status description: KV L 1101/L 1026 in Schwand ................................... 256

  • LIST OF FIGURES 8

    LIST OF FIGURES

    Figure 1: "Cracks around Marbach's Linde roundabout" (Südkurier, 2020) ......... 35

    Figure 2: "Accusations against planners: roundabout cracks again"

    (Schwarzwälder Bote Mediengruppe, 2020) ................................................ 36

    Figure 3: "Altenburg roundabout to be renovated during the summer holidays”

    (Wochenblatt, 2020) ..................................................................................... 36

    Figure 4: "How did the serious bicycle accident occur?” (Verlags-GmbH, 2020) 36

    Figure 5: Author's identity card as road construction expert for Austrian justice

    (Hrapović, 2020) .......................................................................................... 42

    Figure 6: Columbus Circle in New York anno 1904 (Hrapović 1, 2020, p. 1) ....... 43

    Figure 7: Columbus Circle in New York today (Hrapović 1, 2020, p. 1) ................ 43

    Figure 8: Roundabout around Arc de Triomphe in Paris in 1907 (Hrapović 1,

    2020, p. 2) .................................................................................................... 44

    Figure 9: Roundabout around Arc de Triomphe in Paris in 2015 (Hrapović 1,

    2020, p. 2) .................................................................................................... 44

    Figure 10: Thomas Circle roundabout in Washington D.C. USA 1922 (Hrapović 1,

    2020, p. 3) .................................................................................................... 45

    Figure 11: The first roundabout in Germany in the centre of Leipzig 1951

    (Hrapović 1, 2020, p. 3) ............................................................................... 45

    Figure 12: Definition of individual design elements and dimensions of a

    roundabout (system sketch) (RASt 06, 2006) ............................................... 46

    Figure 13: Three trees in the central island seen from a distance (Hrapović 1,

    2020, p. 197) ................................................................................................ 49

    Figure 14: Three trees in the central island seen from close up (Hrapović 1, 2020,

    p. 198) .......................................................................................................... 50

    Figure 15: Artistic design of the central island (Hrapović 2, 2020, p. 380) ........... 50

    Figure 16: Pets in front of the castle (Hrapović 2, 2020, p. 381) ........................... 51

    Figure 17: Passable central island (RVS 03.05.14, 2010) ...................................... 52

    Figure 18: Example of a roundabout with the passable central island (Hrapović 1,

    2020, p. 38) .................................................................................................. 52

    Figure 19: Formation of curbs at mini-roundabouts (NRW, 1999) ........................ 52

    Figure 20: Tractrix curve of a truck in a mini-roundabout (Hrapović 1, 2020, p. 29)

    ...................................................................................................................... 53

    Figure 21: Tractrix curve of a car in a mini-roundabout (Hrapović 1, 2020, p. 28)

    ...................................................................................................................... 53

    Figure 22: Mini-roundabout with a passable central island in the author's place of

    residence Voecklabruck (Hrapovic, 2019) ................................................... 54

    Figure 23: Position of the axes of roundabout arms (Land OÖ 1, 2007) ............... 54

    Figure 24: Median traffic island with crossing point (Land OÖ 1, 2007) (edited by

    author) .......................................................................................................... 55

    Figure 25: Types of routing for bypasses (RVS 03.05.14, 2010) ............................. 56

    Figure 26: Bypass with right-turning lane and right-turning lane as a rule

    (RVS 03.05.14, 2010) ................................................................................... 56

    Figure 27: Bypass without right-turning lane (not a standard case!) (RVS 03.05.14,

    2010) ............................................................................................................ 57

  • LIST OF FIGURES 9

    Figure 28: Bypass at a roundabout (Hrapović 1, 2020, p. 6) ................................. 57

    Figure 29: Distribution of roundabouts by size (Hoffmann, 2010) ......................... 59

    Figure 30: Three-arm roundabout (sketch) (Lagemann, 2004) .............................. 60

    Figure 31: Three-arm roundabout (Hrapović 2, 2020, p. 114) ............................... 61

    Figure 32: Four-arm roundabout (sketch) (Lagemann, 2004) ................................ 61

    Figure 33: Four-arm roundabout with geometric elements (RVS 3.44, 2001) ....... 62

    Figure 34: Four-arm roundabout (example) (Hrapović 1, 2020, p. 20) ................. 62

    Figure 35: Five-arm (multi-arm) roundabout (sketch) (Lagemann, 2004) ............. 63

    Figure 36: The multi-arm and multi-lane Arc de Triomphe roundabout in Paris

    (Hrapović 1, 2020, p. 23) ............................................................................. 63

    Figure 37: Example of a 1-lane roundabout (HLSV, 2004) .................................... 64

    Figure 38: A small 2-lane roundabout (HLSV, 2004) ............................................. 65

    Figure 39: A large 2-lane roundabout (Kleine Zeitung, 2016) ............................... 65

    Figure 40: Right-turning lanes are located outside the roundabout pavement

    (Hrapović 1, 2020, p. 24) ............................................................................. 66

    Figure 41: a) one large roundabout, b) two smaller roundabouts ("dog bones")

    (Hrapović 1, 2020, p. 24) ............................................................................. 67

    Figure 42: The large roundabout in the Czech Republic near Opatovice

    (Hrapović 1, 2020, p. 25) ............................................................................. 67

    Figure 43: Söll roundabout on the B 178 Loferer Straße (Hrapović 2, 2020, p. 332)

    ...................................................................................................................... 68

    Figure 44: Beautiful central island of the Söll roundabout on the B 178 Loferer

    Straße (Hrapović 2, 2020, p. 342) ........................................................... 68

    Figure 45: Two smaller roundabouts, type "dog bones" near Ried im Innkreis

    (Hrapović 1, 2020, p. 26) ............................................................................. 69

    Figure 46: Traffic conflict points according to the shape of the intersection

    (Hoffmann & Zotter, 2011) .......................................................................... 70

    Figure 47: Digital model of a so-called turbo tondes (Hrapović 1, 2020, p. 43) ... 71

    Figure 48: Turbo roundabout in Austria in the town of Bruck an der

    Großglocknerstraße (Hrapović 1, 2020, p. 47) ........................................... 71

    Figure 49: Outward drainage of the roundabout pavement (Hrapović 1, 2020, p.

    55) ................................................................................................................ 72

    Figure 50: Roundabout at the Brenner B182 Brennerstraße in Tyrol (Hrapović 2,

    2020, p. 352) ................................................................................................ 73

    Figure 51: Level plan of the roundabout on the Brenner B182 Brennerstrasse in

    Tyrol with the roundabout's pavement gradient of 2.5 % to the outside

    (Hrapović 2, 2020, p. 354) ........................................................................... 73

    Figure 52: One-sided gradient of the roundabout pavement in one plane

    (RVS 03.05.14, 2010) ................................................................................... 74

    Figure 53: Level plan of the "Shell Rohrbach" roundabout in Upper Austria with

    drainage on one side (Hrapović 2, 2020, p. 118) ........................................ 74

    Figure 54: Surface water runs vertically on the isohypses (Hrapovic, 2020) ......... 75

    Figure 55: Factors influencing road condition (Krause, 2020, p. 14) .................... 77

    Figure 56: Unevenness in the asphalt in a longitudinal direction

    (Hoffman 2, 2013, p. 39) (edited by author) ................................................ 78

  • LIST OF FIGURES 10

    Figure 57: Unevenness in the asphalt in the transverse direction

    (Hoffman 2, 2013, p. 40) (edited by author) ................................................ 79

    Figure 58: Crack formation in asphalt (Hoffman 2, 2013, p. 41) (edited by author)

    ...................................................................................................................... 80

    Figure 59: Surface damage in asphalt (Hoffman 2, 2013, p. 42) (edited by author)

    ...................................................................................................................... 82

    Figure 60: Paving asphalt (DAV, 2020) .................................................................. 83

    Figure 61: Various aggregates for the asphalt mix (Schönleitner, 2014) ............... 84

    Figure 62: Section through paved asphalt (DAV, 2020) ......................................... 84

    Figure 63: Different levels of consideration of the bond between bitumen and

    aggregate (Grothe & Wistuba, 2010) ........................................... 85

    Figure 64: Interface between bitumen and aggregate at 8,000x magnification (left)

    and at 10,000x magnification (right) (Grothe & Wistuba, 2010) ................ 85

    Figure 65: European standards for bitumen (EN 12591, 2009) ............................. 86

    Figure 66: Conventional road bitumen (Spiegl & Steidl, 2009) ............................. 87

    Figure 67: Polymer-modified bitumen (PmB) (Vondenhof, Lars, & Sörensen, 2013)

    ...................................................................................................................... 87

    Figure 68: left: Apparatus for conducting the penetration test for bitumen, right:

    100 g needle (Hospodka, 2013, p. 32) ......................................................... 88

    Figure 69: left: Breaking point machine, right: Bending device (Hospodka, 2013, p.

