systems id tifi tiidentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf ·...

38
SYSTEMS SYSTEMS Id tifi ti Id tifi ti Identification Identification Ali Karimpour Assistant Professor Ferdowsi University of Mashhad Ferdowsi University of Mashhad Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear System Identification: from Classical Approaches to Neural Networks and Fuzzy Models” Oliver Nelles (2001)

Upload: others

Post on 10-Oct-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

SYSTEMSSYSTEMSId tifi tiId tifi tiIdentificationIdentification

Ali KarimpourpAssistant Professor

Ferdowsi University of MashhadFerdowsi University of Mashhad

Reference: “System Identification Theory For The User” Lennart Ljung(1999)“Nonlinear System Identification: from Classical Approaches to

Neural Networks and Fuzzy Models” Oliver Nelles (2001)

Page 2: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Lecture 2

IntroductionIntroductionTopics to be covered include:� Impulse responses and transfer functions.� p p

� Frequency domain expression.

� Stochastic Process.

� Signal spectra� Signal spectra

� Disturbances

Ali Karimpour Sep 2012

22� Ergodicity

Page 3: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Impulse responses

It is well known that a linear, time-invariant, causal system can be described as:

τττ∫∞

−= )()()( dtugtyτττ∫ −=t

dutgty )()()(

Sampling

ττττ∫ =0

)()()( dtugty

τττ∫∞

)()()( dkTugkTy

τ∫ −∞=gy )()()(

ττττ∫ =

−=0

)()()( dkTugkTy

Most often, the input signal u(t) is kept constant between the sampling instants:

TktkTutu k )1()( +≤≤=So

lT

l

lT

TldkTugdkTugkTy

∞∞

=−=

=

∑∫∫⎤⎡

−=−=1

)1(0)()()()()( ττττττ

ττ

Ali Karimpour Sep 2012

33lk

lTlk

l

lT

Tlulgudg −

=−

=−= ∑∑ ∫ =⎥⎦

⎤⎢⎣⎡=

11)1(

)()( τττ

Page 4: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Impulse responses

∑lT

∫lkl

T ulgkTy −=∑=

1)()( )()(Where

)1(lgdg T

lT

Tl=∫ −=

τττ

For ease of notation assume that T is one time unit and use t to enumerate the sampling instantsp g

.....3,2,1,0)()()(1

=−=∑∞

=

tktukgtyk

Ali Karimpour Sep 2012

4

Page 5: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Transfer functions

Define forward and backward shift operator q and q-1 as

)1()( += tutqu )1()(1 −=− tutuqNow we can write output as:

( )∑∑∞

−∞

=−= )()()()()( k tuqkgktukgty )()()()( tuqGtuqkg k =⎥⎦

⎤⎢⎣

⎡= ∑

∞−( )∑∑

==

==11

)()()()()(kk

tuqkgktukgty )()()()(1

qqgk

⎥⎦

⎢⎣∑=

G(q) is the transfer operator or transfer function

∑∞

)()( kkG ∑=

−=1

)()(k

kqkgqGSimilarly for disturbance we have

)()()( tuqHtv = )()()( q

So the basic description for a linear system with additive disturbance is:

Ali Karimpour Sep 2012

5)()()()()( teqHtuqGty +=

Page 6: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Transfer functions

Some terminology

G(q) is the transfer operator or transfer functionG(q) is the transfer operator or transfer function

∑∑∞

=

−∞

=

− ==11

)()(or)()(k

k

k

k zkgzGqkgqG

We shall say that the transfer function G(q) is stable if

∞<∑∞

)(kg ∞<∑=1

)(k

kg

This means that G(z) is analytic on and outside the unit circle.

