table of contents - gm systems llclt1004-1.2 as1004-1.2 lt1004-2.5 as1004-2.5 uc384x as384x unitrode...

189
1 Table of Contents Table of Contents ..................................................................................................... 1 Introduction .............................................................................................................. 3 General Ordering Information ................................................................................. 4 Package Marking Information ................................................................................. 5 Alternate Source and Product Cross-Reference .................................................. 6 Product Status Definitions ...................................................................................... 7 Data Sheets - Title Page AS431 Precision Adjustable Shunt Reference ........................................................... 1 AS1431 Precision Adjustable Shunt Reference ......................................................... 9 AS2431 Precision Adjustable Shunt Reference ...................................................... 17 AS432 1.25V Precision Adjustable Shunt Reference ............................................ 25 AS1004 Micropower Precision Reference ............................................................... 29 AS2842/3/4/5 Current Mode Controller ................................................................... 37 AS3842/3/4/5 Current Mode Controller ................................................................... 57 AS2208 (Preliminary) Current Mode Controller ....................................................... 77 AS2214 Current Mode Controller ............................................................................. 83 AS2316/33/50 Secondary Side Housekeeping Circuit ............................................ 91 AS300 Shunt Temperature Sensor ........................................................................ 101 AS273 Over-Temperature Detector . ....................................................................... 107 AS17XX Semi-Custom Bipolar Array ..................................................................... 119

Upload: others

Post on 30-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    Table of Contents

    Table of Content s ..................................................................................................... 1

    Introductio n .............................................................................................................. 3

    General Ordering Informatio n ................................................................................. 4

    Package Marking Informatio n ................................................................................. 5

    Alternate Source and Product Cross-Referenc e .................................................. 6

    Product Status Definition s ...................................................................................... 7

    Data Sheets - Title Page

    AS431 Precision Adjustable Shunt Reference ........................................................... 1

    AS1431 Precision Adjustable Shunt Reference ......................................................... 9

    AS2431 Precision Adjustable Shunt Reference ...................................................... 17

    AS432 1.25V Precision Adjustable Shunt Reference ............................................ 25

    AS1004 Micropower Precision Reference ............................................................... 29

    AS2842/3/4/5 Current Mode Controller ................................................................... 37

    AS3842/3/4/5 Current Mode Controller ................................................................... 57

    AS2208 (Preliminary) Current Mode Controller ....................................................... 77

    AS2214 Current Mode Controller ............................................................................. 83

    AS2316/33/50 Secondary Side Housekeeping Circuit ............................................ 91

    AS300 Shunt Temperature Sensor ........................................................................ 101

    AS273 Over-Temperature Detector........................................................................ 107

    AS17XX Semi-Custom Bipolar Array ..................................................................... 119

  • 2

    Table of Contents

    Application Notes

    AN1: AS431 General Application Information ........................................................ 141

    AN2: Secondary Side Error Amplifier Using the AS431 ......................................... 147

    AN3: Noise and Stability Considerations Using the AS384X ................................. 151

    AN4: AS384X/UC384X Compatibilbity Issues ....................................................... 157

    AN5: Switching Power Supply Control Loop Design (AS3842) ............................. 161

    Appendix

    Package Outline Drawings ..................................................................................... 173

    Quality Assurance and Reliability Program ............................................................ 181

  • 3

    Introduction

    Astec Semiconductor Division (ASD) was chartered in 1983 to designand manufacture high quality power management integrated circuitsfor the Astec family of power supplies.

    Extending from this charter, ASD has become power managementspecialists, developing semiconductor products optimized for thespecific need of all customers in power supply, lighting ballast,temperature controllers and consumer electronic applications. Ourproducts are built on modern Bipolar, BiCMOS and CMOS technolo-gies. ASD provides their customers products and services built to thehighest standards of quality and reliability.

    Our goal is to provide quality, technology and predictability in ourpursuit of customer satisfaction.

    Andrew DavisPresidentAstec Semiconductor Division

  • 4

    General Ordering Information

    Order EntryProducts contained within this data book can be ordered from:

    Astec Semiconductor255 Sinclair Frontage RoadMilpitas, California 95035 USAPhone: 408-263-8300Facsimile: 408-263-8340

    Ordering InformationMinimum engineering order: 50 pieces (product samples available upon request)

    Minimum production order: 500 pieces

    Each item ordered must appear exactly as listed in the data sheet

    F.O.B.: Milpitas, California

    Part Number InformationXX XXXX -XX

    Package Style

    Generic or Product Part Number

    DesignatorUC, TL, LM, and LT are industry standard second source devicesAS are proprietary or improved devices

    Package Suffix ExplanationLetter Designation Description

    N 8, 14, 16, 18, and 20 Lead Plastic DIPD 8, 14, and 16 Lead Plastic Narrow Body SOICDW 16, 18, and 20 Lead Plastic Wide Body SOICLP TO-92 Plastic (3 Lead)HP TO-237 Plastic (3 Lead, TO-92 with Top Heat Spreader)VS SOT-23 Plastic (3 Lead)S SOT-89 Plastic (3 Lead with Heat Spreader)G SOT-223 Plastic (3 Lead with Heat Spreader)

  • 5

    Package Marking InformationPackage Marking ExplanationPackage marking provides a consistent way of identifying product types and managing lottraceability. All Astec products, with the exception of the SOT-23 and SOT-89 packages, aremarked with product type, lot number, date code, and country of origin. Each assembly lot in theSOT-23 and SOT-89 packages, receives a unique alpha-numeric code which is recorded in a database for cross reference to lot number, date code, and country of origin. A complete marking formattable is shown below.

    8, 14, 16, 18, and 20Lead Plastic DIP:

    Top- Astec Logo

    Product Name

    Lot Identificaton Code

    Bottom- Lot Identification Code

    Country of Origin

    Date Code

    8, 14, and 16 Lead PlasticNarrow Body SOIC:

    Top- Product Name

    Lot Identificaton Code

    Bottom- Date Code

    Country of Origin

    16, 18, and 20 Lead PlasticWide Body SOIC:

    Top- Astec Logo

    Product Name

    Lot Identificaton Code

    Bottom- Lot Identification Code

    Country of Origin

    Date Code

    TO-92/237 Plastic (3 Lead):

    Face- Astec Logo

    Product Name

    Lot Identificaton Code

    Country of Origin

    Date Code

    SOT-23 Plastic (3 Lead):

    Top- Log Book Code

    SOT-89 Plastic(3 Lead with Heat Spreader):

    Top- Product Name

    Log Book Code

    SOT-223 Plastic(3 Lead with Heat Spreader):

    Top- Product Name

    Lot Identificaton Code

    Bottom- Date Code

    Country of Origin

  • 6

    Alternate Source and Product Cross-ReferenceASD Direct ASD Direct ASD Direct

    P/N Replacement Part P/N Replacement Part P/N Replacement Part

    Cherry Semiconductor

    CS384XA AS384X

    CS384X AS384X

    Hitachi

    HA17431 A431

    HA17384 AS3842

    HA17345 AS3843

    Linear Techology

    LM385-1.2 AS1004-1.2

    LM385-2.5 AS1004-2.5

    LT1004-1.2 AS1004-1.2

    LT1004-2.5 AS1004-2.5

    LT1431CZ AS1431*

    LT1242 AS3842*

    LT1243 AS3843*

    LT1244 AS3844*

    LT1245 AS3845*

    Motorola Semiconductor

    TL431 A431

    TL431A A431

    UC384X AS384X

    UC384XA AS384X

    National Semiconductor

    LM431A A431

    LM385-1.2 AS1004-1.2

    LM385-2.5 AS1004-2.5

    Samsung Semiconductor

    SKA431 A431

    KA384X AS384X

    Texas Instruments

    TL431 A431

    TL431A A431

    TL1431 AS1431

    LM385-1.2 AS1004-1.2

    LM385-2.5 AS1004-2.5

    LT1004-1.2 AS1004-1.2

    LT1004-2.5 AS1004-2.5

    UC384X AS384X

    Unitrode

    UC384X AS384X

    UC384XA AS384X*

    * Similar Device: Please consult data sheet to determine the suitability of replacement for specific applications

  • 7

    Product Status Definitions

    This data sheet contains the design specifica-tions for product development. These specifica-tions are subject to change. Further informationwill be published upon product release.

    This data sheet contains preliminary data. Supple-mentary data will be published at a later date.Astec Semiconductor reserves the right to makechanges at any time without notice in order toimprove design and supply the best product pos-sible.

    Definition of Terms

    Data Sheet Identification Product Status Definition

    Proposed In Design

    Preliminary First Production

    No Identification Full Production This data sheet contains final specifications andcomplete typical curves. Astec Semiconductorreserves the right to make changes at any timewithout notice in order to improve design andsupply the best product possible.

  • 1ASTEC Semiconductor

    AS431Precision Adjustable Shunt Reference

    Features¥ Temperature-compensated: 30 ppm/¡C¥ Trimmed bandgap reference¥ Internal amplifier with 150 mA capability¥ Multiple temperature ranges¥ Low frequency dynamic output impedance:

    < 150 m½

    ¥ Low output noise¥ Robust ESD protection

    DescriptionThe AS431 is a three-terminal adjustable shunt regulator providing a highlyaccurate bandgap reference. The adjustable shunt regulator is ideal for a widevariety of linear applications that can be implemented using external compo-nents to obtain adjustable currents and voltages.

    In the standard shunt configuration, the combination of low temperature coef-ficient (TC), sharp turn-on characteristics, low output impedance and pro-grammable output voltage make this precision reference a perfect zener diodereplacement.

    The AS431 precision adjustable shunt reference is offered in four bandgap tol-erances: ±0.25%, ±0.5%, ±1.0%, and ±2.0%.

    Pin Configuration Ñ Top view

    Ordering Information

    CATHODE

    TO-92 (LP) SOIC (D)

    ANODE

    REFERENCE

    CATHODE

    REFERENCE

    ANODE

    ANODE

    N/C

    CATHODE

    ANODE

    ANODE

    N/C

    SOT-89 (S)SOT-23/5L (DBV)

    ANODE

    REFERENCE

    1

    2

    3

    4

    8

    7

    6

    5

    REFERENCE

    ANODE

    N/C

    N/C

    CATHODE

    Circuit Type: Precision Adjustable Shunt Regulator

    Temperature Range: A B C

    Bandgap Tolerance: 2 1 R5 R25

    = 0°C to 70°C= 0°C to 105°C= –40°C to +85°C

    = ±2%= ±1%= ±0.5%= ±0.25%

    Packaging Option: A B T 7 13

    Package Style: D DBV LP S

    = Ammo Pack= Bulk= Tube= Tape and Reel (7" Reel Dia)= Tape and Reel (13" Reel Dia)

    = SOIC= SOT-23/5L= TO-92= SOT-89

    AS431 A 2 D 7

    SEMICONDUCTOR

  • 2ASTEC Semiconductor

    AS431 Precision Adjustable Shunt Reference

    Functional Block Diagram

    Absolute Maximum RatingsParameter Symbol Rating Units

    Cathode-Anode Reverse Breakdown VKA 37 V

    Anode-Cathode Forward Current IAK 1 A

    Operating Cathode Current IKA 250 mA

    Reference Input Current IREF 10 mA

    Continuous Power at 25¡C PDTO-92 775 mW

    8L SOIC 750 mW

    SOT-89 1000 mW

    SOT-23/5L 200 mW

    Junction Temperature TJ 150 ¡C

    Storage Temperature TSTG Ð65 to 150 ¡C

    Lead Temperature, Soldering 10 Seconds TL 300 ¡C

    Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is astress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sec-tions of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

    Ð

    +REFERENCE (R)

    ANODE (A)

    CATHODE (K)

    2.5 V

    Recommended ConditionsParameter Symbol Rating Unit

    Cathode Voltage VKA VREF to 20 V

    Cathode Current IK 10 mA

    Typical Thermal ResistancesPackage θJA θJC Typical Derating

    TO-92 160¡C/W 80¡C/W 6.3 mW/¡C

    SOIC 175¡C/W 45¡C/W 5.7 mW/¡C

    SOT-89 110¡C/W 8¡C/W 9.1 mW/¡C

    SOT-23/5L 575¡C/W 150¡C/W 1.7 mW/¡C

  • 3ASTEC Semiconductor

    AS431Precision Adjustable Shunt Reference

    Electrical CharacteristicsElectrical Characteristics are guaranteed over full junction temperature range (0 to 105¡C). Ambient temperature must be derated basedon power dissipation and package thermal characteristics. The conditions are: VKA = VREF and IK = 10 mA unless otherwise stated.