    33) ................................................................................................................ 89

    Figure 70: left: Ring and ball machine, top right: Bitumen bag, bottom right:

    Measuring rings (Hospodka, 2013, p. 31) ................................................... 90

    Figure 71: Elastic recovery (Hospodka, 2013, p. 34) ............................................. 90

    Figure 72: Difference between road bitumen B 70/100 and PmB 45/80-65

    (Hospodka, 2013, p. 45) ............................................................................... 91

    Figure 73: Ductilometer for the ductility test (Hoffmann 2, 2013) ......................... 91

    Figure 74: Apparatus for RTFOT: Rolling Thin Film Oven, top right: Air lance and

    vertical rotating drum, lower right: RTFOT bottles (Hospodka, 2013, p. 28)

    ...................................................................................................................... 92

    Figure 75: The apparatus for the PAV test: left: Pressure Aging Vessel, centre:

    Pressure vessel, right: Bowl holder with filled bowls (Hospodka, 2013, p.

    29) ................................................................................................................ 93

    Figure 76: Dynamic shear rheometer (DSR) including plate-plate measuring

    system and measuring heads PP08 (Ø 8 mm) and PP25 (Ø 25 mm)

    (Hospodka, 2013, p. 37) ............................................................................... 94

    Figure 77: Plate-plate measuring system (Hospodka, 2013, p. 37) ........................ 94

    Figure 78: Clear, cohesive fracture in the installed predetermined breaking point

    (specimen geometry with necking) (Hospodka & Mandahus, 2017) ........... 95

    Figure 79: Fatigue diagram from the transient phase to the failure of the test

    specimen (Hospodka & Mandahus, 2017) ....................................... 95

    Figure 80: Comparative presentation of the results of complex shear modulus using

    the DSR test (Kammerer, 2017) ................................................................... 96

    Figure 81: Comparative presentation of the results of the phase angle using the

    DSR experiment (Kammerer, 2017) ............................................................. 97

  • LIST OF FIGURES 11

    Figure 82: Cracks in asphalt as a result of low temperatures

    (Spiegl, Steidl, & Weixlbaum, 2008) ............................................................ 97

    Figure 83: Bending Beam Rheometer (BBR) (Hospodka, 2013, p. 42) ................... 98

    Figure 84: BBR test arrangement - bitumen beam (Hospodka, 2013, p. 43) .......... 98

    Figure 85: Bending Beam Rheometer (BBR): stiffness S(t), deflection δ(t) and m-

    value (Spiegl, Steidl, & Weixlbaum, 2008) ..................................... 99

    Figure 86: Flexural stiffness in [MPa] of the conventional road bitumen 70/100

    and PmB 45/80-65 using BBR according to RTFOT and PAV (Kammerer,

    2017) .......................................................................................................... 100

    Figure 87: m-value [-] of the conventional road bitumen 70/100 and PmB 45/80-65

    using BBR according to RTFOT and PAV (Kammerer, 2017) .................. 100

    Figure 88: Typical creep recovery curve for 10 consecutive cycles (Kammerer,

    2017) .......................................................................................................... 101

    Figure 89: MSCRT of the conventional road bitumen B 70/100 according to

    RTFOT (Kammerer, 2017) ......................................................................... 102

    Figure 90: MSCRT of PmB 45/80-65 according to RTFOT (Kammerer, 2017) ... 102

    Figure 91: Ruts in the roundabout pavement of a roundabout (Karcher & Root,

    2011) .......................................................................................................... 103

    Figure 92: Wheel tracking test with small wheel (Ludwig, 2009) (supplemented by

    author) ........................................................................................................ 104

    Figure 93: Difference between the proportional rut depths PRDLuft of two different

    types of mix: asphalt surface course AC11 with conventional and polymer-

    modified bitumen (Blab 1, 2007)............................................ 105

    Figure 94: Manual laying of the asphalt with PmB bitumen on a construction site

    belonging to the author (Hrapović, 2006) ................................................. 106

    Figure 95: Racing cars driving through an inwardly inclined curve (Dabarti, 2020)

    .................................................................................................................... 107

    Figure 96: Bending in the circular roadway (Hrapović, 2016) ............................ 107

    Figure 97: Driving dynamics and driving geometry when driving in the circular

    roadway of a roundabout (Land OÖ 2, 2016) (edited by author) ............. 109

    Figure 98: Wheel axle systems, forces and moments in the wheel contact point

    (Kollreider, 2009, p. 11) ............................................................................ 110

    Figure 99: The forces acting on the circular roadway: centrifugal and centripetal

    force (Online-Kurse, 2020) ......................................................... 111

    Figure 100: Hammer thrower throws the ball in the tangential direction (ZDF,

    2020) .......................................................................................................... 111

    Figure 101: Comparison of the limiting speeds for skidding in the curve for

    different grip levels and curve radii (Hoffmann, 2010) ............................. 112

    Figure 102: The "RoadSTAR" system for measuring road skid resistance (AIT,

    2020) .......................................................................................................... 113

    Figure 103: Tyre forces acting according to the Coloumb friction model

    (Kirchmaier, 2011, p. 12) ........................................................................... 114

    Figure 104: Skid resistance development of the asphalt surface course AC11 D S

    (Patzak, Wörner, & Westinger, 2009) ........................................................ 114

    Figure 105: Skid resistance development of the SMA11 S asphalt wearing course

    (Patzak, Wörner, & Westinger, 2009) ........................................................ 115

  • LIST OF FIGURES 12

    Figure 106: Deviator stress in wearing course and binder course - roundabout

    scenario (Hauser & Wagner, 2008) ................................................. 116

    Figure 107: Road structure (system sketch) according to (RVS 03.08.63, 2008) . 116

    Figure 108: Example of asphalt layers of a road construction (Blab 1, 2007)

    (edited by author) ....................................................................................... 118

    Figure 109: Requirements for asphalt concretes according to valid standards (Blab

    1, 2007) ...................................................................................................... 120

    Figure 110: Performance based requirements (GVO) test methods (Kappl, 2011)

    .................................................................................................................... 121

    Figure 111: Old and new designations for surface course AC11 deck PmB45/80-65,

    A2, G1 for construction type 1 / LK / according to RVS 03.08.63 (Blab 1,

    2007) .......................................................................................................... 125

    Figure 112: Old and new designations for binder course AC22 binder PmB 25/55-

    65, H1, G4 for construction type 1 / LK / as per RVS 03.08.63 (Blab 1,

    2007) .......................................................................................................... 125

    Figure 113: Old and new designations for base course AC32 trag 50/70, T1, G4 for

    construction type 1 / LK / according to RVS 03.08.63 (Blab 1, 2007) ...... 126

    Figure 114: Pavement structure design for the type AS1 (formerly BT1)

    (Blab & Eberhardsteiner, 2016) ................................................................ 129

    Figure 115: Design traffic loading - design standard load change

    (Blab & Eberhardsteiner, 2016) (edited by author) .................................. 129

    Figure 116: Derivation of new vehicle equivalence factors (Äi) (Blab &

    Eberhardsteiner, 2016) .............................................................................. 130

    Figure 117: Relationship in relation to lane factor (Straube, 2007) ..................... 134

    Figure 118: Illustration of the influence of slope factor f3 (Straube, 2007) .......... 135

    Figure 119: Frost action zones in Germany (RStO 12, 2012, p. 22) ..................... 139

    Figure 120: Grading curve diagram of asphalt type AC11 deck PmB 45/80-65 A2,

    G1 (Bautech Labor GmbH, 2020)...................................................... 141

    Figure 121: Grading curve diagram of asphalt type SMA11 PmB 45/80-65, S2, GS

    (Bautech Labor GmbH, 2020) ................................................................... 141