We shall say the filter H(q) is monic if h(0)=1:

Ali Karimpour Sep 2012

6∑∞

=

−=0

)()(k

kqkhqH

Page 7: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Frequency-domain expressions

Letttu ωcos)( =

It will convenient to writetjetu ωRe)( =

Now we can write output as:

∑∑∞

−∞

− == )()( )(ReRe)()( ktikti ekgekgty ωω ∑∑== 11 kk

( ) { })(Re)(.Re ωωωω itikiti eGeekge =⎭⎬⎫

⎩⎨⎧

= ∑∞

1k ⎭⎩ =

So we have

( )Ali Karimpour Sep 2012

7( ))(argcos)()( ωω ω ii eGteGty +=

Page 8: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Frequency-domain expressions

ttu ωcos)( =tjetu ωRe)( =

( ))(argcos)()( ωω ω ii eGteGty +=etu Re)(

⎧ 0 ⎧ 0R tjω

Now suppose

⎩⎨⎧

<≥

=000cos

)(ttt

tuω

⎩⎨⎧

<≥

=000Re

)(tte

tutjω

⎫⎧ ( )⎭⎬⎫

⎩⎨⎧

= ∑=

−t

k

kiti ekge1

)(.Re ωω∑=

−=t

k

ktiekgty1

)(Re)()( ω

⎫⎧⎫⎧⎫⎧ t

( ) ( ) ( )⎭⎬⎫

⎩⎨⎧

−⎭⎬⎫

⎩⎨⎧

+⎭⎬⎫

⎩⎨⎧

= ∑∑∑∞

=

−∞

=

=

tk

kiti

tk

kitit

k

kiti ekgeekgeekge ωωωωωω )(.Re)(.Re)(.Re1

For stable system

Ali Karimpour Sep 2012

8( ) ( )

⎭⎬⎫

⎩⎨⎧

−+= ∑∞

=

tk

kitiii ekgeeGteGty ωωωω ω )(.Re)(argcos)()(For stable systemAnd large t

Page 9: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Periodograms of signals over finite intervals

tdetfg ti∫+∞ −= ωω )(

21)(

Fourier transform (FT)

)(tf )(ωg∫ ∞−π2

∫+∞

= ωω ω degtf ti)()( ∫ ∞−ωω degtf )()(

Discrete Fourier transform (DFT)

∑N

i1

)()4()3()2()1(

Nuuuuu

)2()8(

)6()4()2(

NUUN

UN

UN

U NNN

ππ

πππ∑=

−=t

tiN etu

NU

1

)(1)( ωω

)(......)4( Nuu )(......)(N

UN

U NN

Nu1 ∑=

=N

k

NtkiN eNkU

Ntu

1

/2)/2(1)( ππ )(ωNU

Ali Karimpour Sep 2012

9

=kN 1

Exercise1: Show that u(t) can be derived by putting UN(ω) in u(t).

Page 10: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Periodograms of signals over finite intervals

)()2( ωπω NN UU =+Some property of UN(ω)__________

)()( ωω NN UU =−

The function UN(ω) is therefore uniquely defined by its values over the intervalThe function UN(ω) is therefore uniquely defined by its values over the interval [ 0, 2π ]. It is, however, customary to consider UN(ω) for the interval [ - π, π ]. So u(t)can be defined as

2/1 N

∑+−=

=2/

12/

/2)/2(1)(N

Nk

NtkiN eNkU

Ntu ππ

The number UN(ω) tell us the weight that the frequency ω carries in theThe number UN(ω) tell us the weight that the frequency ω carries in the decomposition. So

2)(ωNU

Is known as the periodogram of the signal u(t), t= 1 , 2 , 3 , …..

Parseval’s relationship:NN

Ali Karimpour Sep 2012

10∑∑==

=N

t

N

kN tuNkU

1

2

1

2 )()/2( π

Page 11: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Periodograms of signals over finite intervals

Example: Periodogram of a sinusoid

tAtu 0cos)( ω= tAtu 0cos)( ωso periodic is )( Suppose tu

)(ofmultipleaiswhere321Let sNNNNNt

1integer somefor /2 000 >= NNπω

∑ −=N

tietAU cos1)( ωωω ( )∑ −− +=N

tititi eeeA00 ωωω

)(of multipleais where,...,3,2,1Let 00 sNNNNNt ==

∑=

=t

N etAN

U1

0cos)( ωω ( )∑=

+=t

eeeN 12

( )∑ +−− +=N

titi eeN

A )()( 00

2ωωωω( )∑

=tN 12

⎪⎪⎨

⎧±=±=±=

=s

NNifAN

U

224)( 0

0

2

2

ππωωω

Ali Karimpour Sep 2012

11⎪⎪⎩

⎨≠=

=

skNkif

U N

,20)( 0

πωω

Page 12: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Periodograms of signals over finite intervals

Discrete Fourier transform (DFT)

)3()2()1( uuu )6()4()2(N

UN

UN

U NNNπππ

∑ −N

tietuU )(1)( ωω)(......)4( Nuu )2(......)8(

NNU

NU

NNN

NNππ

Nu1

∑=

=t

N etuN

U1

)()(ω

1

The periodogram defines, in a sense, the frequency contents of a signal over afi it ti i t lfinite time interval.