    Test AS431 (0.25%) AS431 (0.5%) TestParameter Symbol Condition Min. Typ. Max. Min. Typ. Max. Unit Circuit

    Reference Voltage VREF TA = 25¡C 2.496 2.503 2.509 2.490 2.503 2.515 V 1

    Over temp. 2.475 2.530 2.469 2.536 V 1

    ÆVREF with Temp* TC 0.07 0.20 0.07 0.20 mV/¡C 1

    Ratio of Change in ÆVREF VREF to 10 V Ð2.7 Ð1.0 Ð2.7 Ð1.0VREF to Cathode ÆVK mV/V 2Voltage 10 V to 36 V Ð2.0 Ð0.4 0.3 Ð2.0 Ð0.4 0.3

    Reference Input IREF 0.7 4 0.7 4 µA 2Current

    IREF Temp Deviation ÆIREF Over temp. 0.4 1.2 0.4 1.2 µA 2

    Min IK for Regulation IK(min) 0.4 1 0.4 1 mA 1

    Off State Leakage IK(off) VREF = 0 V, 0.04 250 0.04 250 nA 3VKA = 36 V

    Dynamic Output ZKA f ² 1 kHz 0.15 0.5 0.15 0.5 ½ 1Impedance IK = 1 to 150 mA

    Test AS431 (1.0%) AS431 (2.0%) TestParameter Symbol Condition Min. Typ. Max. Min. Typ. Max. Unit Circuit

    Reference Voltage VREF TA = 25¡C 2.470 2.495 2.520 2.440 2.490 2.550 V 1

    Over temp. 2.449 2.541 2.430 2.569 V 1

    ÆVREF with Temp* TC 0.07 0.20 0.07 0.20 mV/¡C 1

    Ratio of Change in ÆVREF VREF to 10 V Ð2.7 Ð1.0 Ð2.7 Ð1.0VREF to Cathode ÆVK mV/V 2Voltage 10 V to 36 V Ð2.0 Ð0.4 0.3 Ð2.0 Ð0.4 0.3

    Reference Input IREF 0.7 4 0.7 4 µA 2Current

    IREF Temp Deviation ÆIREF Over temp. 0.4 1.2 0.4 1.2 µA 2

    Min IK for Regulation IK(min) 0.4 1 0.4 1 mA 1

    Off State Leakage IK(off) VREF = 0 V, 0.04 250 0.04 250 nA 3VKA = 36 V

    Dynamic Output ZKA f ² 1 kHz 0.15 0.5 0.15 0.5 ½ 1Impedance IK = 1 to 150 mA

    *Calculating Average Temperature Coefficient (TC). Refer to following page.

  • 4ASTEC Semiconductor

    AS431 Precision Adjustable Shunt Reference

    Test Circuits

    Average Temperature Coefficient

    Figure 1a. Test Circuit 1 Figure 1b. Test Circuit 2 Figure 1c. Test Circuit 3

    0

    –10

    –20

    0.55000

    0 0

    0 15

    0.07 mV/°C

    0.003%/°C

    27 ppm/°C

    30 45 60 75 90 105

    ppm mV

    %∆VREF

    ∆T

    Temperature (°C)

    • TC in mV/°C =

    • TC in %/°C =

    ∆TA

    ∆TA

    X 100

    ∆VREF (mV)

    VREF at 25°C

    ∆VREF

    • TC in ppm/°C = ∆TA

    X 106VREF at 25°C

    ∆VREF

    R1

    R2

    IK

    VIN VKA

    (VREF)IREF

    IREF IK

    VIN VKA = VREF

    IK (OFF)

    VIN VKA

  • 5ASTEC Semiconductor

    AS431Precision Adjustable Shunt Reference

    Typical Performance Curves

    Figure 2

    Figure 4

    Figure 3

    Figure 5

    I K –

    Cat

    hode

    Cur

    rent

    (µA)

    900

    700

    600

    500

    400

    300

    200

    100

    0

    –100

    –200

    800

    –1.0 0 1.0

    VKA – Cathode Voltage (V)

    2.0 3.0

    Low Current Operating Characteristics

    VKA = VREFTemperature Range: –55 to 125°C

    125°C

    25°C

    –55°C

    I K –

    Cat

    hode

    Cur

    rent

    (mA)

    150

    125

    100

    75

    50

    25

    0

    –25

    –50

    –75

    –100–2 –1 0 1 2 3

    VKA – Cathode Voltage (V)

    High Current Operating Characteristics

    VKA = VREFTemperature Range: –55 to 125°C

    I Z o

    ff –

    Off S

    tate

    Cat

    hode

    Cur

    rent

    (nA)

    100

    10

    1

    0.1

    0.01–60 –30 0 30

    TA – Ambient Temperature (°C)

    60 90 120

    Off State Leakage

    VKA = 36 VVREF = 0 V

    V REF

    – R

    efer

    ence

    Vol

    tage

    (V)

    2.56

    2.55

    2.54

    2.53

    2.52

    2.51

    2.50

    2.49

    2.48–60 –30 0 30

    TA – Ambient Temperature (°C)

    60 90 120

    VKA = VREFIK = 10 mA

    Temperature Coefficient as a Function of Trim Value

    VREF = 2.503 V at 25°C

  • 6ASTEC Semiconductor

    AS431 Precision Adjustable Shunt Reference

    Typical Performance Curves

    Figure 6

    Figure 8

    Figure 7

    Figure 9

    3.0

    2.5

    2.0

    1.5

    1.0

    0.5

    0–60 –30 0 30 60 90 120

    I REF

    – R

    efer

    ence

    Inpu

    t Cur

    rent

    (µA)

    TA – Ambient Temperature (°C)

    Reference Input Current

    R1 = 10 kΩR2 = ∞ �IK =10 mA

    0

    –10

    –20

    –30

    –40

    –500 3 6 9

    VKA – Cathode Voltage (V)12 15 18 21 24 27 30

    V REF

    – C

    hang

    e in

    Ref

    eren

    ce V

    olta

    ge (m

    V)IK = 10 mA

    Temperature Range: –55 to 125°C

    Reference Voltage Line Regulation

    125°C

    –55°C

    75°C

    25°C

    0°C

    70

    60

    50

    40

    30

    20

    10

    0 10 100 1 k

    f – Frequency (Hz)

    10 k 100 k

    Nois

    e Vo

    ltage

    nV/

    √HZ

    VKA = VREFIK = 10 mATA = 25°C

    Noise Voltage

    Z KA

    – Dy

    nam

    ic Im

    peda

    nce

    (Ω)

    0.150

    0.125

    0.100

    0.075

    0.050

    0.025

    0.0–60 –30 0 30

    TA – Free Air Temperature

    60 90 120

    VKA = VREFIKA = 1 to 100 mAf ≤ 1 kHz

    Low Frequency Dynamic Output Impedance

  • 7ASTEC Semiconductor

    AS431Precision Adjustable Shunt Reference

    Typical Performance Curves

    Figure 10

    Figure 11

    100

    10

    1.0

    Z KA

    – Dy

    nam

    ic Im

    peda

    nce

    (Ω)

    0.1

    0.011 k 10 k 100 k

    f – Frequency (Hz)1 M 10 M

    TA = 25°CIK = 1 to 100 mA

    Dynamic Output Impedance

    70

    60

    50

    40

    30

    20

    10

    01 k 10 k 100 k 1 M 10 M

    f – Frequency (Hz)

    230 ΩIK

    A V –

    Sm

    all S

    igna

    l Vol

    tage

    Gai

    n (d

    B)

    Temperature Range: –55 to 125°C

    IK = 10 mA

    OUT

    GND

    15 k

    8.25 k

    9 µF

    Small Signal Voltage Gain vs. Frequency

  • 8ASTEC Semiconductor

    AS431 Precision Adjustable Shunt Reference

    Figure 12

    6

    5

    4

    3

    Inpu

    t and

    Out

    put V

    olta

    ges

    (V)

    2

    1

    0

    –10 1 2 3 4 5 6 7

    t – Time (µs)8 9 10 11 12

    Input

    Output

    Pulse Response

    INPUTMONITOR 220 Ω

    50 Ω

    OUT

    GND

    fP = 100 kHz

    Figure 13

    100

    90

    80

    70

    60

    50

    40

    30

    20

    10

    0100 101 102 103

    CL – Load Capacitance (pF)104 105 106 107

    150 Ω

    CL

    10 K

    IK

    A

    C

    D

    BTA = 25°C

    Stability Boundary Conditions

    StabilityRegion

    I K –

    Cat

    hode

    Cur

    rent

    (mA)

    A: VKA = VREFB: VKA = 5 V at IK = 10 mAC: VKA = 10 V at IK = 10 mAD: VKA = 15 V at IK = 10 mA

    Typical Performance Curves

  • 1ASTEC Semiconductor

    AS1431Precision Adjustable Shunt Reference

    Features¥ Temperature-compensated: 30 ppm/¡C¥ Trimmed 0.4% bandgap reference¥ Internal amplifier with 150 mA capability¥ Temperature range: Extended to Ð55

    to125¡C

    ¥ Low frequency dynamic outputimpedance: < 150 m½

    ¥ Low output noise¥ Robust ESD protection

    DescriptionThe AS1431 is a three-terminal adjustable shunt regulator providing ahighly accurate 0.4% bandgap reference. The adjustable shunt regulatoris ideal for a wide variety of linear applications that can be implementedusing external components to obtain adjustable currents and voltages.In the standard shunt configuration, the combination of low temperaturecoefficient (TC), sharp turn-on characteristics, low output impedance andprogrammable output voltage make this precision reference a perfectzener diode replacement.The AS1431 is characterized to operate over the full automotive tem-perature range of Ð55 to 125¡C and is now available in the SOT-23 (5L)package.

    SEMICONDUCTOR

    Pin Configuration Ñ Top view

    Ordering Information

    CATHODE

    TO-92 (LP) SOIC (D)

    ANODE

    REFERENCE

    CATHODE

    REFERENCE

    ANODE

    ANODE

    N/C

    CATHODE

    ANODE

    ANODE

    N/C

    SOT-89 (S)SOT-23/5L (DBV)

    ANODE

    REFERENCE

    1

    2

    3

    4

    8

    7

    6

    5

    REFERENCE

    ANODE

    N/C

    N/C

    CATHODE

    Circuit Type: Precision Adjustable Shunt Regulator

    Temperature Range: D = –55°C to +125°C

    Bandgap Tolerance: R4 = ±0.4%

    AS1431 D R4 D 7

    Packaging Option: A B T 7 13

    Package Style: D DBV LP S

    = SOIC= SOT-23/5L= TO-92= SOT-89

    = Ammo Pack= Bulk= Tube= Tape and Reel (7" Reel Dia)= Tape and Reel (13" Reel Dia)

  • 2ASTEC Semiconductor

    AS1431 Precision Adjustable Shunt Reference

    Functional Block Diagram

    Absolute Maximum RatingsParameter Symbol Rating Units

    Cathode-Anode Reverse Breakdown VKA 37 V

    Anode-Cathode Forward Current IAK 1 A

    Operating Cathode Current IKA 250 mA

    Reference Input Current IREF 10 mA

    Continuous Power Dissipation at 25¡C PDTO-92 775 mW

    8L SOIC 750 mW

    SOT-89 1000 mW

    SOT-23/5L 200 mW

    Junction Temperature TJ 150 ¡C

    Storage Temperature TSTG Ð65 to 150 ¡C

    Lead Temperature Soldering 10 Seconds TL 300 ¡C

    Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is astress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sec-tions of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

    Ð

    +REFERENCE (R)

    ANODE (A)

    CATHODE (K)

    2.5 V

    Recommended ConditionsParameter Symbol Rating Unit

    Cathode Voltage VKA VREF to 20 V

    Cathode Current IK 10 mA

    Typical Thermal ResistancesPackage θJA θJC Typical Derating

    TO-92 160¡C/W 80¡C/W 6.3 mW/¡C

    SOIC 175¡C/W 45¡C/W 5.7 mW/¡C

    SOT-89 110¡C/W 8¡C/W 9.1 mW/¡C

    SOT-23/5L 575¡C/W 150¡C/W 1.7 mW/¡C

  • 3ASTEC Semiconductor

    AS1431Precision Adjustable Shunt Reference

    Electrical CharacteristicsElectrical Characteristics are guaranteed over full junction temperature range (Ð55 to 125¡C). Ambient temperature must be deratedbased on power dissipation and package thermal characteristics. The conditions are: VKA = VREF and IK = 10 mA unless otherwise stated.