    Figure 122: Apparent difference between SMA 11 and chippy asphalt concrete

    AC11 (Gogolin, 2015) (edited by author) ............................... 142

    Figure 123: Structure of Stone Mastic Asphalt (Gogolin, 2015) .......................... 144

    Figure 124: (a) totally rounded particles, (b) crushed particles, (c) totally crushed

    particles (Blab 2 (n.y.)) .............................................................................. 145

    Figure 125: Ruts / unevenness (depression) in SMA wearing course (Karcher &

    Root, 2011) ................................................................................................. 146

    Figure 126: Cracks in the SMA asphalt surface course (Karcher & Root, 2011) 147

    Figure 127: Rising or open longitudinal seams (centre seams in the roundabout

    pavement) in the SMA asphalt surface course (Karcher & Root, 2011) ... 147

    Figure 128: Cross seams (connections at circular access and exit roads) and in the

    roundabout pavement in the SMA asphalt surface course (Karcher & Root,

    2011) .......................................................................................................... 147

    Figure 129: Grading curve diagram of asphalt type AC 11 D S - Sp and SMA 11 S

    from 2011 (Karcher & Root, 2011) ........................................................... 151

  • LIST OF FIGURES 13

    Figure 130: Grading curve diagram of asphalt grade AC 11 D SP from 2019

    (FGSV worksheet 736, 2019) ..................................................................... 151

    Figure 131: Pavement life time with the same annuity according to present value

    ratio F (i=4 %) (Hoffmann 3, 2008) ............................................. 165

    Figure 132: Summary of recommendations for use Node shape and choice of

    pavement at traffic junctions (Hoffmann 3, 2008) ..................................... 166

    Figure 133: Particle size distribution (grading curve diagram) of MA11 mastic

    asphalt PmB 25/55-65, M1, G1 (Piringer & Kreiter, 2014) ...................... 181

    Figure 134: Composition of the mastic asphalt (Piringer & Kreiter, 2014) ......... 184

    Figure 135: Bitumen as an important component of mastic asphalt (Piringer &

    Kreiter, 2014) ............................................................................................. 185

    Figure 136: Additives for the production of mastic asphalt (Piringer & Kreiter,

    2014) .......................................................................................................... 186

    Figure 137: Three basic principles of the load-bearing function of asphalt

    (Piringer & Kreiter, 2014) ......................................................................... 187

    Figure 138: Mastic asphalt (left), rolled asphalt (right) (Tyurk, 2017) ................ 188

    Figure 139: Mobile mastic asphalt cooker (Strabag AG (n.y.)) ............................ 188

    Figure 140: Manual laying of mastic asphalt (Tyurk, 2017) ................................ 189

    Figure 141: Paving mastic asphalt by machine (Tyurk, 2017) ............................. 189

    Figure 142: Machine spreading of the hard chippings (Piringer & Schiller, 2009)

    .................................................................................................................... 190

    Figure 143: Rolling in the hard chippings of mastic asphalt using rubber roller and

    smooth wheel roller (Piringer & Schiller, 2009) ....................................... 190

    Figure 144: Paving mastic asphalt on a German highway, 2 cm thick when

    installed (Piringer & Kreiter, 2014) ..................................................... 190

    Figure 145: Asphalting the Hartberg roundabout in Styria (BBB, 2020) ............. 191

    Figure 146: Example of the declaration of performance of mastic asphalt MA 11

    30/45 (EN 13108-6, 2016) ......................................................... 192

    Figure 147: View from the roundabout towards the entrance and exit Leibnitz/

    Hartberg Zentrum (Rossbacher & Jahrbacher, 2020) .............................. 193

    Figure 148: Very good condition of the mastic asphalt after nine years of use of the

    Hartberg roundabout (Rossbacher & Jahrbacher, 2020) ......................... 193

    Figure 149: Very good condition of the mastic asphalt surface (Rossbacher &

    Jahrbacher, 2020) ...................................................................................... 193

    Figure 150: Sharp depression (in cm range!) in the longitudinal direction of the

    centre of the roundabout pavement. However, the cause for this may not be

    mastic asphalt as such, but rather poor (or insufficient) subgrade

    (Rossbacher & Jahrbacher, 2020) ............................................................. 193

    Figure 151: Very good condition of the mastic asphalt surface (Rossbacher &

    Jahrbacher, 2020) ...................................................................................... 193

    Figure 152: Slightly better situation on the other side of the roundabot pavement

    with regard to the subsidence in the longitudinal direction of the centre of

    the rounabout pavement (Rossbacher & Jahrbacher, 2020) ..................... 193

    Figure 153: A soil treated with lime after eight hours of water storage (left) and

    without the addition of lime (right) (Neumann & Kohler, 2016) ............... 196

  • LIST OF FIGURES 14

    Figure 154: An asphalt treated with lime (left) and without lime (right)

    (Neumann & Kunesch, 2011) ..................................................................... 196

    Figure 155: Asphalt left without hydrated lime; right with hydrated lime

    (Kunesch 2 & Neumann 2, 2011) ............................................................... 197

    Figure 156: Asphalting the B62 connecting road S31 to the Deutschkreuz border

    crossing (Neumann & Kunesch, 2011) ...................................................... 197

    Figure 157: The pavement structure of the B62 link road S31 with added lime

    hydrate (left) and without added lime hydrate (right) (Neumann & Kunesch,

    2011) .......................................................................................................... 198

    Figure 158: Cross-section through a semi-rigid wearing course (Krajcsir &

    Kunesch, 2013)........................................................................................... 198

    Figure 159: Advantages / disadvantages of asphalt and concrete and of the semi-

    rigid wearing course as a combination of both (Tantscher & Sauseng, 2010)

    .................................................................................................................... 199

    Figure 160: Total layer thickness according to the pavement structure design - RVS

    03.08.63 (Krajcsir & Kunesch, 2013) ........................................................ 199

    Figure 161: Tender specification text for the semi-rigid wearing courses PA11 and

    PA16 (FSV-VI 005, 2018) ........................................................ 200

    Figure 162: Support structure for the semi-rigid wearing course a PA11 porous

    asphalt (Tantscher & Sauseng, 2010) ........................................................ 200

    Figure 163: Recommended and prescribed grading curve limit ranges PA11 P4

    (OENORM B 3586-1, 2018) ....................................................................... 201

    Figure 164: Applying high-performance flowable mortar to the asphalt support

    structure (Krajcsir & Kunesch, 2013) ....................................................... 202

    Figure 165: Damage in the carriageway of a roundabout designed as a semi-rigid

    wearing course (Hrapović, 28.03.2019) .................................................... 202

    Figure 166: Damage in the carriageway of a roundabout, designed as a semi-rigid

    wearing course (Hrapović, 28.03.2019) .................................................... 203

    Figure 167: Roundabout with semi-rigid asphalt surface (Krajcsir & Kunesch,

    2013) .......................................................................................................... 206

    Figure 168: Mortaring the pore asphalt at a roundabout (Krajcsir, e-mail, 2020)

    .................................................................................................................... 206

    Figure 169: Very good condition of the semi-rigid pavement of a roundabout years

    after installation (Krajcsir, e-mail, 2020) .................................................. 207

    Figure 170: Transports "Streinesberger" transport the round timber also for

    Lenzing AG (Streinesberger, 2020) ........................................................... 209

    Figure 171: Previous dangerous T-junction at the junction of the A1 western

    highway / B 145 state road (Hrapović 2, 2020, p. 1) ................................. 211

    Figure 172: Roundabout at the junction of the A1 western highway and the B 145

    state road in Regau (Hrapović, 2016) ....................................................... 212

    Figure 173: Site plan of the A1 / B 145 state road roundabout in Regau (Hrapović

    2, 2020, p. 8) .............................................................................................. 213

    Figure 174: Standard cross-section of the A1 / B 145 state road roundabout in

    Regau (Land OÖ 2, 2016) .......................................................... 214

    Figure 175: Slightly pronounced longitudinal crack, area of the roundabout

    pavement, access from A1 (Hrapović, 26.10.2020) ................................... 215

  • LIST OF FIGURES 15

    Figure 176: Good condition of the surface course in the area of the roundabout

    pavement, access from A1 (Hrapović, 26.10.2020) ................................... 215

    Figure 177: Slightly pronounced isolated cracks/alligator cracks adjacent to

    asphalt core drillings, area of the B145 Voecklabruck access and exit

    (Hrapović, 26.10.2020) .............................................................................. 215