Ali Karimpour Sep 2012

1212

Page 13: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Stochastic Processes

A random variable (RV) is a rule (or function) that assigns a real number to every outcome of a random experiment.

The closing price of Iranian power market observed from Apr. 15 to Sep. 22, 2009.For scalar (RV) ( )∫=≤≤

b

a e dxxfbeaP )( For vector (RV) ( )∫ ∈=∈Bx e dxxfBeP )(

If e may assume a certain value with nonzero probability then feee contains δ function.d i bl d i d d if h

Probability density function (PDF)

Two random variables e1 and e2 are independent, if we have:

)().()( 22112211 xePxePxexeP ====∧=

Definition: The expectation E[e] of a random variable e is:Definition: The expectation E[e] of a random variable e is:

( )∫= NR e dxxxfEe

Definition: The variance Cov[e] of a random variable e is:

Ali Karimpour Sep 2012

13

Definition: The variance, Cov[e], of a random variable, e, is:

( )( ) EemmemeEe T =−−= :Cov

Page 14: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Stochastic Processes

A stochastic process is a rule (or function) that assigns a time function to every outcome of a random experiment.

• Consider the random experiment of tossing a dice at t = 0 and observing the number on the top face.

• The sample space of this experiment consists of the outcomes {1, 2, 3, · · · , 6}.

• For each outcome of the experiment, let us arbitrarily assign a function of time t in the following manner.

Ali Karimpour Sep 2012

14

• The set of functions {x1(t), x2(t), · · , x6(t)} represents a stochastic process.

Page 15: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Stochastic Processes

Mean of a random process X(t) is

I l ( ) i f i f i

Correlation RX(t1, t2) of a random process X(t) is

In general, mX(t) is a function of time.

Note RX(t1, t2) is a function of t1 and t2.X( 1 2) 1 2

Autocovariance CX(t1, t2) of a random process X(t) is defined as the covarianceof X(t1) and X(t2):

In particular when t = t = t we have

Ali Karimpour Sep 2012

15

In particular, when t1 = t2 = t, we have

Page 16: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Stochastic Processes

Example Sinusoid with random amplitude

Ali Karimpour Sep 2012

16

Page 17: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Stochastic Processes

Example Sinusoid with random phase

Ali Karimpour Sep 2012

17

Page 18: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Stochastic Processes

x(t) is stationary if

Example Sinusoid with random phase

Clearly x(t) is a stationary (WSS)Clearly x(t) is a stationary (WSS).

Example Sinusoid with random amplitude

Clearly x(t) is not a stationary

Ali Karimpour Sep 2012

18

Clearly x(t) is not a stationary.

This may be a limiting definition. ?????

Page 19: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Signal Spectra

A Common Framework for Deterministic and Stochastic Signals

y(t) is not a)()()()()( tHtGt )()()( tGtE y(t) is not a stationary process)()()()()( teqHtuqGty += )()()( tuqGtEy =

This may be a limiting definition ?????

To deal with this problem, we introduce the following definition:

This may be a limiting definition. ?????

Ali Karimpour Sep 2012

19Quasi-stationary signals

Page 20: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Stochastic Processes

Quasi-stationary signals: A signal {s(t)} is said to be quasi-stationary if it is subject to

x(t) is stationary if

Q y g g { ( )} q y j

dand

( )If {s(t)} is a deterministic

sequence

Quasi-stationarymeans

{s(t)} is a bounded sequence and

Exist )()(1lim)(1∑=

∞→−=

N

tNs tstsN

R ττ

If { (t)} i t ti It i i t ti i

Ali Karimpour Sep 2012

20

If {s(t)} is a stationary stochastic process

.on dependnot does )()()( tRtstEs s ττ =−

It is quasi stationary since

Page 21: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Signal Spectra

Notation: The notation means that the limit exists.

Quasi-stationary signals: A signal {s(t)} is said to be quasi-stationary if it is subject to

andand

( )

i i h b f i ll i i f i f

Ali Karimpour Sep 2012

21

Sometimes with some abuse of notation, we call it Covariance function of s.