    Parameter Symbol Test Condition Min. Typ. Max. Unit Circuit

    Reference Voltage VREF TA = 25¡C 2.490 2.500 2.510 V 1

    Over temp. 2.470 2.530 V 1

    ÆVREF with Temp* TC 0.06 0.16 mV/¡C 1

    Ratio of Change in VREF to ÆVREF ÆVK = 3 V to 36 V Ð2 Ð1.1 mV/V 2Cathode Voltage

    Reference Input Current IREF R1 = 10 k ½; R2 = ° 0.7 1.9 µA 2

    IREF Temp Deviation ÆIREF Over temp. 0.4 1.2 µA 2

    Min IK for Regulation IK(min) 0.4 1 mA 1

    Off State Leakage IK(off) VREF = 0 V, 0.04 500 nA 3VKA = 36 V

    Dynamic Output Impedance ZKA f ² 1 kHz 0.15 0.2 ½ 1IK = 1 to 100 mA

    *Calculating Average Temperature Coefficient (TC)

    0

    –10

    –20

    0.55000

    0 0

    –55 –25 0 25 50 75 100 125

    0.06 mV/°C

    0.002%/°C

    24 ppm/°C

    ppm mV

    %

    ∆VREF

    ∆T

    Temperature (°C)

    • TC in mV/°C =

    • TC in %/°C =

    ∆TA

    ∆TA

    X 100

    ∆VREF (mV)

    VREF at 25°C

    ∆VREF

    • TC in ppm/°C = ∆TA

    X 106VREF at 25°C

    ∆VREF

    Average Temperature Coefficient

  • 4ASTEC Semiconductor

    AS1431 Precision Adjustable Shunt Reference

    Test Circuits

    Figure 1a. Test Circuit 1 Figure 1b. Test Circuit 2 Figure 1c. Test Circuit 3

    R1

    R2

    IK

    VIN VKA

    (VREF)

    IREF

    IREF IK

    VIN VKA = VREF

    IK (OFF)

    VIN VKA

  • 5ASTEC Semiconductor

    AS1431Precision Adjustable Shunt Reference

    Typical Performance Curves

    Figure 2

    Figure 4

    Figure 3

    Figure 5

    I K –

    Cat

    hode

    Cur

    rent

    (µA)

    900

    700

    600

    500

    400

    300

    200

    100

    0

    –100

    –200

    800

    –1.0 0 1.0

    VKA – Cathode Voltage (V)

    2.0 3.0

    Low Current Operating Characteristics

    VKA = VREFTemperature Range: –55 to 125°C

    125°C

    25°C

    –55°C I K –

    Cat

    hode

    Cur

    rent

    (mA)

    150

    125

    100

    75

    50

    25

    0

    –25

    –50

    –75

    –100–2 –1 0 1 2 3

    VKA – Cathode Voltage (V)

    High Current Operating Characteristics

    VKA = VREFTemperature Range: –55 to 125°C

    I Z o

    ff –

    Off S

    tate

    Cat

    hode

    Cur

    rent

    (nA)

    100

    10

    1

    0.1

    0.01–60 –30 0 30

    TA – Ambient Temperature (°C)

    60 90 120

    Off State Leakage

    VKA = 36 VVREF = 0 V

    V REF

    – R

    efer

    ence

    Vol

    tage

    (V)

    2.53

    2.52

    2.51

    2.50

    2.49

    2.48

    2.47

    2.46

    2.45–60 –30 0 30

    TA – Ambient Temperature (°C)

    60 90 120

    VKA = VREFIK = 10 mA

    Reference Voltage vs Ambient Temperature

    VREF = 2.500 V at 25°C

  • 6ASTEC Semiconductor

    AS1431 Precision Adjustable Shunt Reference

    Typical Performance Curves

    Figure 6

    Figure 8

    Figure 7

    Figure 9

    3.0

    2.5

    2.0

    1.5

    1.0

    0.5

    0–60 –30 0 30 60 90 120

    I REF

    – R

    efer

    ence

    Inpu

    t Cur

    rent

    (µA)

    TA – Ambient Temperature (°C)

    Reference Input Current

    R1 = 10 kΩR2 = ∞ �IK =10 mA

    0

    –10

    –20

    –30

    –40

    –500 3 6 9

    VKA – Cathode Voltage (V)12 15 18 21 24 27 30

    V REF

    – C

    hang

    e in

    Ref

    eren

    ce V

    olta

    ge (m

    V)IK = 10 mA

    Temperature Range: –55 to 125°C

    Reference Voltage Line Regulation

    125°C

    –55°C

    75°C

    25°C

    0°C

    70

    60

    50

    40

    30

    20

    10

    0 10 100 1 k

    f – Frequency (Hz)

    10 k 100 k

    Nois

    e Vo

    ltage

    nV/

    √HZ

    VKA = VREFIK = 10 mATA = 25°C

    Noise Voltage

    Z KA

    – Dy

    nam

    ic Im

    peda

    nce

    (Ω)

    0.150

    0.125

    0.100

    0.075

    0.050

    0.025

    0.0–60 –30 0 30

    TA – Free Air Temperature

    60 90 120

    VKA = VREFIKA = 1 to 100 mAf ≤ 1 kHz

    Low Frequency Dynamic Output Impedance

  • 7ASTEC Semiconductor

    AS1431Precision Adjustable Shunt Reference

    Typical Performance Curves

    Figure 10

    Figure 11

    100

    10

    1.0

    Z KA

    – Dy

    nam

    ic Im

    peda

    nce

    (Ω)

    0.1

    0.011 k 10 k 100 k

    f – Frequency (Hz)1 M 10 M

    TA = 25°CIK = 1 to 100 mA

    Dynamic Output Impedance

    70

    60

    50

    40

    30

    20

    10

    01 k 10 k 100 k 1 M 10 M

    f – Frequency (Hz)

    230 ΩIK

    A V –

    Sm

    all S

    igna

    l Vol

    tage

    Gai

    n (d

    B)

    Temperature Range: –55 to 125°C

    IK = 10 mA

    OUT

    GND

    15 k

    8.25 k

    9 µF

    Small Signal Voltage Gain vs. Frequency

  • 8ASTEC Semiconductor

    AS1431 Precision Adjustable Shunt Reference

    Figure 12

    Figure 13

    6

    5

    4

    3

    Inpu

    t and

    Out

    put V

    otag

    es (V

    )

    2

    1

    0

    –00 1 2 3 4 5 6 7

    t – Time (ms)8 9 10 11 12

    Input

    Output

    Pulse Response

    INPUTMONITOR 220 Ω

    50 Ω

    OUT

    GND

    fp = 100 kHz

    100

    90

    80

    70

    60

    50

    40

    30

    20

    10

    0100 101 102 103

    CL – Load Capacitance (pF)104 105 106 107

    150 Ω

    CL

    10 K

    IKC

    DTA = 25°C

    Stability Boundary Conditions

    StabilityRegionI K

    – C

    atho

    de C

    urre

    nt (m

    A)

    A: VKA = VREFB: VKA = 5 V at IK = 10 mAC: VKA = 10 V at IK = 10 mAD: VKA = 15 V at IK = 10 mA

    A

    B

    Typical Performance Curves

  • 1ASTEC Semiconductor

    AS2431Precision Adjustable Shunt Reference

    Features¥ Temperature-compensated: 15 ppm/¡C

    ¥ Trimmed bandgap reference

    ¥ Internal amplifier with 100 mA capability

    ¥ Multiple temperature ranges

    ¥ Low frequency dynamic output impedance:< 450 m½

    ¥ Low output noise

    DescriptionThe AS2431 is a three-terminal adjustable shunt regulator providing a highly accu-rate bandgap reference. The adjustable shunt regulator is ideal for a wide varietyof linear applications that can be implemented using external components toobtain adjustable currents and voltages.In the standard shunt configuration, the combination of low temperature coeffi-cient (TC), sharp turn-on characteristics, low output impedance and program-mable output voltage make this precision reference an excellent error amplifier.The AS2431 is a direct replacement for the AS431 in low voltage, low current appli-cations. It is also available in the very small footprint SOT-23.

    SEMICONDUCTOR

    Pin Configuration Ñ Top view

    CATHODE

    TO-92 (LP) SOIC (D)

    ANODE

    REFERENCE

    CATHODE

    REFERENCE

    ANODE

    ANODE

    N/C

    CATHODE

    ANODE

    ANODE

    N/C

    SOT-89 (S)SOT-23/3L (VS)

    ANODE

    REFERENCE

    1

    2

    3

    4

    8

    7

    6

    5

    CATHODE

    REFERENCE

    ANODE

    Circuit Type: Precision Adjustable Shunt Regulator

    Temperature Range: A = 0°C to 70°C B = 0°C to 105°C C = –40°C to +85°C D = –55°C to +125°C

    Bandgap Tolerance: 2 1 R4 R5 R25

    = ±2%= ±1%= ±0.4%= ±0.5%= ±0.25%

    AS2431 A 2 D 7

    Packaging Option: A B T 7 13

    Package Style: D LP S VS

    = Ammo Pack= Bulk= Tube= Tape and Reel (7" Reel Dia)= Tape and Reel (13" Reel Dia)

    = SOIC= TO-92= SOT-89= SOT-23/3L

    Ordering Information

  • 2ASTEC Semiconductor

    AS2431 Precision Adjustable Shunt Reference

    Functional Block Diagram

    Absolute Maximum RatingsParameter Symbol Rating Units

    Cathode-Anode Reverse Breakdown VKA 18 V

    Anode-Cathode Forward Current IAK 1 A

    Operating Cathode Current IKA 100 mA

    Reference Input Current IREF 1 mA

    Continuous Power Dissipation at 25¡C PDTO-92 775 mW

    8L SOIC 750 mW

    SOT-89 1000 mW

    SOT-23/3L 200 mW

    Junction Temperature TJ 150 ¡C

    Storage Temperature TSTG Ð65 to 150 ¡C

    Lead Temp, Soldering 10 Seconds TL 300 ¡C

    Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is astress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sec-tions of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

    Ð

    +REFERENCE (R)

    ANODE (A)

    CATHODE (K)

    2.5 V

    Recommended ConditionsParameter Symbol Rating Unit

    Cathode Voltage VKA VREF to 18 V

    Cathode Current IK 10 mA

    Typical Thermal ResistancesPackage θJA θJC Typical Derating

    TO-92 160¡C/W 80¡C/W 6.3 mW/¡C

    SOIC 175¡C/W 45¡C/W 5.7 mW/¡C

    SOT-89 110¡C/W 8¡C/W 9.1 mW/¡C

    SOT-23/3L 575¡C/W 150¡C/W 1.7 mW/¡C

  • 3ASTEC Semiconductor

    AS2431Precision Adjustable Shunt Reference

    Electrical CharacteristicsElectrical Characteristics are guaranteed over full junction temperature range (0 to 105¡C). Ambient temperature must be derated basedon power dissipation and package thermal characteristics. The conditions are: VKA = VREF and IK = 10 mA unless otherwise stated.