    Figure 178: Slightly pronounced alligator cracks in the area of the roundabout

    pavement, access road B145 Voecklabruck (Hrapović, 26.10.2020) ........ 215

    Figure 179: Isolated cracks in the area of the working seam repaired with hot

    bitumen compound, access from B145 Voecklabruck (Hrapović, 26.10.2020)

    .................................................................................................................... 216

    Figure 180: Good condition of the roundabout pavement, area between the access

    from B145 Voecklabruck and the exit on B145 Gmunden (Hrapović,

    26.10.2020) ................................................................................................ 216

    Figure 181: Longitudinal and transverse crack repaired with hot bitumen

    compound, exit area on B145 Gmunden (Hrapović, 26.10.2020) ............. 216

    Figure 182: Detailed view of the area from Fig. 181 (Hrapović, 26.10.2020) ..... 216

    Figure 183: Good condition of the roundabout pavement, area between the access

    from B145 Voecklabruck and the exit on B145 Gmunden (Hrapović,

    26.10.2020) ................................................................................................ 216

    Figure 184: Longitudinal crack and alligator cracks in the roundabout pavement,

    access area from B145 Gmunden (Hrapović, 26.10.2020)........................ 216

    Figure 185: Cross seam crack, longitudinal crack, alligator cracks and plucking in

    the exit, exit area on the B145 Gmunden (Hrapović, 26.10.2020) ............ 217

    Figure 186: Detailed view of the area from Fig. 185 (Hrapović, 26.10.2020) ..... 217

    Figure 187: Aerial photograph of the B 154 roundabout / highway A1 Mondsee in

    July 2012 (Hrapović 2, 2020, p. 23) .......................................................... 219

    Figure 188: 2-lane roundabout B 154 / highway A1 Mondsee in October 2015

    (Hrapović 2, 2020, p. 24) ........................................................................... 219

    Figure 189: Site plan with four arms of the B 154 roundabout / A1 highway

    (Hrapović 2, 2020, p. 26) ........................................................................... 220

    Figure 190: Standard cross-section of the B 154 roundabout / A1 highway with 9.0

    m wide, 2-lane circular road (Hrapović 2, 2020, p. 28) ............................ 221

    Figure 191: Irregular longitudinal and transverse cracks repaired with hot bitumen

    compound, area of roundabout pavement, exit on B154 Oberhofen

    (Hrapović, 26.10.2020) .............................................................................. 222

    Figure 192: Plucking, transverse crack repaired with hot bitumen compound,

    Mondsee access and exit area (Hrapović, 26.10.2020) ............................. 222

    Figure 193: Detailed view of the area from Fig. 192 (Hrapović, 26.10.2020) ..... 222

    Figure 194: Alligator cracks partially repaired with hot bitumen compound, exit

    area on B154 Mondsee (Hrapović, 26.10.2020) ........................................ 222

    Figure 195: Longitudinal and transverse cracks repaired with hot bitumen

    compound, area of roundabout pavement between Mondsee access and exit

    and A1 access and exit ............................................................................... 223

    Figure 196: Transverse crack across the entire width of the roundabout pavement,

    longitudinal cracks, longitudinal and transverse working seam crack, area

    of the A1 access and exit (Hrapović, 26.10.2020) ..................................... 223

  • LIST OF FIGURES 16

    Figure 197: Detailed view of the area from Fig. 196: Plucking, particle eruptions

    tending towards pothole (Hrapović, 26.10.2020) ...................................... 223

    Figure 198: Irregular longitudinal and transverse cracks, access and exit areas of

    the industrial zone, repaired with hot bitumen compound (Hrapović,

    26.10.2020) ................................................................................................ 223

    Figure 199: Rehabilitated with hot bitumen compound: continuous longitudinal

    seam, transverse crack, alligator cracks, area of access and exit of B154

    Oberhofen (Hrapović, 26.10.2020) ............................................................ 223

    Figure 200: Continuous transverse seam crack (construction joint) repaired with

    hot bitumen compound (Hrapović, 26.10.2020) ........................................ 223

    Figure 201: Crossing of Lenzing before the bypass is extended (Hrapović 2, 2020,

    p. 32) .......................................................................................................... 224

    Figure 202: General layout plan of the B 151 Lenzing bypass - on the left is the

    North roundabout and on the right the South roundabout (Hrapović 2, 2020,

    p. 33) .......................................................................................................... 227

    Figure 203: Site map of the northern roundabout of the B 151 Lenzing bypass

    (Hrapović 2, 2020, p. 35) ........................................................................... 228

    Figure 204: North roundabout of the B 151 Lenzing bypass (Hrapović 2, 2020, p.

    39) .............................................................................................................. 229

    Figure 205: Good roundabout pavement condition, B 151 Voecklabruck access and

    exit area (author's place of residence) (Hrapović, 26.10.2020) ................ 229

    Figure 206: Detailed view of the area from Figure 205 (Hrapović, 26.10.2020) . 229

    Figure 207: Individual cracks, exit area on B 151 Voecklabruck (Hrapović,

    26.10.2020) ................................................................................................ 230

    Figure 208: Detailed view of the area from Fig. 207: irregular crack next to the

    manhole cover, exit area on B 151 Voecklabruck (Hrapović, 26.10.2020)

    .................................................................................................................... 230

    Figure 209: Seam crack partially repaired with hot bitumen compound, area of the

    Jodl connection (Hrapović, 26.10.2020) ................................................... 230

    Figure 210: Detailed view of the area shown in Fig. 209 including alligator cracks

    (Hrapović, 26.10.2020) .............................................................................. 230

    Figure 211: Good roundabout pavement condition, area between the Jodl

    connection and the Lenzing AG entrance and exit (Hrapović, 26.10.2020)

    .................................................................................................................... 230

    Figure 212: Crack at the edge of a road marking milled into the asphalt (Hrapović,

    26.10.2020) ................................................................................................ 230

    Figure 213: Seam crack and a parallel transverse crack, area of the Jodl

    connection .................................................................................................. 231

    Figure 214: Detto as in Fig. 213 (Hrapović, 26.10.2020) .................................... 231

    Figure 215: Seam crack repaired with hot bitumen compound, detail of a partially

    plucking, area of the B 151 Seewalchen access and exit (Hrapović,

    26.10.2020) ................................................................................................ 231

    Figure 216: Transverse crack repaired with hot bitumen compound, partially

    plucking, area of access and exit B 151 Seewalchen (Hrapović, 26.10.2020)

    .................................................................................................................... 231

  • LIST OF FIGURES 17

    Figure 217: Detailed view: transverse crack, plucking, grain eruption tending

    towards the pothole, area of access and exit B 151 Seewalchen (Hrapović,

    26.10.2020) ................................................................................................ 231

    Figure 218: Detailed view: Seam crack partially repaired with hot bitumen

    compound, access and exit area of B 151 Seewalchen (Hrapović,

    26.10.2020) ................................................................................................ 231

    Figure 219: Cycle path underpass below the roundabout south of the B 151

    Lenzing bypass (Hrapović 2, 2020, p. 47) .............................................. 232

    Figure 220: Site map of the southern roundabout of the B 151 Lenzing bypass with

    cycle path underpass (Hrapović 2, 2020, p. 41) ........................................ 233

    Figure 221: Roundabout south of the B 151 Lenzing bypass with cycle path

    underpass (Hrapović 2, 2020, p. 46) ........................................ 234

    Figure 222: Irregular cracks in the roundabout pavement repaired with hot

    bitumen compound, seam crack between roundabout pavement and the

    Ober- and Unterachmann exit, signs of plucking (Hrapović, 26.10.2020) 234

    Figure 223: Detailed view of Fig. 222 (Hrapović, 26.10.2020) ............................ 234

    Figure 224: Longitudinal crack in the middle of the roundabout pavement, area

    between access road B 151 Seewalchen and exit Ober- and Unterachmann,

    repaired with hot bitumen compound ........................................................ 235

    Figure 225: Roundabout pavement, access and exit area B 151 Seewalchen

    (Hrapović, 26.10.2020) .............................................................................. 235

    Figure 226: Cross-seam crack filled with hot bitumen compound, area of the B 151

    Seewalchen access and exit (Hrapović, 26.10.2020) ................................. 235