Exercise2: Show that sometime it is exactly covariance function of s.

Page 22: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Signal Spectra

Two signals {s(t)} and {w(t)} are jointly quasi-stationary if:

1- They both are quasi-stationary,

2- the cross-covariance function

exist.

Uncorrelated

Ali Karimpour Sep 2012

22

Page 23: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Signal Spectra

Discrete Fourier transform (DFT)

)(......)4()3()2()1(

Nuuuuu

)2(......)8(

)6()4()2(

NNU

NU

NU

NU

NU

NN

NNN

ππ

πππ

∑=

−=N

t

tiN etu

NU

1

)(1)( ωω

Nu1

The periodogram defines, in a sense, the frequency contents of a signal over afinite time interval

23

finite time interval.

But we seek for a definition of a similar concept for signals over the interval [1, ∞).

∞→∑ − NetuUN

ti)(1)( ωω

But this limits fail to exist for many signals of practical interest.

∞→= ∑=

NetuN

Ut

N1

)()(ω

Ali Karimpour Sep 2012

2323So we shall develop a frame work for describing signals and their spectra that isapplicable to deterministic as well as stochastic signals.

Page 24: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Signal Spectra

We define the (power) spectrum of {s(t)} as

Use Fourier transform of covariance function (Spectrum or Spectral density)

We define the (power) spectrum of {s(t)} as

∑∞

−=Φ τωτω iss eR )()(

When following limits exists:

∑−∞=τ

ss )()(

and cross spectrum between {s(t)} and {w(t)} asand cross spectrum between {s(t)} and {w(t)} as

∑∞

−=Φ τωτω ieR )()( ∑−∞=

=Φτ

τω swsw eR )()(

When following limits exists:

Ali Karimpour Sep 2012

24Exercise3: Show that spectrum always is a real function but cross spectrum is ingeneral a complex-valued function.

Page 25: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Signal Spectra

Exercise4 : Spectra of a Periodic Signal: Consider a deterministic, periodicsignal with period M, i.e., s(t)=s(t+M)

Show that

),()()( MFpss ωωω Φ=Φ ),()()( ss ωωω

Where

∑−

−Φ1

)()(M

ip R ωτ ∑∞

−ilMMF ω)(d∑=

=Φ0

)()( is

ps eR

τ

ωττω ∑−∞=

=l

ilMeMF ωω ),( and

A d fi ll h th tAnd finally show that

πωπωδππω 20,)/2()/2(2)(1

<≤−Φ=Φ ∑−M

pss MkMk

M

Ali Karimpour Sep 2012

25

0∑=kM

Page 26: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Signal Spectra

Exercise5: Spectra of a Sinusoid: Consider

),1[interval thetocos)( 0 ∞= tAtu ω

Show that

),[)( 0

Show that

( ) πωωδωωδω 2.)()(4

)( 00

2

++−=ΦA

u ( )4 00u

Ali Karimpour Sep 2012

26

Page 27: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Signal Spectra

Example Stationary Stochastic Processes: Consider v(t) as a stationarystochastic processes

We will assume that e(t) has zero mean and variance λ . It is clear that:∞

)()()()()()()()(),0max(

IkhkhtvtEvtvtvERk

v ∑=

−=−=−=τ

τλτττ

The spectrum is:

∑∞

−∞=

−=Φτ

τωτω ivv eR )()( ∑ ∑

−∞=

−∞

=

−=τ

τω

τ

τλ i

kekhkh

),0max()()( .............=

2)( ωλ ieH=

Where

∑∞

=

−=1

)()(s

isi esheH ωω

Ali Karimpour Sep 2012

27

1s

Exercise6: Show (I)

Page 28: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Signal Spectra

Spectrum of Stationary Stochastic Processes

The stochastic process described by v(t)= H(q)e(t), where {e(t)}p y ( ) (q) ( ), { ( )}is a sequence of independent random variables with zero meanvalues and covariances λ , has the spectrum

2)()( ωλω i

v eH=Φ

Ali Karimpour Sep 2012

28

Page 29: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Signal Spectra

Spectrum of a Mixed Deterministic and Stochastic Signal

deterministicStochastic:

stationary and zero mean

)()()( ωωω vus Φ+Φ=Φ

Exercise7: Proof it.

vus RRR +=

Ali Karimpour Sep 2012

29

e c se7: oo .