    Test AS2431 (0.25%) AS2431 (0.5%) TestParameter Symbol Condition Min. Typ. Max. Min. Typ. Max. Unit Circuit

    Reference Voltage VREF TA = 25¡C 2.494 2.500 2.506 2.490 2.500 2.515 V 1

    Over temp. 2.480 2.518 2.480 2.530 V 1

    ÆVREF with Temp* TC 0.04 0.06 0.04 0.06 mV/¡C 1

    Ratio of Change in ÆVREF VREF to 10 V Ð2.7 Ð1.01 Ð2.7 Ð1.01VREF to Cathode ÆVK mV/V 2Voltage 10 V to 18 V Ð2.0 Ð0.4 0.3 Ð2.0 Ð0.4 0.3

    Reference Input IREF 0.7 4 0.7 4 µA 2Current

    IREF Temp Deviation ÆIREF Over temp. 0.4 1.2 0.4 1.2 µA 2

    Min IK for Regulation IK(min) 0.4 1 0.4 1 mA 1

    Off State Leakage IK(off) VREF = 0 V, 0.04 500 0.04 500 nA 3VKA = 18 V

    Dynamic Output ZKA f ² 1 kHz 0.45 1 0.45 1 ½ 1Impedance IK = 1 to 150 mA

    Test AS2431 (1.0%) AS2431 (2.0%) TestParameter Symbol Condition Min. Typ. Max. Min. Typ. Max. Unit Circuit

    Reference Voltage VREF TA = 25¡C 2.470 2.495 2.520 2.440 2.495 2.550 V 1

    Over temp. 2.450 2.540 2.415 2.580 V 1

    ÆVREF with Temp* TC 0.04 0.06 0.04 0.06 mV/¡C 1

    Ratio of Change in ÆVREF VREF to 10 V Ð2.7 Ð1.01 Ð2.7 Ð1.01VREF to Cathode ÆVK mV/V 2Voltage 10 V to 18 V Ð2.0 Ð0.4 0.3 Ð2.0 Ð0.4 0.3

    Reference Input IREF 0.7 4 0.7 4 µA 2Current

    IREF Temp Deviation ÆIREF Over temp. 0.4 1.2 0.4 1.2 µA 2

    Min IK for Regulation IK(min) 0.4 1 0.4 1 mA 1

    Off State Leakage IK(off) VREF = 0 V, 0.04 500 0.04 500 nA 3VKA = 18 V

    Dynamic Output ZKA f ² 1 kHz 0.45 1 0.45 1 ½ 1Impedance IK = 1 to 150 mA

    *Calculating Average Temperature Coefficient (TC). Refer to following page.

  • 4ASTEC Semiconductor

    AS2431 Precision Adjustable Shunt Reference

    Test Circuits

    Figure 1a. Test Circuit 1 Figure 1b. Test Circuit 2 Figure 1c. Test Circuit 3

    Average Temperature Coefficient

    0

    –10

    –20

    0.55000

    0 0

    0 15

    0.07 mV/°C

    0.003%/°C

    27 ppm/°C

    30 45 60 75 90 105

    ppm mV

    %∆VREF

    ∆T

    Temperature (°C)

    • TC in mV/°C =

    • TC in %/°C =

    ∆TA

    ∆TA

    X 100

    ∆VREF (mV)

    VREF at 25°C

    ∆VREF

    • TC in ppm/°C = ∆TA

    X 106VREF at 25°C

    ∆VREF

    R1

    R2

    IK

    VIN VKA

    (VREF)IREF

    IREF IK

    VIN VKA = VREF

    IK (OFF)

    VIN VKA

  • 5ASTEC Semiconductor

    AS2431Precision Adjustable Shunt Reference

    Typical Performance

    Figure 2

    Figure 4

    Figure 3

    Figure 5

    I K –

    Cat

    hode

    Cur

    rent

    (µA)

    900

    700

    600

    500

    400

    300

    200

    100

    0

    –100

    –200

    800

    –1.0 0 1.0

    VKA – Cathode Voltage (V)

    2.0 3.0

    Low Current Operating Characteristics

    VKA = VREFTemperature Range: –55 to 125°C

    125°C

    25°C

    –55°C I K –

    Cat

    hode

    Cur

    rent

    (mA)

    150

    125

    100

    75

    50

    25

    0

    –25

    –50

    –75

    –100–2 –1 0 1 2 3

    VKA – Cathode Voltage (V)

    High Current Operating Characteristics

    VKA = VREFTemperature Range: –55 to 125°C

    I Z o

    ff –

    Off S

    tate

    Cat

    hode

    Cur

    rent

    (nA)

    100

    10

    1

    0.1

    0.01–60 –30 0 30

    TA – Ambient Temperature (°C)

    60 90 120

    Off State Leakage

    VKA = 18 VVREF = 0 V

    V REF

    – R

    efer

    ence

    Vol

    tage

    (V)

    3.53

    2.52

    2.51

    2.50

    2.49

    2.48

    2.47

    2.46

    2.45–60 –30 0 30

    TA – Ambient Temperature (°C)

    60 90 120

    VKA = VREFIK = 10 mA

    Reference Voltage vs Ambient Temperature

    VREF = 2.500 V at 25°C

  • 6ASTEC Semiconductor

    AS2431 Precision Adjustable Shunt Reference

    Typical Performance Curves

    Figure 6

    Figure 8

    Figure 7

    Figure 9

    3.0

    2.5

    2.0

    1.5

    1.0

    0.5

    0–60 –30 0 30 60 90 120

    I REF

    – R

    efer

    ence

    Inpu

    t Cur

    rent

    (µA)

    TA – Ambient Temperature (°C)

    Reference Input Current

    R1 = 10 kΩR2 = ∞ �IK =10 mA

    0

    –5

    –10

    –15

    –20

    –250 3 6 9

    VKA – Cathode Voltage (V)12 15 18

    ∆ VRE

    F – C

    hang

    e in

    Ref

    eren

    ce V

    olta

    ge (m

    V)IK = 10 mA

    Temperature Range: –55 to 125°C

    –30°C

    25°C

    75°C

    125°C

    Reference Voltage Line Regulation

    70

    60

    50

    40

    30

    20

    10

    0 10 100 1 k

    f – Frequency (Hz)

    10 k 100 k

    Nois

    e Vo

    ltage

    nV/

    √Hz

    VKA = VREFIK = 10 mATA = 25°C

    Noise Voltage

    Z KA

    – Dy

    nam

    ic Im

    peda

    nce

    (Ω)

    0.150

    0.125

    0.100

    0.075

    0.050

    0.025

    0.0–60 –30 0 30

    TA – Free Air Temperature

    60 90 120

    VKA = VREFIKA = 1 to 100 mAf ≤ 1 kHz

    Low Frequency Dynamic Output Impedance

  • 7ASTEC Semiconductor

    AS2431Precision Adjustable Shunt Reference

    Typical Performance Curves

    Figure 10

    Figure 11

    100

    10

    1.0

    Z KA

    – Dy

    nam

    ic Im

    peda

    nce

    (Ω)

    0.1

    0.011 k 10 k 100 k

    f – Frequency (Hz)1 M 10 M

    TA = 25°CIK = 1 to 100 mA

    Dynamic Output Impedance

    70

    60

    50

    40

    30

    20

    10

    01 k 10 k 100 k 1 M 10 M

    f – Frequency (Hz)

    230 ΩIK

    A V –

    Sm

    all S

    igna

    l Vol

    tage

    Gai

    n (d

    B)

    Temperature Range: –55 to 125°C

    IK = 10 mA

    OUT

    GND

    15 k

    8.25 k

    9 µF

    Small Signal Voltage Gain vs. Frequency

  • 8ASTEC Semiconductor

    AS2431 Precision Adjustable Shunt Reference

    Typical Performance Curves

    Figure 12

    Figure 13

    6

    5

    4

    3

    Inpu

    t and

    Out

    put V

    otag

    es (V

    )

    2

    1

    0

    –10 1 2 3 4 5 6 7

    t – Time (ms)8 9 10 11 12

    Input

    Output

    Pulse Response

    INPUTMONITOR 220 Ω

    50 Ω

    OUT

    GND

    fP = 100 kHz

    100

    90

    80

    70

    60

    50

    40

    30

    20

    10

    0100 101 102 103

    CL – Load Capacitance (pF)

    104 105 106 107

    150 Ω

    CL

    10 K

    IK

    A

    C

    D

    BTA = 25°C

    Stability Boundary Conditions

    StabilityRegionI K

    – C

    atho

    de C

    urre

    nt (m

    A)

    A: VKA = VREFB: VKA = 5 V at IK = 10 mAC: VKA = 10 V at IK = 10 mAD: VKA = 15 V at IK = 10 mA

  • 1ASTEC Semiconductor

    AS4321.24V Precision Adjustable Shunt Reference/Amplifier

    Features¥ Temperature-compensated:

    50 ppm/¡C¥ 0.25% to 2.0% bandgap offered¥ Internal amplifier with 150 mA

    capability¥ Multiple temperature ranges¥ Low frequency dynamic output

    impedance: < 150 m½¥ Low output noise

    DescriptionThe AS432 is a three terminal adjustable shunt regulator utilizing an accurate1.24V bandgap reference. The AS432 is functionally similar to an AS431 exceptfor its lower reference voltage, making it usable in a wide variety of low voltageapplications.

    Because of its robust bipolar technology, the AS432 handles a wide range of cur-rent, and holds off more than 18V so its use is not limited to low power, low volt-age systems. Significant care has been taken to provide adequate AC bandwidthto allow the AS432 as an amplifier in control systems and power electronics.

    SEMICONDUCTOR

    Pin Configuration Ñ Top view

    Ordering Information

    CATHODE

    TO-92 (LP) SOIC (D)

    ANODE

    REFERENCE

    REFERENCE

    ANODE

    ANODE

    N/C

    CATHODE

    ANODE

    ANODE

    N/C

    SOT-89 (S)

    CATHODE

    ANODE

    REFERENCE

    1

    2

    3

    4

    8

    7

    6

    5

    SOT-23/5L (DBV)

    ANODE

    REFERENCE

    N/C

    N/C

    CATHODE

    SOT-23/3L (VS)

    CATHODE

    REFERENCE

    ANODE

    Circuit Type: 1.24V Precision Adjustable Shunt Regulator/Amplifier

    Temperature Range: A B C

    Bandgap Tolerance: 2 1 R5 R25

    = 0°C to 70°C= 0°C to 105°C= –40°C to +85°C

    = ±2%= ±1%= ±0.5%= ±0.25%

    Packaging Option: A B T 7 13

    Package Style: D DBV LP S VS

    = Ammo Pack= Bulk= Tube= Tape and Reel (7" Reel Dia)= Tape and Reel (13" Reel Dia)

    = SOIC= SOT-23/5L= TO-92= SOT-89= SOT-23/3L

    AS432 A 2 D 7

  • 2ASTEC Semiconductor

    AS432 1.24V Precision Adjustable Shunt Reference/Amplifier

    Functional Block Diagram

    Ð

    +REFERENCE (R)

    ANODE (A)

    CATHODE (K)

    1.24 VÐ

    +

    Absolute Maximum RatingsParameter Symbol Rating Units

    Cathode-Anode Reverse Breakdown VKA 18 V

    Anode-Cathode Forward Current IAK 1 A

    Operating Cathode Current IKA 100 mA

    Reference Input Current IREF 1 mA

    Continuous Power at 25¡C PDTO-92 775 mW

    8L SOIC 750 mW

    SOT-89 1000 mW

    SOT-23/3L/5L 200 mW

    Junction Temperature TJ 150 ¡C

    Storage Temperature TSTG Ð65 to 150 ¡C

    Lead Temperature (Soldering 10 sec.) TL 300 ¡C

    Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is astress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sec-tions of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

    Recommended ConditionsParameter Symbol Rating Unit

    Cathode Voltage VKA VREF to 18 V

    Cathode Current IK 10 mA

    Typical Thermal ResistancesPackage θJA θJC Typical Derating

    TO-92 160¡C/W 80¡C/W 6.3 mW/¡C

    SOIC 175¡C/W 45¡C/W 5.7 mW/¡C

    SOT-89 110¡C/W 8¡C/W 9.1 mW/¡C

    SOT-23/3L/5L 575¡C/W 150¡C/W 1.7 mW/¡C

  • 3ASTEC Semiconductor

    AS4321.24V Precision Adjustable Shunt Reference/Amplifier

    Electrical CharacteristicsElectrical characteristics are guaranteed over the full junction temperature range (0Ð105¡C). Ambient temperature must be deratedbased upon power dissipation and package thermal characteristics. Unless otherwise stated, test conditions are: VKA = VREF andIK = 10 mA.