    Figure 227: Detail of partially plucking, access and exit area of the B 151

    Seewalchen (Hrapović, 26.10.2020) .......................................................... 235

    Figure 228: Strongly pronounced longitudinal crack, area between access road B

    151 Seewalchen and exit Ober- and Unterachmann (Hrapović, 26.10.2020)

    .................................................................................................................... 235

    Figure 229: Detailed view of Figure 228 (Hrapović, 26.10.2020) ....................... 235

    Figure 230: Longitudinal plan, entrance and exit area of the Graiger/Lenzing AG

    car dealership ............................................................................................ 236

    Figure 231: Detailed view of Fig.230 (Hrapović, 26.10.2020) ............................. 236

    Figure 232: Roundabout on Arzil with three main traffic arms - zoom from Fig.233

    (Land of Tyrol 3, 2020) .............................................................................. 237

    Figure 233: Annual average daily traffic JDTV, measured at point 8195 on the B

    171 Tiroler Straße (Land of Tyrol 3, 2020) ............................................... 237

    Figure 234: Aerial view of the Imst roundabout on Arzil during construction

    (Hrapović 2, 2020, p. 360) ......................................................................... 239

    Figure 235: Finished roundabout Imst on Arzil (Land of Tyrol, 2016) ................ 239

    Figure 236: Standard cross-section of the Imst auf Arzil roundabout at the B 171/

    B189 intersection in Tyrol (Hrapović 2, 2020, p. 363) .............................. 240

    Figure 237: Site plan including tractrix curves of the Imst auf Arzil roundabout at

    the B 171/ B189 intersection in Tyrol (Hrapović 2, 2020, p. 367) ............ 241

    Figure 238: View towards the entrance and exit of the B189 Reutte/Garmisch

    (GER) (Strigl, 2020) ..................................................................... 242

  • LIST OF FIGURES 18

    Figure 239: View in the direction of the B171 Innsbruck entrance and exit (Strigl,

    2020) .......................................................................................................... 242

    Figure 240: View towards the Hoch/Imst-Zentrum entrance and exit (Strigl, 2020)

    .................................................................................................................... 242

    Figure 241: View towards the Hoch/Imst-Zentrum entrance and exit (Strigl, 2020)

    .................................................................................................................... 242

    Figure 242: Roundabout pavement with the view towards the entrance and exit of

    the B171 Landeck/Mils (Strigl, 2020) ........................................................ 243

    Figure 243: Roundabout pavement with a view towards the Hoch/Imst-Zentrum

    entrance and exit (Strigl, 2020) ................................................................. 243

    Figure 244: View in the direction of the B171 Innsbruck entrance and exit (Strigl,

    2020) .......................................................................................................... 243

    Figure 245: View towards the entrance and exit of the B171 Innsbruck (Strigl,

    2020) .......................................................................................................... 243

    Figure 246: View in the direction of the Imst entrance and exit to Arzil (Strigl,

    2020) .......................................................................................................... 243

    Figure 247: View towards the exit B189 Reutte/Garmisch (GER) (Strigl, 2020) . 243

    Figure 248: Average absolute daily hydrographs of hourly traffic volumes on all

    days on the B 9 (Mayrhofer, 2020) ........................................................ 245

    Figure 249: Site map of the roundabout on the B 9 / Krücklstraße at km 40.083 in

    Hainburg - Lower Austria (Province of Lower Austria, 2016).................. 247

    Figure 250: Standard cross-section of the roundabout on the B 9 / Krücklstraße in

    Hainburg / Lower Austria (Hrapović 2, 2020, p. 292) .............................. 248

    Figure 251: View of the roundabout pavement in the southern direction (Fuchs,

    2020) .......................................................................................................... 249

    Figure 252: View of the roundabout pavement from the B9 Ungarstraße (Fuchs,

    2020) .......................................................................................................... 249

    Figure 253 and Figure 254: Very good condition of the asphalt pavement with

    SMA11 PmB 45/80-65, S1, G1 surface course after seven years of use

    (Fuchs, 2020) ............................................................................................. 250

    Figure 255: View of the very well preserved roundabout pavement in the direction

    of the B9 Pressburger Reichsstraße entrance and exit (Fuchs, 2020) ....... 250

    Figure 256: If possible, the position of the shafts and cover in the roundabout

    pavement should be avoided at all costs (on av) (Fuchs, 2020) ................ 250

    Figure 257: Traffic count data for KV Schwand (DORIS Atlas 4.0, 2020) ........... 252

    Figure 258: Roundabout on the L 1101 in Schwand/Upper Austria (Hrapović 2,

    2020, p. 244) .............................................................................................. 253

    Figure 259: Site map of the roundabout on the L 1101 in Schwand/Upper Austria

    (Hrapović 2, 2020, p. 195) ......................................................................... 254

    Figure 260: Standard cross-section of the roundabout on the L 1101 in

    Schwand/Upper Austria (Land OÖ 2, 2016) ............................................. 255

    Figure 261: Individual longitudinal cracks in the middle of the roundabout

    pavement, seam crack sealed with hot bitumen compound, area of exit L

    1026 Unteradenberg Bezirksstraße ........................................................... 256

    Figure 262: Detailed view of Fig. 261 - irregular longitudinal crack (Hrapović,

    26.10.2020) ................................................................................................ 256

  • LIST OF FIGURES 19

    Figure 263: Roundabout pavement, entrance and exit area L 1001 Gilgenberger

    Bezirksstraße in the direction of Gilgenberg am Weilhart (Hrapović,

    26.10.2020) ................................................................................................ 256

    Figure 264: Detailed view of Fig. 263 - Individual longitudinal cracks in the middle

    of the roundabout pavement (Hrapović, 26.10.2020) ................................ 256

    Figure 265: Transverse crack in the roundabout pavement with partial plucking

    along this transverse crack, longitudinal crack in the centre of the

    roundabout pavement, longitudinal cracks in the access road L 1001

    Gilgenberger Bezirksstraße in the direction of Gilgenberg am Weilhart

    (Hrapović, 26.10.2020) .............................................................................. 257

    Figure 266: Detailed view of Fig. 265 - Longitudinal cracks in the access road L

    1001 Gilgenberger Bezirksstraße towards Gilgenberg am Weilhart

    (Hrapović, 26.10.2020) .............................................................................. 257

    Figure 267: Individual cracks, area of access and exit L 1026 Unteradenberg

    Bezirksstraße .............................................................................................. 257

    Figure 268: Detailed view of Fig. 267 (Hrapović, 26.10.2020) ............................ 257

    Figure 269: Plan Nr.: 01a (Land OÖ 1, 2007) ..................................................... 265

    Figure 270: Plan Nr.: 01b (Land OÖ 1, 2007) ..................................................... 266

    Figure 271: Plan Nr.: 02a (Land OÖ 1, 2007) ..................................................... 267

    Figure 272: Plan Nr.: 02b (Land OÖ 1, 2007) .................................................... 268

    Figure 273: Plan Nr.: 03 (Land OÖ 1, 2007) ....................................................... 269

    Figure 274: Plan Nr.: 04 (Land OÖ 1, 2007) ....................................................... 270

    Figure 275: Plan Nr. 05a (Land OÖ 1, 2007) ....................................................... 271

    Figure 276: Plan Nr.: 05b (Land OÖ 1, 2007) ..................................................... 272

  • LIST OF TABLES 20

    LIST OF TABLES

    Table 2: Outer diameter D of roundabouts in Germany (RASt 06, 2006) ............... 47

    Table 3: Distinctive features of the different types of roundabouts in Austria

    (RVS 03.05.14, 2010) ................................................................................... 48

    Table 4: Dependence between the outer diameter D and the structural width of the

    circulatory roadway BK (RASt 06, 2006) GER ............................................ 48

    Table 5: Skid resistance values (friction values) as a function of road condition

    (Strommer, 2020) ....................................................................................... 113

    Table 6: Comparison between series OENORM EN 13108 and series OENORM B

    3580 [OENORM EN 13108-1] (Blab, 2007) (edited by author) ............... 119

    Table 7: Comparison between empirical and performance based test methods (own

    presentation) .............................................................................................. 122

    Table 8: Grading curves for all mix types R1 to R5 (OENORM B 3580-2, 2018) 122

    Table 9: Comparison of the designations for the common types of asphalt concrete

    for heavily loaded roads traffic areas (Blab, 2007) ................................... 123