Page 30: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Transformation of Spectra by Linear Systems

Theorem: Let{w(t)} be a quasi-stationary with spectrum , and let G(q) bea stable transfer function. Let

)(ωwΦ

Then {s(t)} is also quasi-stationary and

)()()(2

ωω ωieG ΦΦ )()()( ωω ωws eG Φ=Φ

)()()( ωω ωw

isw eG Φ=Φ

Ali Karimpour Sep 2012

30

Page 31: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Disturbances

There are always signals beyond our control that also affect the system. We assume that such effects can be lumped into an additive term v(t) at the output

u(t) y(t)

v(t)

So

)()()()( tvktukgty +−=∑∞

+

)()()()(1

tvktukgtyk

+=∑=

There are many sources and causes for such a disturbance term.

• Measurement noise.

U ll bl i ( i d 100 W/ )

Ali Karimpour Sep 2012

31

• Uncontrollable inputs. ( a person in a room produce 100 W/person)

Page 32: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Disturbances

Characterization of disturbances

• Its value is not known beforehand.

• Making qualified guesses about future values is possible.

• It is natural to employ a probabilistic framework to describe futureIt is natural to employ a probabilistic framework to describe future disturbances.We put ourselves at time t and would like to know disturbance at t+k, k ≥ 1 so we use the following approach.

)()()( ktekhtv −=∑∞

0k∑=

Where e(t) is a white noise.

This description does not allow completely general characteristic of

Ali Karimpour Sep 2012

32

p p y gall possible probabilistic disturbances, but it is versatile enough.

Page 33: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Disturbances

Consider for example, the following PDF for e(t):

Small values of µ are suitable to describe classical disturbance patterns, steps, pulses, sinuses and ramps.

Ali Karimpour Sep 2012

33

A realization of v(t) for propose e(t)

Exercise8: Derive above figure for µ=0.1 and µ=0.9 and a suitable h(k).

Page 34: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Disturbances

On the other hand, the PDF:

A realization of v(t) for propose e(t)

Often we only specify the second-order properties of the sequence {e(t)} that is themean and variances.

A realization of v(t) for propose e(t)

Ali Karimpour Sep 2012

34

Exercise9: What is a white noise?

Exercise10: Derive above figure for δ=0.1 and δ=0.9 and a suitable h(k).

Page 35: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Disturbances

We will assume that e(t) has zero mean and variance λ . Now we want to knowthe characteristic of v(t) :

Mean:

C iCovariance:

∑ ∑∞

=

=−−=

0 0)()()(

k sskshkh λτδ

∑∞−= )()( khkh τλ )(τR=

Ali Karimpour Sep 2012

35

∑ =0)()(

kkhkh τλ )(τvR

causality) of (Since0for0)( that know We <= rrh

Page 36: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Disturbances

We will assume that e(t) has zero mean and variance λ . Now we want to knowthe characteristic of v(t) :

Mean: Covariance:Covariance:)()()( ττ −= tvtEvRv

Since the mean and covariance are do not depend on t, thei id t b t tiprocess is said to be stationary.

Ali Karimpour Sep 2012

36

Page 37: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Ergodicity

Suppose you are concerned with determining what the most visited parks in acity are.

• One idea is to take a momentary snapshot: to see how many people are this momentin park A, how many are in park B and so on.

• Another idea is to look at one individual (or few of them) and to follow him for a certain period of time, e.g. a year.

The first one may not be representative for a longer period of time, while the secondone may not be representative for all the people.

The idea is that an ensemble is ergodic if the two types of statistics give the same result.Many ensembles, like the human populations, are not ergodic.

Ali Karimpour Sep 2012

37

Page 38: SYSTEMS Id tifi tiIdentificationprofsite.um.ac.ir/~karimpor/iden/sysiden_lec2_2012.pdf · Reference: “System Identification Theory For The User” Lennart Ljung(1999) “Nonlinear

lecture 2

Ergodicity

Let x(t) is a stochastic process

Most of our computations will depend on a given realization of a quasi

Ali Karimpour Sep 2012

38

stationary process.

Ergodicity will allow us to make statements about repeated experiments.