    Test AS432 (0.25%) AS432 (0.5%)Parameter Symbol Condition Min. Typ. Max. Min. Typ. Max. Unit

    Output Voltage VREF IK = 10 mA 1.237 1.240 1.243 1.234 1.240 1.246 VTJ = 25¡CVK = VREF

    Line Regulation ÆVREF VKA = 1.25 to 15 V 28 50 28 50 mV

    Load Regulation ÆVREF IK = 1 to 100 mA 3.9 6 3.9 6 mV

    Temperature Deviation ÆVREF 0 < TJ < 105¡C 5 10 5 10 mV

    Reference Input Current IREF 2.3 6 2.3 6 µA

    Reference Input Current ÆIREF 0 < TJ < 105¡C 0.14 0.6 0.14 0.6 µATemperature Coefficient

    Minimum Cathode IK(min) 0.2 1 0.2 1 mACurrent for Regulation

    Off State Leakage IK(min) VREF = 0 V, 0.04 500 0.04 500 nAVKA = 15 V

    Test AS432 (1.0%) AS432 (2.0%)Parameter Symbol Condition Min. Typ. Max. Min. Typ. Max. Unit

    Output Voltage VREF IK = 10 mA 1.228 1.240 1.252 1.215 1.240 1.256 VTJ = 25¡CVK = VREF

    Line Regulation ÆVREF VKA = 1.25 to 15 V 28 50 28 50 mV

    Load Regulation ÆVREF IK = 1 to 100 mA 3.9 6 3.9 6 mV

    Temperature Deviation ÆVREF 0 < TJ < 105¡C 5 12 5 12 mV

    Reference Input Current IREF 2.3 6 2.3 6 µA

    Reference Input Current ÆIREF 0 < TJ < 105¡C 0.14 0.6 0.14 0.6 µATemperature Coefficient

    Minimum Cathode IK(min) 0.2 1 0.2 1 mACurrent for Regulation

    Off State Leakage IK(min) VREF = 0 V, 0.04 500 0.04 500 nAVKA = 15 V

    *Temperature deviation is defined as the maximum deviation of the reference over the given temperature range and does not implyan incremental deviation at any given temperature.

  • 4ASTEC Semiconductor

    AS432 1.24V Precision Adjustable Shunt Reference/Amplifier

    Test Circuits

    Figure 1a. Test Circuit 1 Figure 1b. Test Circuit 2 Figure 1c. Test Circuit 3

    R1

    R2

    IK

    VIN VKA

    (VREF)IREF

    IREF IK

    VIN VKA = VREF

    IK (OFF)

    VIN VKA

    Typical Performance Curves*Calculating Average Temperature Coefficient (TC)

    0

    –5

    –10

    0.22000

    0 0

    0 15

    0.021 mV/°C

    0.008%/°C

    8.0 ppm/°C

    30 45 60 75 90 105

    ppm mV

    %∆VREF

    ∆T

    Temperature (°C)

    • TC in mV/°C =

    • TC in %/°C =

    ∆TA

    ∆TA

    X 100

    ∆VREF (mV)

    VREF at 25°C

    ∆VREF

    • TC in ppm/°C = ∆TA

    X 106VREF at 25°C

    ∆VREF

  • 5ASTEC Semiconductor

    AS4321.24V Precision Adjustable Shunt Reference/Amplifier

    Typical Performance

    Figure 2

    Figure 4

    Figure 3

    Figure 5

    VKA – Cathode Voltage (V)

    I K –

    Cat

    hode

    Cur

    rent

    (µA)

    –0.5 0 0.5 1.0 1.5–200

    –100

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    Low Current Operating Characteristics

    –55°C

    25°C

    125°C I K –

    Cat

    hode

    Cur

    rent

    (mA)

    VKA – Cathode Voltage (V)

    –2 –1 0 1 2–100

    –75

    –50

    –25

    0

    25

    50

    75

    100

    125

    150

    175

    High Current Operating Characteristics

    VKA = VREFTemperature Range –55 to 125°C

    –60 –30 0 30

    TA – Ambient Temperature (°C)

    60 90 120

    I Z o

    ff –

    Off S

    tate

    Cat

    hode

    Cur

    rent

    (nA)

    100

    10

    1

    0.1

    0.01

    Off State Leakage

    VKA = 15 VVREF = 0 V

    –60 –30 0 30

    TA – Ambient Temperature (°C)

    60 90 120

    V REF

    – R

    efer

    ence

    Vol

    tage

    (V)

    1.27

    1.26

    1.25

    1.24

    1.23

    1.22

    1.21

    1.20

    1.19

    Reference Voltage vs Ambient Temperature

    VKA = VREFIK = 10 mA

    VREF = 1.240 V at 25°C

  • 6ASTEC Semiconductor

    AS432 1.24V Precision Adjustable Shunt Reference/Amplifier

    Typical Performance Curves

    Figure 6

    Figure 8

    Figure 7

    Figure 9

    –60 –30 0 30

    TA – Ambient Temperature (°C)

    60 90 120

    I REF

    – R

    efer

    ence

    Inpu

    t Cur

    rent

    (µA)

    2.4

    2.3

    2.2

    2.1

    2.0

    Reference Input Current

    R1 = 10 kΩR2 = ∞IK = 10 mA

    0 3 6 9 12 15 18

    –40°C

    25°C

    75°C

    125°C

    VKA – Cathode Voltage (V)

    ∆VRE

    F – C

    hang

    e in

    Ref

    eren

    ce V

    olta

    ge (m

    V)

    0

    –10

    –20

    –30

    –40

    –50

    Reference Voltage Line Regulation

    IK = 10 mATemperature Range: –55 to 125°C

    10 100 1 k 10 k 100 k

    f – Frequency (Hz)

    70

    60

    50

    40

    30

    20

    10

    0

    Nois

    e Vo

    ltage

    nV/

    √Hz

    Noise Voltage

    VKA = VREFIK = 10 mATA = 25°C

    –60 –30 0 30

    TA – Free Air Temperature (°C)

    60 90 120

    40

    30

    20

    10

    0

    Z KA

    – Dy

    nam

    ic Im

    peda

    nce

    (mΩ

    )

    Low Frequency Dynamic Output Impedance

    VKA = VREFVKA = 1 to 100 mAf ≤ 1kHz

  • 7ASTEC Semiconductor

    AS4321.24V Precision Adjustable Shunt Reference/Amplifier

    Typical Performance Curves

    Figure 10

    Figure 11

    100

    10

    1.0

    Z KA

    – Dy

    nam

    ic Im

    peda

    nce

    (Ω)

    0.1

    0.011 k 10 k 100 k

    f – Frequency (Hz)1 M 10 M

    TA = 25°CIK = 1 to 100 mA

    Dynamic Output Impedance

    80

    70

    60

    50

    40

    30

    20

    10

    01 k 10 k 100 k 1 M 10 M

    f – Frequency (Hz)

    230 ΩIK

    A V –

    Sm

    all S

    igna

    l Vol

    tage

    Gai

    n (d

    B)

    Temperature Range: –55° to 125°C

    IK = 10 mA

    OUT

    GND

    15 k

    8.25 k

    9 µF

    Small Signal Voltage Gain vs. Frequency

  • 8ASTEC Semiconductor

    AS432 1.24V Precision Adjustable Shunt Reference/Amplifier

    Typical Performance Curves

    Figure 12

    Figure 13

    4

    3

    Inpu

    t and

    Out

    put V

    otag

    es (V

    )

    2

    1

    0

    –10 1 2 3 4 5 6 7

    t – Time (µs)8 9 10 11 12

    Input

    Output

    Pulse Response

    INPUTMONITOR 220 Ω

    50 Ω

    OUT

    GND

    fP = 100 kHz

    100

    90

    80

    70

    60

    50

    40

    30

    20

    10

    0100 101 102 103

    CL – Load Capacitance (pF)

    104 105 106 107

    150 Ω

    CL

    10 K

    IK

    A

    C

    D

    BTA = 25°C

    Stability Boundary Conditions

    StabilityRegionI K

    – C

    atho

    de C

    urre

    nt (m

    A)

    A: VKA = VREFB: VKA = 5 V at IK = 10 mAC: VKA = 10 V at IK = 10 mAD: VKA = 15 V at IK = 10 mA

  • AS1004Micropower Voltage Reference

    DescriptionThe AS1004 is a two-terminal precision band-gap voltagereference with a low turn-on current of 10 µA.

    Emulating a 1.235 V zener diode, the AS1004 operates morethan three orders of magnitude of output current with minuteoutput impedance and guaranteed stability. With an initialtolerance of ± 4 mV and guaranteed temperature perfor-mance, it is ideal for precision instrumentation, especially inlow power applications. Being a low-voltage reference, theAS1004 is also well-suited as a reference for low-voltagepower supply applications, especially in power suppliesintended for low-voltage logic systems, laptop computersand other portable or battery operated equipment.

    The AS1004 is pin-for-pin compatible with the LT1004 andthe LM385 and offers improved specifications over both theLM385 and the MP5010. It is also available as a 2.5 Vreference with a guaranteed start-up current of 20 µA.

    Features

    • Low voltage reference• 10 µA turn-on current for

    AS1004-1.2

    • 20 µA turn-on current forAS1004-2.5

    • ± 4 mV (0.3 %) initial accuracyfor AS1004-1.2

    • ± 20 mV (0.8 %) initial accuracyfor AS1004-2.5

    • Guaranteed operation to 20 mA.Over three orders of magnitudeof operating current!

    • Temperature performanceguaranteed

    • Very low dynamic impedance

    Ordering Information

    Description Temperature Range Order Codes

    TO-92 0 to 70° C AS1004-1.2LP AS1004-2.5LP

    8-Pin Plastic SOIC 0 to 70° C AS1004-1.2D AS1004-2.5D

    SOT-89 0 to 70° C AS1004-1.2S AS1004-2.5S

    © ASTEC Semiconductor

    Pin Configuration — Top view

    ANODE

    CATHODE

    N/C

    81N/C CATHODE

    72N/C N/C

    63N/C CATHODE

    54ANODE ANODE

    N/C

    ANODE

    CATHODE

    TO-92 (LP) SOIC (D) SOT-89 (S)

    29

  • AS1004 Micropower Voltage Reference

    ASTEC Semiconductor30

    Simplified Schematic

    Recommended Conditions

    Parameter Symbol Rating Unit

    Cathode Current IZ 100 µA

    Typical Thermal Resistances

    Package θJA θJC Typical Derating

    TO-92 160° C/W 80° C/W 6.3 mW/°C

    8L SOIC 175° C/W 45° C/W 5.7 mW/°C

    SOT-89 110° C/W 8° C/W 9.1 mW/°C

    Absolute Maximum Ratings

    Parameter Symbol Rating Units

    Reverse Breakdown Current IZ 30 mA

    Forward Current IF 30 mA

    Continuous Power Dissipation at 25° C PDTO-92 775 mW

    8LSOIC 750 mW

    SOT-89 1000 mW

    Maximum Junction Temp TJ 150 °C

    Storage Temperature TSTG –65 to 150 °C

    Lead Temperature, Soldering 10 Seconds TL 300 °C

    R2

    R6 R7

    C1

    C2

    Q12

    R4

    C3

    R11

    R10

    R12

    Q6

    A

    K

    Q14

    Q4 Q3Q13

    Q11

    Q10

    Q7

    Q9 Q8

    Q5 Q1

  • Micropower Voltage Reference AS1004

    ASTEC Semiconductor31

    Electrical CharacteristicsElectrical Characteristics are guaranteed over full junction temperature range (0 to 70° C). Ambient temperature must be derated basedon power dissipation and package thermal characteristics.