    Table 10: Classification of stone material classes according to (OENORM B 3580-

    1, 2018) ...................................................................................................... 124

    Table 11: Dimensioning table for pavement structure with asphalt pavements (RVS

    03.08.63 amendment, 2016) ....................................................................... 127

    Table 12: Extract from the dimensioning table for LK10 (old load class I)

    (RVS 03.08.63 amendment, 2016) .............................................................. 128

    Table 13: New and old load class designation (Riederer & Spitzenberger, 2018) 128

    Table 14: Vehicle equivalence factors & equivalence factors for collectives (Blab &

    Eberhardsteiner, 2016) .............................................................................. 131

    Table 15: Average equivalent value of the JDTLV collective for different road

    categories (RVS 03.08.63 amendment, 2016) ............................................ 131

    Table 16: Lane factor S as a function of the traffic lane width bf (for intermediate

    widths the smaller lane width is decisive) (RVS 03.08.63 amendment, 2016)

    .................................................................................................................... 132

    Table 17: Terms from (RStO 12, 2012) (own composition) .................................. 132

    Table 18: Axles number factor fA (RStO 12, 2012, p. 50) ...................................... 133

    Table 19: Load spectrum quotient qBm (RStO 12, 2012, p. 50) ............................. 133

    Table 20: Lane factor f1 (RStO 12, 2012, p. 50) .................................................... 134

    Table 21: Lane width factor f2 (RStO 12, 2012, p. 51) .......................................... 134

    Table 22: Slope factor f3 (RStO 12, 2012, p. 51) ................................................... 135

    Table 23: Average annual fractional increase in heavy traffic p (RStO 12, 2012, p.

    51) .............................................................................................................. 136

    Table 24: Average annual growth factor in heavy traffic (RStO 12, 2012, p. 52) 136

    Table 25: Comparison of the load classes between the old RStO 01 and the new

    edition RStO 12 (own presentation using RStO 12 and RStO 01) ............. 137

    Table 26: Structures with asphalt pavement for roads on F2 and F3

    subsoil/subgrade (RStO 12, 2012, p. 27) ................................................... 138

    Table 27: Initial values for determining the minimum thickness of the frost blanked

    road structure (RStO 12, 2012, p. 20) ........................................................ 139

  • LIST OF TABLES 21

    Table 28: Recommended scope of application of the individual types of mixtures in

    Austria (FSV-aktuell, 2007) ....................................................................... 140

    Table 29: Initial test report for asphalt mix AC11 PmB 45/80-65, A2, G1 (Bautech

    Labor GmbH, 2020) ................................................................................... 143

    Table 30: Initial test report for asphalt mix SMA11 PmB 45/80-65, S2, GS, fibre

    (Bautech Labor GmbH, 2020) ................................................................... 143

    Table 31: Categories for the percentage of crushed particle surfaces (including the

    percentage of totally crushed and totally rounded particles) (EN 13043,

    2015, P. 16). ............................................................................................... 145

    Table 32: Recommendation for the selection of asphalt layers according to load

    classes according to (Karcher & Root, 2011) (edited by author in relation to

    new designations) ....................................................................................... 148

    Table 33: Comparison of the characteristics and properties of chippy asphalt

    concrete and stone mastic asphalt (Karcher & Root, 2011). ..................... 149

    Table 34: Reference values for asphalt mix AC11 D SP and AC8 D SP for asphalt

    wearing courses of chippy asphalt concrete (FGSV worksheet 736, 2019)

    .................................................................................................................... 150

    Table 35: Crushed aggregate asphalt AC11 D SP: granulometric composition -

    comparison based on Tab. 34 and Fig. 129 and 130 (own illustration).... 152

    Table 36: Declaration of performance for the Austrian wearing course AC11 deck

    PmB 45/80-65, A2, G1 (Bautech Labor GmbH, 2020) .............................. 153

    Table 37: Declaration of performance for the German asphalt mix AC 11 D SP

    25/55-55 A (Max Bögl, 2020) .................................................................... 154

    Table 38: Declaration of performance for the Austrian wearing course SMA 11

    PmB 45/80-65, S2, GS, fibre (Bautech Labor GmbH, 2020) ..................... 155

    Table 39: Declaration of performance for the German asphalt mix SMA11 S 25/55-

    55 A (Max Bögl, 2020) ............................................................................... 156

    Table 40: Direct comparison of the asphalt surface courses AC11 deck PmB 45/80-

    65, A2, G1 (Bautech Labor GmbH, 2020) (AUT) and AC11 D SP 25/55-55

    A (Max Bögl, 2020) (GER) according to the respective performance

    declarations (own compilation) ................................................................. 157

    Table 41: Roundabouts in Carinthia that were built or repaired from 2015

    (Wrulich, 2020) .......................................................................................... 161

    Table 42: Roundabouts in Vorarlberg built in recent years (Zitt, 2020) .............. 164

    Table 43: The asphalt structure for roundabouts in Styria (Hoffmann 3, 2008) ... 166

    Table 44: Roundabout projects carried out in Styria (Neuhold & Rast, 2020) ..... 166

    Table 45: Roundabouts with bituminous pavement in the land of Salzburg

    (Eberharter, 2020) ..................................................................................... 170

    Table 46: Declaration of rolled asphalt for Swiss surface course AC8 H PmB

    45/80-65 (BHZ, 2020) ................................................................................ 173

    Table 47: Declaration of rolled asphalt for Swiss surface course AC MR 8 PmB

    45/80-65 (BHZ, 2020) ................................................................................ 175

    Table 48: Requirements for wearing courses of asphalt concrete AC (Prüflabor

    AG, 2015) ................................................................................................... 176

    Table 49: Requirements for wheel tracking (Prüflabor AG, 2015) ....................... 177

    Table 50: Requirements for rough asphalt AC MR (Prüflabor AG, 2015) ........... 177

  • LIST OF TABLES 22

    Table 51: Requirements for delivery particle size D < 0.125 mm (filler)

    (OENORM B 3585-1, 2018) ....................................................................... 178

    Table 52: Comparison of series OENORM EN 13108 and series OENORM B 3580

    (EN 13108-6, 2016).................................................................................... 179

    Table 53: Combinations between mix types and aggregate classes (OENORM B

    3585-1, 2018) ............................................................................................. 179

    Table 54: Grading curve limit for mastic asphalt (Tyurk, 2017) .......................... 180

    Table 55: Indentation (resistance to permanent deformation) (Tyurk, 2017) ....... 180

    Table 56: Recommendations for the selection of commonly used asphalt mixes (RVS

    08.97.05, 2010) .......................................................................................... 181

    Table 57: Requirements for the acceptance tests on the mix for mastic asphalt (MA)

    (RVS 08.97.05, 2010) ................................................................................. 182

    Table 58: Aggregate requirements for PA wearing courses - delivery particle sizes

    (RVS 08.97.05, 2010) ................................................................................. 183

    Table 59: Mechanical properties of mastic asphalt (Strabag AG (n.y.)) .............. 186

    Table 60: Requirements for fresh mortar (RVS 08.16.03, 2014) ........................... 203

    Table 61: Requirements for solid mortar (RVS 08.16.03, 2014) ........................... 204

    Table 62: Traffic release as a function of the average ambient temperature for

    mortars of strength class I (RVS 08.16.03, 2014) ...................................... 204

    Table 63: Current status of the use of hydrated lime for the production of asphalt in

    Europe (EuLA, 2011) (edited by author) ................................................... 205

    Table 64: Description of KV B 145 / highway exit A1 Regau (Upper Austria) (Land

    OÖ 3, 2012)................................................................................................ 209

    Table 65: Description of KV B 154 / highway A1 Mondsee (Upper Austria) (Land

    OÖ 3, 2012)................................................................................................ 217

    Table 66: Description of the North and South roundabouts at the Lenzing bypass

    (Land OÖ 3, 2012) ..................................................................................... 224

    Table 67: Description of KV Imst on Arzil at the junction B 171/ B189 (Land of

    Tyrol, 2016) ................................................................................................ 236

    Table 68: Description of the KV on the B 9 federal state road / Krücklstraße in

    Hainburg (Province of Lower Austria, 2016) ............................................ 244

    Table 69: Table showing traffic loads on all days on the B 9 (Mayrhofer, 2020) 245

    Table 70: Description of the KV on the L 1101 national road in Schwand (Upper

    Austria) (Land OÖ 2, 2016) ....................................................................... 251

    Table 71: Summary of the seven selected roundabouts ......................................... 258

    Table 72: Standard details for the marginalization of roundabouts (Land OÖ 1,

    2007) .......................................................................................................... 264

  • LIST OF ABBREVIATIONS 23

    LIST OF ABBREVIATIONS

    Abbrevia-

    tions

    Bezeichnung (German) Description (English)

    A Autobahnen (AUT) highways (federal road of types A)

    Abb. Abbildung figure

    AC Asphaltbeton asphalt concrete

    Äi Fahrzeugäquivalenzfaktor vehicle equivalence factor

    ASI Österreichisches Normungsinstitut Austrian Standards Institute

    AUT Österreich Austria

    B Landesstraßen B federal road of types B

    BA Fahrstreifenbreite der Kreisausfahrt lane width of the exit road

    BAB Bundesautobahnen (GER) national highways (GER)

    BBR Biegebalken Rheometer Bending Beam Rheometer

    BBTM Lärmmindernde

    Dünnschichtdecken (Béton Bitumi-

    neux Mince)

    asphalt for ultra-thin layers

    binder Binderschichte binder course

    BK Breite des Kreisrings lane width

    Bk Bauklasse load classe

    BNLW Bemessungsnormlastwechsel rated standard load change (relevant

    design traffic load)

    BZ Fahrstreifenbreite der Kreiszufahrt lane width of the entry road

    bzw. beziehungsweise or

    ca. circa approximately

    Cc teilweise gebrochene Körner

    (EN 933-5)

    partially crushed particles

    CE Conformité Européenne Conformité Européenne

    Ctc vollständig gebrochene Körner

    (EN 933.5)

    totally crushed/ broken particles

  • LIST OF ABBREVIATIONS 24

    Ctr vollständig gerundete Körner

    (EN 933-5)

    totaly rounded particles

    D Außendurchmesser (KVA) outer diameter

    D Bindemittelablauf (EN 12697-18) binder drainage

    D obere Siebgröße upper sieve size

    d untere Siebgröße lower sieve size

    d.h. das heißt that means

    DBT wasserdurchlässig water permeable (PCB)

    deck Deckschichte asphalt surface course

    Di Innendurchmesser (KVA) inner diameter

    DSR Dynamischer Scherrheometer dynamic shear rheometer

    DTA(SV) Durchschnittliche Anzahl der tägli-

    chen Achsübergänge (Aü) des

    Schwerverkehrs [Aü/24h] (GER)

    DTA(SV) [AP/24h] average daily

    number of axle passes (AP) from

    heavy traffic (GER)

    DTV Durchschnittliche tägliche

    Verkehrsstärke [Kfz/24h] (AUT)

    average daily traffic (ADT) (AUT)

    DTV(SV) Durchschnittliche tägliche

    Verkehrsstärke der Fahrzeugarten des

    Schwerverkehrs [Fz/24h] (GER)

    DTV(SV) [vehicles/24h] average daily

    traffic for heavy vehicle types (GER)

    E Einheit unit

    EBK Edelbrechkorn fine crushed aggregate

    EN Europäische Norm European standard

    etc. et cetera et cetera

    EVd dynamischer Verformungsmodul dynamic modulus of deformation

    EVS statischer Verformungsmodul static modulus of deformation

    F Marshall Fließwert (EN 12697-34) Marshall flow value

    F Fliehkraft (Zentrifugalkraft) centrifugal force

    f1i Fahrstreifenfaktor im Nutzungsjahr

    i

    lane factor in year of use i

    f2i Fahrstreifenbreitenfaktor im

    Nutzungsjahr i

    lane width factor in year of use i

  • LIST OF ABBREVIATIONS 25

    f3 Steigungsfaktor slope factor

    fAi-1 Durchschnittliche Achszahl pro

    Fahrzeug des Schwerverkehrs

    (Achszahlfaktor) im Nutzungsjahr

    i-1 [A/Fz]

    average number of axles per vehicle

    for heavy traffic (axle number factor)

    in year of use i-1 [A/vehicle]

    FGSV Deutsche Forschungsgesellschaft

    für Straßen- und Verkehrswesen

    German Road and Transportation

    Research Association

    FSS Frostschutzschicht frost blanket course (FBC)

    Fz Fahrzeug vehicle

    fz mittlerer jährlicher Zuwachsfaktor

    des Schwerverkehrs

    average annual growth factor for

    heavy traffic

    g Gramm gram

    g Erdbeschleunigung g = 9,81 [m/s2] acceleration due to gravity

    G Gewicht weight

    GER Deutschland Germany

    Gew.-% Gewicht Prozent weight percent

    ggf. gegeben falls in some cases

    GVO gebrauchsverhaltensorientiert performance-based

    h Stunde hour

    HGT hydraulisch gebundene Tragschicht hydraulically bound base course

    (HBB)

    HiM high modified high modified

    HSD halbstarre Deckschichten semi-rigid wearing courses

    i.d.R. in der Regel as a rule

    Imin Eindringtiefe (EN 12697-21) indentation

    JDTLV Jährlich durchschnittlicher täglicher

    Lastverkehr [Lkw/24h]

    annual average daily truck traffic

    JDTV Jährlich durchschnittliche tägliche

    Verkehrsstärke [Kfz/24h]

    annual average daily traffic (AADT)

    Kfz Kraftfahrzeug motor vehicle

    kg Kilogramm kilogram

  • LIST OF ABBREVIATIONS 26

    KK Kantkorn crushed particle

    km Kilometer kilometer

    KV Kreisverkehr roundabout

    KVA Kreisverkehrsanlage roundabout construction

    KVP Kreisverkehrsplatz roundabout

    L Landesstraßen L federal road of types L

    LA Los Angeles Wert (EN 1097-2) Los Angeles value (EN 1097-2)

    lfm Laufmeter meter

    lit Liter liter

    LK Lastklasse load class

    Lkw Lastkraftwagen truck; heavy vehicle

    LkwÄ äquivalente 10 t Achsübergänge equivalent 10-t-standard axles

    LSA Lichtsignalanlage light signal system

    m Meter meter

    M.-% Massenprozent percent by mass

    MA Gussasphalt mastic asphalt

    max. Maximum maximum

    ME Kompressibilitätsmodul modulus of compressibility

    min Minute minute

    min. Minimum minimum

    mind. mindestens minimum

    Mio. Million million

    MSCR Multiple Stress Creep and Recovery

    Test

    Multiple Stress Creep and Recovery

    Test

    n.r. keine Anforderungen no requirement

    NÖ Niederösterreich Lower Austria

    Nr. Nummer number

    NRW Nordrhein-Westfalen North Rhine-Westphalia (federal

    state in Germany)

  • LIST OF ABBREVIATIONS 27

    ÖIAV Österreichischer Ingenieur- und Ar-

    chitektenverein

    Austrian Engineer and Architect As-

    sociation

    ON Österreichisches Normungsinstitut Austrian Standards Institute

    ÖNORM Österreichische Norm Austrian standard (OENORM)

    OÖ Oberösterreich Upper Austria

    ÖRK Österreichische Rektorenkonferenz Austrian rectors’ conference

    p mittlere jährliche Zunahme des

    Schwerverkehrs (AUT)

    average annual fractional increase in

    heavy traffic (AUT)

    PA Dränasphalt porous asphalt

    PAV Pressure Aging Vessel Pressure Aging Vessel

    pi mittlere jährliche Zunahme des

    Schwerverkehrs im Nutzungsjahr i

    (GER)

    average annual fractional increase in

    heavy traffic in year of use i (GER)

    Pkw Personenkraftwagen passenger vehicle

    PL maximaler Kornverlust

    (EN 12697-17)

    maximum particle loss

    PmB polymermodifiziertes Bitumen polymer bitumen

    PRDLuft proportionale Spurrinnentiefe

    (EN 12697-22)

    wheel tracking PRDair

    q Quergefälle crossfall, cross slope

    qBm Lastkollektivquotient load spectrum quotient

    RA Ausrundungsradius der Kreisaus-

    fahrt

    rounding radius of the exit road

    RASt Richtlinien für die Anlage von

    Stadtstraßen (GER)

    guidelines for the construction of ur-

    ban roads (GER)

    rbssd Raumdichte Probekörper

    (EN 12697-6)

    bulk density specimen

    rmv Rohdichte des Asphaltmischguts

    (EN 12697-5)

    density of asphalt mix/mixture

    RStO Richtlinien für die Standardisierung

    des Oberbaues von Verkehrsflächen

    guidelines for standardization of

    pavements of traffic surfaces (GER)