    AS1004-1.2 AS1004-2.5Parameter Symbol Test Condition Min Typ Max Min Typ Max Unit

    Reverse Breakdown Voltage VZ IZ = 100 µA, TJ = 25° C 1.231 1.235 1.239 2.480 2.500 2.520 V

    0° C ≤ TA ≤ 70° C 1.225 1.235 1.245 2.470 2.500 2.530 V

    Average Temperature ∆VZ /∆T Imin ≤ IZ ≤ 20 mA 20 60 ppm/°CCoefficient

    Minimum Operating Current IZ (min) 4 10 12 20 µA

    Reverse Breakdown Voltage ∆VZ /∆IZ Imin ≤ IZ ≤ 1 mA 0.5 1 0.5 1 mVChange With Current

    Over Temperature 0.5 1.5 0.5 1.5 mV

    1 mA ≤ IZ ≤ 20 mA 6.5 10 6.5 10 mV

    Over Temperature 6.5 20 6.5 20 mV

    Reverse Dynamic Impedance ZZ IZ = 100 mA, f = 25 Hz 0.2 0.6 0.8 0.9 Ω

    Over Temperature 1 1.5 1.5 Ω

    Wide Band Noise en IZ = 100 µA10 Hz ≤ f ≤ 10 KHz 60 60 µV

    Long Term Stability ∆VZ /∆T IZ = 100 µATA = 25° C ± 0.1° C 20 60 ppm/kH

    AS1004-1.2 Reference Voltage vs.Ambient Temperature

    Figure 1 Figure 2

    Typical Performance Curves

    ppm

    % mV

    5000 0.5

    0 0

    0

    0∆VREF

    ∆T

    -5

    -1010 20 30 40 50 60 70

    Temperature (°C)

    0.025 mV/°C

    0.002 %/°C

    20 ppm/°C

    Average Temperature Coefficient =∆VREF

    ∆T

    Calculating Average TemperatureCoefficient for the AS1004-1.2 Reference

    TA – Ambient Temperature (°C)

    VZ –

    Ref

    eren

    ce V

    olta

    ge (

    V)

    1.225

    1.230

    1.235

    1.240

    1.245

    –55 –15 25 85 125 –35 5 45 65 105

    IZ = 100 µA

  • AS1004 Micropower Voltage Reference

    ASTEC Semiconductor32

    Typical Performance Curves

    AS1004-2.5 Reference Voltageversus Ambient Temperature

    Figure 3 Figure 4

    AS1004-1.2 Reverse OperatingCharacteristics

    AS1004-2.5 Reverse OperatingCharacteristics

    Figure 5 Figure 6

    VR – Reverse Voltage (V)

    IR –

    Rev

    erse

    Cur

    rent

    (µA

    )

    1

    10

    100

    0.1 0 0.2 0.6 1 1.4 0.4 0.8 1.2

    TA = –55° C to 125° C

    VR – Reverse Voltage (V)

    I R –

    Rev

    erse

    Cur

    rent

    (µA

    )

    1

    10

    100

    0.1 0 0.5 1.5 2.0 3.0 1.0 2.5

    TA = –55° C to 125° C

    ppm

    % mV

    5000 0.5

    0 0

    0

    0∆VREF

    ∆T

    -5

    -1010 20 30 40 50 60 70

    Temperature (°C)

    0.046 mV/°C

    0.004 %/°C

    37 ppm/°C

    Average Temperature Coefficient =∆VREF

    ∆T

    Calculating Average TemperatureCoefficient for the AS1004-2.5 Reference

    TA – Ambient Temperature (°C)

    VZ –

    Ref

    eren

    ce V

    olta

    ge (

    V)

    2.480

    2.490

    2.500

    2.510

    2.520

    –55 –15 25 85 125 –35 5 45 65 105

    IZ = 100 µA

  • Micropower Voltage Reference AS1004

    ASTEC Semiconductor33

    Typical Performance Curves

    AS1004-1.2 Change in ReferenceVoltage versus Reverse Current

    AS1004-2.5 Change in ReferenceVoltage versus Reverse Current

    Figure 9

    Figure 7 Figure 8

    IR – Reverse Current (mA)

    ∆V

    Z –

    Cha

    nge

    In R

    efer

    ence

    Vol

    tage

    (m

    A)

    0

    4

    8

    12

    16

    –4 0.01 0.1 1 10 100

    TA = –55° C to 125° C

    Figure 10

    AS1004-1.2 Transient Response AS1004-2.5 Transient Response

    IR – Reverse Current (mA)

    ∆V

    Z –

    Cha

    nge

    In R

    efer

    ence

    Vol

    tage

    (m

    A)

    0

    4

    8

    12

    16

    –4 0.01 0.1 1 10 100

    TA = –55° C to 125° C

    t – Time (µs)

    Inpu

    t and

    Out

    put V

    olta

    ge (

    V)

    5

    0.5

    1.5

    00 50 100 600 500

    INPUT

    1

    0

    OUTPUT

    VO

    36 kΩVI

    t – Time (µs)

    Inpu

    t and

    Out

    put V

    olta

    ge (

    V)

    5

    1

    3

    00 50 100 600 500

    VO36 kΩ

    VI

    INPUT

    2

    0

    OUTPUT

  • AS1004 Micropower Voltage Reference

    ASTEC Semiconductor34

    Typical Performance Curves

    Figure 11 Figure 12

    Figure 13 Figure 14

    AS1004-1.2 Reverse DynamicImpedance

    AS1004-2.5 Reverse DynamicImpedance

    Low Frequency Reverse DynamicImpedance

    f = Frequency (kHz)

    ZZ –

    Ref

    eren

    ce Im

    peda

    nce

    (Ω)

    1

    10

    100

    1 k

    10 k

    0.1 0.01 0.1 1 10 1 k 100

    tZ = 100 µA TA = 25° C

    f = Frequency (kHz)

    ZZ –

    Ref

    eren

    ce Im

    peda

    nce

    (Ω)

    1

    10

    100

    1 k

    10 k

    0.1 0.01 0.1 1 10 1 k 100

    tZ = 100 µA TA = 25° C

    Forward Characteristics

    IF = Forward Current (mA)

    VF –

    For

    war

    d V

    olta

    ge (

    V)

    0.4

    0.8

    1.2

    0 0.01 0.1 1 10 100

    TA = 25° C

    IZ – Reverse Current (mA)

    ZZ –

    Ref

    eren

    ce Im

    peda

    nce

    (Ω)

    1

    10

    100

    0.1 0.01 0.1 1 10 100

    TA = –55° C to 125° C f = 25 Hz

  • Micropower Voltage Reference AS1004

    ASTEC Semiconductor35

    Typical Applications

    2.5V Reference

    VIN

    3 k

    OUT

    AS1004-1.2

    VIN

    100 k

    OUT

    AS1004-2.5

    VIN

    100 k

    OUT

    AS1004-2.5

    22 Ω

    50 µF

    Low Noise Reference1.235V Reference

    Figure 20 Figure 21

    Figure 15 Figure 16 Figure 17

    High Stability 5V Regulator

    VIN

    OUT

    AS1004-2.5

    200 Ω

    10 µF

    0.1 µF +

    5 k

    V-

    LM317VIN VOUT

    ADJ

    R ≤ V-– 1V

    0.015 mA

    Variable OutputRegulator

    Figure 18 Figure 19

    Lead Acid Low Battery Detector

    +12 V

    86.7 k

    500 k 150 pF

    AS1004-1.2

    500 kLO = Battery Low

    Micropower 10V Reference

    VIN ≥ 8 V

    5 V OUT

    AS1004-2.5

    976 Ω, 1%

    22 µF

    +

    LM338VIN VOUT

    ADJ

    324 Ω, 1%

    22 M

    1 M

    150 pF

    AS1004-1.2

    +

    3.5 M

    500 k

    LM4250

    3

    2

    7

    68

    4

    VIN = 12 V to 20 V

  • AS2842/3/4/5Current Mode Controller

    DescriptionThe AS2842 family of control ICs provide pin-for-pin replace-ment of the industry standard UC3842 series of devices. Thedevices are redesigned to provide significantly improvedtolerances in power supply manufacturing. The 2.5 V refer-ence has been trimmed to 1.0% tolerance. The oscillatordischarge current is trimmed to provide guaranteed dutycycle clamping rather than specified discharge current. Thecircuit is more completely specified to guarantee all param-eters impacting power supply manufacturing tolerances.

    In addition, the oscillator and flip-flop sections have beenenhanced to provide additional performance. The RT/CT pinnow doubles as a synchronization input that can be easilydriven from open collector/open drain logic outputs. Thissync input is a high impedance input and can easily be usedfor externally clocked systems. The new flip-flop topologyallows the duty cycle on the AS2844/5 to be guaranteedbetween 49 and 50%. The AS2843/5 requires less than0.5 mA of start-up current over the full temperature range.

    Pin Configuration — Top view

    Features

    • 2.5 V bandgap referencetrimmed to 1.0% andtemperature-compensated

    • Extended temperature rangefrom - 40 to 105° C

    • AS2842/3 oscillations trimmedfor precision duty cycle clamp

    • AS2844/5 have exact 50% maxduty cycle clamp

    • Advanced oscillator designsimplifies synchronization

    • Improved specs on UVLOand hysteresis providemore predictable start-upand shutdown

    • Improved 5 V regulator providesbetter AC noise immunity

    • Guaranteed performancewith current sense pulledbelow ground

    • Over-temperature shutdown

    8L SOIC (D)

    81COMP VREG

    72VFB VCC

    63ISENSE OUT

    54RT/CT GND

    PDIP (N)

    81COMP VREG

    72VFB VCC

    63ISENSE OUT

    54RT/CT GND

    Ordering Information

    Description Temperature Range Order Codes

    8-Pin Plastic DIP -40 to 105° C AS2842/3/4/5N8-Pin Plastic SOIC -40 to 105° C AS2842/3/4/5D-8

    ASTEC Semiconductor

    37

  • AS2842/3/4/5 Current Mode Controller

    ASTEC Semiconductor38

    Functional Block Diagram

    Pin Function Description

    Pin Number Function Description

    1 COMP This pin is the error amplifier output. Typically used to provide loop compensation tomaintain VFB at 2.5 V.

    2 VFB Inverting input of the error amplifier. The non-inverting input is a trimmed 2.5 Vbandgap reference.

    3 ISENSE A voltage proportional to inductor current is connected to the input. The PWM usesthis information to terminate the gate drive of the output.

    4 RT/CT Oscillator frequency and maximum output duty cycle are set by connecting a resistor(RT) to VREG and a capacitor (CT) to ground. Pulling this pin to ground or to VREG willaccomplish a synchronization function.

    5 GND Circuit common ground, power ground, and IC substrate.

    6 OUT This output is designed to directly drive a power MOSFET switch. This output can sinkor source peak currents up to 1A. The output for the AS2844/5 switches at one-half theoscillator frequency.

    7 VCC Positive supply voltage for the IC.

    8 VREG This 5 V regulated output provides charging current for the capacitor CT through theresistor RT.

    Figure 1. Block Diagram of the AS2842/3/4/5

    +

    +

    +

    +

    6OUT

    2

    ERROR AMP

    1

    4 5

    7

    8

    GND

    VCC

    VREG

    RT/CT

    VFB

    COMP

    S

    R

    FF

    S

    R

    FF

    (5.0 V)

    (2.5 V)

    (1.0 V)

    2R

    R

    (5 V)

    (3.0 V)

    (1.3 V)

    (0.6 V)OSCILLATOR

    PWMCOMPARATOR

    OVERTEMPERATURE

    T

    FF

    CLK ÷ 2 [3844/45]

    CLK [3842/43]

    5 VREGULATOR

    (5.0 V)

    REF OK

    (4 V)

    UVLO

    (4 V)

    PWM LOGIC

    3

    +

    ISENSE

  • ASTEC Semiconductor

    Current Mode Controller AS2842/3/4/5

    39

    Absolute Maximum Ratings

    Parameter Symbol Rating Unit

    Supply Voltage (ICC < 30 mA) VCC Self-Limiting V

    Supply Voltage (Low Impedance Source) VCC 30 V

    Output Current IOUT ±1 AOutput Energy (Capacitive Load) 5 µJAnalog Inputs (Pin 2, Pin 3) –0.3 to 30 V

    Error Amp Sink Current 10 mA

    Maximum Power Dissipation PD8L SOIC 750 mW8L PDIP 1000 mW

    Maximum Junction Temperature TJ 150 °CStorage Temperature Range TSTG – 65 to 150 °CLead Temperature, Soldering 10 Seconds TL 300 °CStresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stressrating only and functional operation of the device at these or any other conditions above indicated in the operational sections of thisspecification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

    Recommended Conditions

    Parameter Symbol Rating Unit

    Supply Voltage VCCAS2842,4 15 V

    AS2843,5 10 V

    Oscillator fOSC 50 to 500 kHz

    Typical Thermal Resistances

    Package θJA θJC Typical Derating

    8L PDIP 95° C/W 50° C/W 10.5 mW/°C8L SOIC 175° C/W 45° C/W 5.7 mW/°C

  • AS2842/3/4/5 Current Mode Controller

    ASTEC Semiconductor40

    Electrical CharacteristicsElectrical characteristics are guaranteed over full junction temperature range (-40 to 105° C ). Ambient temperature must be derated basedon power dissipation and package thermal characteristics. The conditions are: VCC = 15 V, RT = 10 kΩ, and CT = 3.3 nF, unless otherwisestated. To override UVLO, VCC should be raised above 17 V prior to test.

    Parameter Symbol Test Condition Min Typ Max Unit

    5 V Regulator

    Output Voltage VREG TJ = 25° C, IREG = 1 mA 4.95 5.00 5.05 V

    Line Regulation PSRR 12 ≤ VCC ≤ 25 V 2 10 mV

    Load Regulation 1 ≤ IREG ≤ 20 mA 2 10 mV

    Temperature Stability1 TCREG 0.2 0.4 mV/°C

    Total Output Variation1 Line, load, temperature 4.85 5.15 V

    Long-term Stability1 Over 1,000 hrs at 25° C 5 25 mV

    Output Noise Voltage VNOISE 10 Hz ≤ f ≤ 100 kHz, TJ = 25° C 50 µV

    Short Circuit Current ISC 30 100 180 mA

    2.5 V Internal Reference

    Nominal Voltage VFB T = 25° C; IREG = 1 mA 2.475 2.500 2.525 V

    Line Regulation PSRR 12 V ≤ VCC ≤ 25 V 2 5 mV

    Load Regulation 1 ≤ IREG ≤ 20 mA 2 5 mV

    Temperature Stability1 TCVFB 0.1 0.2 mV/°C

    Total Output Variation1 Line, load, temperature 2.450 2.500 2.550 V

    Long-term Stability1 Over 1,000 hrs at 125° C 2 12 mV

    Oscillator

    Initial Accuracy fOSC TJ = 25° C 47 52 57 kHz

    Voltage Stability 12 V ≤ VCC ≤ 25 V 0.2 1 %

    Temperature Stability1 TCf TMIN ≤ TJ≤ TMAX 5 %

    Amplitude fOSC VRT/CT peak-to-peak 1.6 V

    Upper Trip Point VH 2.9 V

    Lower Trip Point VL 1.3 V

    Sync Threshold VSYNC 400 600 800 mV

    Discharge Current ID 7.5 8.7 9.5 mA

    Duty Cycle Limit RT = 680 Ω, CT = 5.3 nF, TJ = 25° C 46 50 52 %

  • ASTEC Semiconductor

    Current Mode Controller AS2842/3/4/5

    41

    Electrical Characteristics (cont’d)Electrical characteristics are guaranteed over full junction temperature range (-40 to 105° C ). Ambient temperature must be derated basedon power dissipation and package thermal characteristics. The conditions are: VCC = 15 V, RT = 10 kΩ, and CT = 3.3 nF, unless otherwise stated.To override UVLO, VCC should be raised above 17 V prior to test.

    Parameter Symbol Test Condition Min Typ Max Unit

    Error Amplifier

    Input Voltage VFB TJ = 25° C 2.475 2.50 2.525 V

    Input Bias Current IBIAS – 0.1 –1 µA

    Voltage Gain AVOL 2 ≤ VCOMP ≤ 4 V 65 90 dB

    Transconductance Gm 1 mA/mV

    Unity Gain Bandwidth1 GBW 0.8 1.2 MHz

    Power Supply Rejection Ratio PSRR 12 ≤ VCC ≤ 25 V 60 70 dB

    Output Sink Current ICOMPL VFB = 2.7 V, VCOMP = 1.1V 2 6 mA

    Output Source Current ICOMPH VFB = 2.3 V, VCOMP = 5 V 0.5 0.8 mA

    Output Swing High VCOMPH VFB = 2.3 V, RL = 15 kΩ to Ground 5 5.5 V

    Output Swing Low VCOMPL VFB = 2.7 V, RL = 15 kΩ to Pin 8 0.7 1.1 V

    Current Sense Comparator

    Transfer Gain2,3 AVCS –0.2 ≤ VSENSE ≤ 0.8 V 2.85 3.0 3.15 V/V

    ISENSE Level Shift2 VLS VSENSE = 0 V 1.5 V

    Maximum Input Signal2 VCOMP = 5 V 0.9 1 1.1 V

    Power Supply Rejection Ratio PSRR 12 ≤ VCC ≤ 25 V 70 dB

    Input Bias Current IBIAS –1 –10 µA

    Propagation Delay to Output1 tPD 85 150 ns

    Output

    Output Low Level VOL ISINK = 20 mA 0.1 0.4 V

    VOL ISINK = 200 mA 1.5 2.2 V

    Output High Level VOH ISOURCE = 20mA 13 13.5 V

    VOH ISOURCE = 200mA 12 13.5 V

    Rise Time1 tR CL = 1 nF 50 150 ns

    Fall Time1 tF CL = 1 nF 50 150 ns

    Housekeeping

    Start-up Threshold VCC(on) 2842/4 15 16 17 V

    2843/5 7.8 8.4 9.0 V

    Minimum Operating Voltage VCC(min) 2842/4 9 10 11 V

    After Turn On 2843/5 7.0 7.6 8.2 V

    Output Low Level in UV State VOUV ISINK = 20 mA, VCC = 6 V 1.5 2.0 V

    Over-Temperature Shutdown4 TOT 125 °C

  • AS2842/3/4/5 Current Mode Controller

    ASTEC Semiconductor42

    Notes:1. This parameter is not 100% tested in production.2. Parameter measured at trip point of PWM latch.3. Transfer gain is the relationship between current sense input and corresponding error amplifier output at the PWM latch trip pointand is mathematically expressed as follows:

    4. At the over-temperature threshold, TOT, the oscillator is disabled. The 5 V reference and the PWM stages, including the PWMlatch, remain powered.

    Electrical Characteristics (cont’d)Electrical characteristics are guaranteed over full junction temperature range (-40 to 105° C ). Ambient temperature must be derated basedon power dissipation and package thermal characteristics. The conditions are: VCC = 15 V, RT = 10 kΩ, and CT = 3.3 nF, unless otherwise stated.To override UVLO, VCC should be raised above 17 V prior to test.

    Parameter Symbol Test Condition Min Typ Max Unit

    AI

    VVCOMP

    SENSE

    = − ≤ ≤∆∆

    ; 0.2 V 0.8SENSE

    PWM

    Maximum Duty Cycle Dmax 2842/3 94 97 100 %

    Minimum Duty Cycle Dmin 2842/3 0 %

    Maximum Duty Cycle Dmax 2844/5 49 49.5 50 %

    Minimum Duty Cycle Dmin 2844/5 0 %

    Supply Current

    Start-up Current ICC 2842/4, VFB = VSENSE = 0 V, VCC = 14 V 0.5 1.0 mA2843/5, VFB = VSENSE = 0 V, VCC = 7 V 0.3 0.5 mA

    Operating Supply Current ICC 9 17 mA

    VCC Zener Voltage VZ ICC = 25 mA 30 V

  • ASTEC Semiconductor

    Current Mode Controller AS2842/3/4/5

    43

    Typical Performance Curves

    Supply Current vs Supply Voltage Output Voltage vs Supply Voltage

    Regulator Output Voltage vsAmbient Temperature

    Regulator Short Circuit Current vsAmbient Temperature

    Figure 2 Figure 3

    Figure 4 Figure 5

    TA – Ambient Temperature (°C)–60

    I RE

    G –

    Reg

    ulat

    or S

    hort

    Circ

    uit (

    mA

    )

    40

    60

    100

    120

    140

    180

    0 30 90 150–30 60 120

    80

    TA – Ambient Temperature (°C)–60

    4.90

    VR

    EG –

    Reg

    ulat

    or O

    utpu

    t (V

    )

    4.92

    4.94

    4.98

    5.00

    5.02

    5.04

    0 30 90 150–30 60 120

    4.96

    VCC – Supply Voltage (V)0

    0

    I CC –

    Sup

    ply

    Cur

    rent

    (m

    A)

    10

    15

    20

    25

    10 15 25

    5

    5 20 35

    AS

    2842

    /4

    AS

    2843

    /5

    30VCC – Supply Voltage (V)

    00

    VO

    UT –

    Out

    put V

    olta

    ge (

    V)

    10

    15

    20

    25

    10 15 25

    5

    5 20 30

    AS

    2843

    /5

    AS

    2842

    /4

  • AS2842/3/4/5 Current Mode Controller

    ASTEC Semiconductor44

    Typical Performance Curves

    Regulator Load Regulation

    Timing Capacitor vs OscillatorFrequency

    Figure 6 Figure 7

    Figure 8 Figure 9

    Maximum Duty Cycle TemperatureStability

    Maximum Duty Cycle vs TimingResistor

    ISC – Regulator Source Current (mA)0

    ∆VR

    EG –

    Reg

    ulat

    or V

    olta

    ge C

    hang

    e (m

    V)

    –24

    –20

    –12

    –8

    –4

    0

    40 60 100 14020 80

    –16

    120

    150° C 25° C –55° C

    RT – Timing Register (kΩ)0.3

    20

    Max

    imum

    Dut

    y C

    ycle

    (%

    )40

    60

    80

    100

    101 3

    FOSC – Oscillator Frequency (kHz)10

    0.1

    CT –

    Tim

    ing

    Cap

    acito

    r (n

    F)

    1

    10

    100

    100 1 M

    RT = 1 kΩ

    RT = 680 Ω

    RT = 4.7 kΩ

    RT = 10 kΩ

    RT = 2.2 kΩ

    TA – Ambient Temperature–55

    40

    Max

    imum

    Dut

    y C

    ycle

    (%

    )

    60

    80

    100

    45 125

    50

    70

    90

    –35 –15 5 25 65 85 105

    RT = 1 kΩ

    RT = 680 Ω

    RT = 10 kΩ

    RT = 2.2 kΩ

  • ASTEC Semiconductor

    Current Mode Controller AS2842/3/4/5

    45

    Typical Performance Curves

    Current Sense Input Threshold vsError Amp Output Voltage

    Error Amp Input Voltage vs AmbientTemperature

    Output Sink Capability In Under-Voltage Mode Output Saturation Voltage

    Figure 10 Figure 11

    Figure 12 Figure 13

    TA – Ambient Temperature (°C)–60

    2.460

    VF

    B –

    Err

    or A

    mp

    Inpu

    t Vol

    tage

    (V

    )2.470

    2.480

    2.490

    2.500

    2.510

    0 30 90 150–30 60 120

    VFB = VCOMPVCC = 15 V

    VCOMP – Error Amp Output Voltage (V)0

    –0.4

    VS

    EN

    SE –

    Cur

    rent

    Sen

    se In

    put T

    hres

    hold

    (V

    )

    –0.2

    0.2

    0.4

    0.6

    1.2

    1 3 5 62 4

    0

    0.8

    1.0

    TA = –55° C

    TA = 25° C

    TA = 125° C

    VOUT – Output Voltage (V)0

    1

    I OU

    T –

    Out

    put S

    ink

    Cur

    rent

    (m

    A)

    10

    100

    1 A

    1.5 2.50.5 1 2

    VCC = 6 VTA = 25° C

    IOUT – Output Saturation Current (mA)10

    0

    VS

    AT –

    Out

    put S

    atur

    atio

    n V

    olta

    ge (

    V)

    3

    –1

    0

    100 500

    –2

    2

    1 Sink SaturationTJ = 125° C

    TJ = –55° C

    TJ = 25° C

    TJ = 125° CSource Saturation

    VOUT – VCC

  • AS2842/3/4/5 Current Mode Controller

    ASTEC Semiconductor46

    Application InformationThe AS2842/3/4/5 family of current-mode controlICs are low cost, high performance controllerswhich are pin compatible with the industrystandard UC2842 series of devices. Suitable formany switch mode power supply applications,these ICs have been optimized for use in highfrequency off-line and DC-DC converters.The AS2842 has been enhanced to providesignificantly improved performance, resulting inexceptionally better tolerances in power supplymanufacturing. In addition, all electrical charac-teristics are guaranteed over the full 0 to 105 °Ctemperature range. Among the many enhance-ments are: a precision trimmed 2.5 volt refer-ence (±0.5% of nominal at the error amplifierinput), a significantly reduced propagation delayfrom current sense input to the IC output, atrimmed oscillator for precise duty-cycle clamp-ing, a modified flip-flop scheme that gives a true50% duty ratio clamp on 2844/45 types, andan improved 5 V regulator for better AC noiseimmunity. Furthermore, the AS2842 providesguaranteed performance with current senseinput below ground. The advanced oscillatordesign greatly simplifies synchronization. Thedevice is more completely specified to guaranteeall parameters that impact power supplymanufacturing tolerances.