    RTFOT Rolling Thin Film Oven Test Rolling Thin Film Oven Test

  • LIST OF ABBREVIATIONS 28

    RVS Richtlinien und Vorschriften für das

    Straßenwesen (AUT)

    guidelines for planning, construction

    and maintenance of roads (AUT)

    RZ Ausrundungsradius der

    Kreiszufahrt

    rounding radius of the entry road

    S Schnellstraßen (AUT) federal highways types S – motor-

    ways (AUT)

    s Sekunde second

    S löslicher Bindemittelgehalt

    (EN 12697-1)

    soluble binder content

    S Marshall Stabilität (EN 12697-34) Marshall stability

    S. Seite page

    S/F Marshall Quotient (EN 12697-34) Marshall quotient

    SM Straßenmeisterei road maintenance depot

    SMA Splittmastixasphalt stone mastic asphalt

    sog. sogenannte so-called

    Stk. Stück piece

    STRAWO straßenbautechnisches Wörterbuch road construction dictionary

    SV Schwerverkehr heavy traffic

    t Tonne ton

    Tab. Tabelle table

    TIR Tirol Tyrol

    ToB Tragschichten ohne Bindemittel unbound granular layer (UGL)

    trag Tragschichte bearing (base) course/layer

    TS Tragschichte bearing (base) course/layer

    UNIKO Österreichische Universitätenkon-

    ferenz

    Universities Austria

    UP Unterbauplanum subgrade planum

    usw. und so weiter and so on

    V Volumen volume

    VFB Hohlraumauffüllungsgrad

    (EN 12697-8)

    air voids content

  • LIST OF ABBREVIATIONS 29

    VLSA Verkehrslichtsignalanlage traffic light signal system

    Vm Hohlraumgehalt Probekörper

    (EN 12697-8)

    air voids content of bituminous spec-

    imens

    VMA Hohlraumgehalt Gesteinsgerüst

    (EN 12697-8)

    air voids content of stone scaffolding

    vs versus versus

    vzul zulässige Geschwindigkeit des

    Fahrzeuges bei Kurvenfahrt [m/s]

    permissible speed of the vehicle in

    curves [m/s]

    z.B. zum Beispiel for example

    ZTV

    Asphalt-

    StB

    Zusätzliche Technische Vertrags-

    bedingungen und Richtlinien für

    den Bau von Verkehrsflächenbefes-

    tigungen aus Asphalt, FGSV-Nr.:

    799 FGSV (GER)

    additional technical contract condi-

    tions and guidelines for the construc-

    tion of asphalt pavements FGSV-Nr.:

    799 FGSV (GER)

    ZTV T-StB Zusätzliche Technische Vertrags-

    bedingungen und Richtlinien für

    Tragschichten im Straßenbau

    additional technical contract condi-

    tions and guidelines for base courses

    in road construction (GER)

    μ Griffigkeitswert skid resistance value; grip value

  • FOREWORD 30

    FOREWORD

    The first roundabouts as traffic engineering facilities were not built until the beginning of

    the 20th century, although there were islands in the middle of the streets and marketplaces

    long before that time. Even in Roman times, people admired the water fountains and stat-

    ues in marketplaces. A long time ago in England, there were also traffic islands as pedes-

    trian oases, and in France, there were also the imposing buildings in the middle of market

    squares. However, it was only the "planning border" of all these objects that turned them

    into traffic roundabouts.

    Nowadays, through urban and landscape planning, the roundabouts are increasingly be-

    coming individual, orderly and representative squares as distinguishing features of towns

    and cities. The explosion of roundabout construction without further ado comes from the

    fact that, apart from minor disadvantages, roundabouts have clear advantages over "clas-

    sic" intersections:

    - a significant reduction in road accidents, especially those resulting in serious injuries

    and deaths;

    - clear reduction of waiting times for entering the roundabout;

    - "predictability" of the roundabout by driving in one direction only;

    - lower speeds during the roundabout journey and thus the reduction of CO2 reduction

    and noise (environmental protection).

    My two textbooks, written in Montenegrin in 2018, served as the basis for this disserta-

    tion:

    Hrapović K.: Osnove izgradnje kružnih raskrsnica, prva knjiga – opšti dio (Translation

    into English: Basics of roundabout construction, first book - general part), edition 2016,

    privately printed in colour in Montenegro 2018 or published in black and white by e-publi

    GmbH Berlin am 24.07.2020 (Hrapović 1, 2020)

    Hrapović K.: Osnove izgradnje kružnih raskrsnica, druga knjiga – Izvedeni projekti

    kružnih raskrsnica u Austriji (Translation into English: Basics of roundabout construc-

    tion, second book – Projects of roundabouts implemented in Austria), edition 2016, pri-

    vately printed in colour in Montenegro 2018 or published in black and white by e-publi

    GmbH Berlin am 24.07.2020 (Hrapović 1, 2020)

    As these two books have initiated me to write this dissertation and they are the practical

    basis of this work, here is an excerpt from the review by Prof. Igor Jokanović, Ph.D. in

    Civil Eng., which he wrote about these two books (Jokanović, 2020):

    The basic purpose of the manuscript is to unify in a single place the basic theoretical

    assumptions and practical experiences in the construction of roundabouts, with a

    brief overview of the planning and design basics for roundabouts. The first book deals

  • FOREWORD 31

    with the general elements of roundabouts, to a limited extent, presents the basic set-

    tings of these intersections, as well as details regarding the design and execution of

    works, with specific reference to pavement structures and elements of curbing, drain-

    age and traffic equipment. Emphasized are elements that are generally commonly

    designed and implemented without any particular difference to “classic” intersec-

    tions and open alignment, although there are significant differences in vehicle move-

    ment, driver’s behaviour, and interaction with the carriageway surface and environ-

    ment.

    The second book provides a detailed overview of 30 different roundabouts built in the

    Austrian provinces of Upper Austria, Lower Austria and Tyrol. Presented solutions

    contain basic descriptions of the applied elements, drawings of the layout and level-

    ling plans taken from the design documentation, as well as various details of the

    cross-section, structural solutions of pavements, drainage elements and other accom-

    panying elements of roads and intersections. Also, a large number of photographs

    from the construction period (especially with construction details of pavement struc-

    tures on the circular pavement), as well as the finished solutions, are presented. The

    set of details shown in relation to specific design solutions can help designers, guide

    them in their thinking and defining specificities for some “non-standard” solutions,

    and in particular provide useful information to contractors, more exactly engineers

    who manage the construction of roundabouts.

    Particularly noteworthy are several important characteristics of the manuscript that

    the author has successfully accomplished, namely:

    1. Rational integration of all relevant information primarily necessary for the con-

    struction of roundabouts with direct reference to the literature, and legal and

    technical regulations in this field;

    2. In addition to the clear graphical presentation of the individual elements, full

    displays of the design solutions are given, serving as a good practice example of

    solutions that design and construction engineers can use in their work;

    3. Although books are not primarily intended for pedagogical work, a very good

    ratio of textual and graphic contributions has been achieved, generally charac-

    teristic to textbook materials;

    4. In addition to information on basic design elements and construction details of

    roundabouts, extensive material (textual and graphical) related to problems with

    pavement structures, drainage, the layout of utility infrastructure and lighting el-

    ements, provides specific information and is very useful to supplement general

    knowledge of these disciplines when it comes to roundabout structures.

  • FOREWORD 32

    With the nowadays potentiated popularity (in some cases unjustified) of roundabouts,

    books devoted to their construction represent a significant contribution in the some-

    what neglected segment - dimensioning and design solutions, and recommendations

    for implementation. Books provide a wealth of information and can notably assist

    civil engineers in the application of this type of intersections, both in the design and

    in construction, because it is easy to qualify roundabouts as “more favourable” in a

    certain traffic sense, but this also requires justification with appropriate design solu-

    tions and quality of execution.

    The books are logically conceptualized, transparent and clear, containing a large

    number of contemporary processed figures, diagrams and tables, which significantly

    clarify the conten