    Section 1— Theory of Operation

    The functional block diagram of the AS2842 isshown in Figure 1. The IC is comprised of thesix basic functions necessary to implementcurrent mode control; the under voltage lockout;the reference; the oscillator; the error amplifier;the current sense comparator/PWM latch;and the output. The following paragraphs willdescribe the theory of operation of each of thefunctional blocks.

    1.1 Undervoltage lockout (UVLO)

    The undervoltage lockout function of the AS2842holds the IC in a low quiescent current (≤ 1 mA)“standby” mode until the supply voltage (VCC)exceeds the upper UVLO threshold voltage. Thisguarantees that all of the IC’s internal circuitryare properly biased and fully functional beforethe output stage is enabled. Once the IC turns on,the UVLO threshold shifts to a lower level (hys-teresis) to prevent VCC oscillations.

    The low quiescent current standby mode of theAS2842 allows “bootstrapping” — a techniqueused in off-line converters to start the IC from therectified AC line voltage initially, after which powerto the IC is provided by an auxiliary winding offthe power supply’s main transformer. Figure 14shows a typical bootstrap circuit where capacitor

    Figure 14. Bootstrap Circuit

    +

    R < VDC MIN1 mA

    R

    +C

    >1 mA

    16 V/10 V (2842/4)

    8.4 V/7.8 V (2843/5)

    OUT6

    IC ENABLEAC LINE

    AS284x

    7 VCC

    5GND

    AUX

    PRI SEC

    VDC

  • ASTEC Semiconductor

    Current Mode Controller AS2842/3/4/5

    47

    (C) is charged via resistor (R) from the rectifiedAC line. When the voltage on the capacitor (VCC)reaches the upper UVLO threshold, the IC (andhence, the power supply) turns on and the volt-age on C begins to quickly discharge due to theincreased operating current. During this time, theauxiliary winding begins to supply the currentnecessary to run the IC. The capacitor must besufficiently large to maintain a voltage greaterthan the lower UVLO threshold during start up.The value of R must be selected to providegreater than 1 mA of current at the minimum DCbus voltage (R < VDCmin/1 mA).

    The UVLO feature of the AS2842 has significantadvantages over standard 2842 devices. First,the UVLO thresholds are based on a tempera-ture compensated band gap reference ratherthan conventional zeners. Second, the UVLOdisables the output at power down, offering addi-tional protection in cases where VREG is heavilydecoupled. The UVLO on some 2842 devicesshuts down the 5 volt regulator only, whichresults in eventual power down of the output onlyafter the 5 volt rail collapses. This can lead tounwanted stresses on the switching devices dur-ing power down. The AS2842 has two separatecomparators which monitor both VCC and VREFand hold the output low if either are not withinspecification.

    The AS2842 family offers two different UVLOoptions. The AS2842/4 has UVLO thresholds of16 volts (on) and 10 volts (off). The AS2843/5 hasUVLO levels of 8.4 volts (on) and 7.6 volts (off).

    1.2 Reference (V REG and V FB)

    The AS2842 effectively has two precise bandgap based temperature compensated voltagereferences. Most obvious is the VREG pin (pin 8)which is the output of a series pass regulator.This 5.0 V output is normally used to providecharging current to the oscillator’s timingcapacitor (Section 1.3). In addition, there is a

    trimmed internal 2.5 V reference which is con-nected to the non-inverting (+) input of the erroramplifier. The tolerance of the internal referenceis ±0.5% over the full specified temperature range,and ±1% for VREG.

    The reference section of the AS2842 is greatlyimproved over the standard 2842 in a number ofways. For example, in a closed loop system, thevoltage at the error amplifier’s inverting input(VFB, pin 1) is forced by the loop to match thevoltage at the non-inverting input. Thus, VFB isthe voltage which sets the accuracy of the entiresystem. The 2.5 V reference of the AS2842 istightly trimmed for precision at VFB, includingerrors caused by the op amp, and is specifiedover temperature. This method of trim provides aprecise reference voltage for the error amplifierwhile maintaining the original 5 V regulator speci-fications. In addition, force/sense (Kelvin) bond-ing to the package pin is utilized to further im-prove the 5 V load regulation. Standard 2842’s,on the other hand, specify tight regulation for the5 V output only and rate it over line, load andtemperature. The voltage at VFB, which is ofcritical importance, is loosely specified and onlyat 25° C.

    The reference section, in addition to providing aprecise DC reference voltage, also powers mostof the IC’s internal circuitry. Switching noise,therefore, can be internally coupled onto thereference. With this in mind, all of the logic withinthe AS2842 was designed with ECL type circuitrywhich generates less switching noise because itruns at essentially constant current regardless oflogic state. This, together with improved ACnoise rejection, results in substantially less switch-ing noise on the 5 V output.

    The reference output is short circuit protectedand can safely deliver more than 20 mA to powerexternal circuitry.

  • AS2842/3/4/5 Current Mode Controller

    ASTEC Semiconductor48

    1.3 Oscillator

    The newly designed oscillator of the AS2842 isenhanced to give significantly improved perfor-mance. These enhancements are discussed inthe following paragraphs. The basic operation ofthe oscillator is as follows:

    A simple RC network is used to program thefrequency and the maximum duty ratio of theAS2842 output. See Figure 15. Timing capacitor(CT) is charged through timing resistor (RT) fromthe fixed 5.0 V at VREG. During the charging time,the OUT (pin 6) is high. Assuming that the outputis not terminated by the PWM latch, when thevoltage across CT reaches the upper oscillatortrip point (≈3.0 V), an internal current sink frompin 4 to ground is turned on and discharges CTtowards the lower trip point. During this dis-charge time, an internal clock pulse blanks theoutput to its low state. When the voltage acrossCT reaches the lower trip point (≈1.3 V), thecurrent sink is turned off, the output goes high,and the cycle repeats. Since the output is blankedduring the discharge of CT, it is the discharge timewhich controls the output deadtime and hence,the maximum duty ratio.

    Figure 15. Oscillator Set-up and Waveforms

    The nature of the AS2842 oscillator circuit is suchthat, for a given frequency, many combinations ofRT and CT are possible. However, only one valueof RT will yield the desired maximum duty ratio ata given frequency. Since a precise maximumduty ratio clamp is critical for many power supplydesigns, the oscillator discharge current istrimmed in a unique manner which providessignificantly improved tolerances as explainedlater in this section. In addition, the AS2844/5options have an internal flip-flop which effectivelyblanks every other output pulse (the oscillatorruns at twice the output frequency), providing anabsolute maximum 50% duty ratio regardless ofdischarge time.

    1.3.1 Selecting timing components R T andCTThe values of RT and CT can be determinedmathematically by the following expressions:

    5 V REG

    OSCILLATOR

    AS2842

    6 OUTPUT

    7 VCC

    8

    RT

    CT

    ID

    5 GND

    CLOCK

    PWM

    CT

    OUTPUT

    Large RT/Small CT

    CT

    OUTPUT

    Small RT/ Large CT

    4

    CD

    R

    D

    RT

    T

    T

    =

    ƒ

    ( )

    OSCL

    H

    OSCK

    Kln

    1.631

  • ASTEC Semiconductor

    Current Mode Controller AS2842/3/4/5

    49

    Table 1. RT vs Maximum DutyRatio

    RT (Ω) Dmax

    470 22%

    560 37%

    683 50%

    750 54%

    820 58%

    910 63%

    1,000 66%

    1,200 72%

    1,500 77%

    1,800 81%

    2,200 85%

    2,700 88%

    3,300 90%

    3,900 91%

    4,700 93%

    5,600 94%

    6,800 95%

    8,200 96%

    10,000 97%

    18,000 98%

    that compensates for all of the tolerances withinthe device (such as the tolerances of VREG,propagation delays, the oscillator trip points,etc.) which have an effect on the frequency andmaximum duty ratio. For example, if the com-bined tolerances of a particular device are 0.5%above nominal, then ID is trimmed to 0.5% abovenominal. This method of trimming virtuallyeliminates the need to trim external oscillatorcomponents during power supply manufactur-

    KV

    LREG=

    −≈ ( )V

    VL

    REG

    0.736 3

    KV

    HREG=

    −≈ ( )V

    VH

    H

    0.4 432

    where fosc is the oscillator frequency, D is themaximum duty ratio, VH is the oscillator’s uppertrip point, VL is the lower trip point, VR is theReference voltage, ID is the discharge current.

    Table 1 lists some common values of RT and thecorresponding maximum duty ratio. To select thetiming components; first, use Table 1 or equation(2) to determine the value of RT that will yield thedesired maximum duty ratio. Then, use equation(1) to calculate the value of CT. For example, fora switching frequency of 250 kHz and a maxi-mum duty ratio of 50%, the value of RT, fromTable 1, is 683 Ω. Applying this value to equation(1) and solving for CT gives a value of 4700 pF. Inpractice, some fine tuning of the initial valuesmay be necessary during design. However, dueto the advanced design of the AS2842 oscillator,once the final values are determined, they willyield repeatable results, thus eliminating the needfor additional trimming of the timing componentsduring manufacturing.

    1.3.2 Oscillator enhancements

    The AS2842 oscillator is trimmed to provideguaranteed duty ratio clamping. This means thatthe discharge current (ID ) is trimmed to a value

    RV

    I

    K K

    K KT

    REG

    D

    L H

    L H

    D D

    D

    D

    D

    D

    D D

    D

    D

    D

    D

    = ⋅ ( ) ( )( ) ( )

    ( )

    = ⋅ ( ) − ( )−

    − −

    − −

    1 1

    1 1

    1 1

    1 1582

    0 736 0 432

    0 736 0 432

    . .

    ( . ) ( . )

    2

  • AS2842/3/4/5 Current Mode Controller

    ASTEC Semiconductor50

    ing. Standard 2842 devices specify or trim onlyfor a specific value of discharge current. Thismakes precise and repeatable duty ratio clamp-ing virtually impossible due to other IC toler-ances. The AS2844/5 provides true 50% dutyratio clamping by virtue of excluding from its flip-flop scheme, the normal output blanking associ-ated with the discharge of CT. Standard AS2844/5 devices include the output blanking associatedwith the discharge of CT, resulting in somewhatless than a 50% duty ratio.

    1.3.3 Synchronization

    The advanced design of the AS2842 oscillatorsimplifies synchronizing the frequency of two ormore devices to each other or to an externalclock. The RT/CT doubles as a synchronizationinput which can easily be driven from any opencollector logic output. Figure 16 shows somesimple circuits for implementing synchroniza-tion.

    1.4 Error amplifier (COMP)

    The AS2842 error amplifier is a wide bandwidth,internally compensated operational amplifierwhich provides a high DC open loop gain (90 dB).The input to the amplifier is a PNP differentialpair. The non-inverting (+) input is internallyconnected to the 2.5 V reference, and the invert-ing (–) input is available at pin 2 (VFB). The outputof the error amplifier consists of an active pull-down and a 0.8 mA current source pull-up asshown in Figure 17. This type of output stageallows easy implementation of soft start, latchedshutdown and reduced current sense clamp func-tions. It also permits wire “OR-ing” of the erroramplifier outputs of several 2842s, or completebypass of the error amplifier when its output isforced to remain in its “pull-up” condition.

    Figure 16. Synchronization

    Figure 17. Er