systems for petascale...

33
Integrated Micro and Nano Photonic Systems for Petascale Networking Prof. S. J. Ben Yoo, UC Davis Campus CITRIS Director [email protected] http://sierra.ece.ucdavis.edu http://citris.ucdavis.edu Tokyo, Japan April 10, 2006

Upload: lamdien

Post on 18-Oct-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Integrated Micro and Nano Photonic Systems for Peta­scale Networking

Prof. S. J. Ben Yoo, UC Davis Campus CITRIS Director [email protected]

http://sierra.ece.ucdavis.edu http://citris.ucdavis.edu Tokyo, Japan April 10, 2006

2

OUTLINE

§Optical Label­Switching Routers §Optical CDMA §Optical Arbitrary Waveform Generators §Photonic Interconnect Nano Processors

3

Sensor Network

Storage Area Network

Core Router IPNE

DATA

LABEL

Legacy IP Network

Wireline MPLS IPNE

DATA

LABEL

Optical Label Switching Network

Wireline O­CDMA LAN

Satellite Network

Reconfigurable Wireless Network

Next Generation Heterogeneous Networking

4 Client networks Client networks

All­Optical Label Switching Router Systems Integration at UC Davis

All­Optical Label Switching Router Systems Integration at UC Davis

fiber delay

Label reader

DEM

UX

NC&M

Switching Fabric

Label Processing Module­TI (LP­TI)

OLS Edge Router

CI CI CI

OLE OLR OLE OLR OLE OLR

IP Router ATM Client Machine

500 psec/div

500 psec/div UNAS

...

Switch Controller w/ Forwarding Look­up Table

5

IP Client­to­IP Client with Cascaded Operation of OLSRs

IP Client Network 1

Optical Label Switching Network

Core Router 3

Ingress Edge Router

POS

Payload

Label

POS

IP Client Network 2

Egress Edge Router

Core Router 2

Core Router 1

Payload

Label

Payload

Label

P1,P2, P3

P3

P1, P2

P2 P1 L1

L1, L2

L2 L3 P1, P2, P3

L1, L2, L3

P1

Physical Layer Interface Encapsulation Label processing Unit Data bus traffic controller

Data Bus

SONET PPP

Physical Layer Interface

Data bus traffic controller

AOLS

Interface PO

S Interface

Ingress Path

Egress Path

Edge Router

6

Testbed Demo of Secure Video over All­Optical Network Multicast and Unicast

Shown is by using Optical Router Scalable to 42Petabit/sec Switching capacity

7

Sprint ATL

LLNL

477 km Optical Label Switching Field Trial (OFC2002, #TuY4)

V.J. Hernandez, et al, "First Field Trial of Optical Label Switching and Packet Dropping on a 477km NTON/Sprint Link,"

477 km Optical Label Switching Field Trial (OFC2002, #TuY4)

V.J. Hernandez, et al, "First Field Trial of Optical Label Switching and Packet Dropping on a 477km NTON/Sprint Link,"

8

Slow w

aveguide

Norm

al waveguide

All Optical Variable Buffers: Nano Photonic Crystals for Slow Light

Pipelined Wavelength, Time, and Space Domain Contention Resolution

9

Chip­Scale Optical Router Micro­system

S. J. B. Yoo, “Ultra­Low Latency Multi­Protocol Optical Routers for the Next Generation Internet,” U. S. Patent 6,925,257 B2 (2005). S. J. B. Yoo, “Integrated Optical Router,” U. S. Patent 6,768,827 (2004). S. J. B. Yoo, “Ultra­Low Latency Multi­Protocol Optical Routers for the Next Generation Internet,” U. S. Patent 6,519,062 (2000). S. J. B. Yoo, “Wavelength Converter with Modulated Absorber,” U. S. Patent 6,563,627 (2001). S. J. B. Yoo, “Compact Optical Receiver with Optical Signal Processing Capabilities,” U. S. Patent pending (2001). S. J. B. Yoo, G. K. Chang, “High­Throughput, Low­Latency Next Generation Internet Using Optical Tag Switching,” U. S. Patent 6,111,673.(1997)

10

Buffer Memory Buffer Memory Buffer Memory M

AC

Buffer Memory M

AC

Buffer Memory Buffer Memory Buffer Memory M

AC

Buffer Memory M

AC Buffer

Memory Buffer Memory M

AC

Buffer Memory M

AC

Requires 16 Routers and

16 sets of 16 Transponders at OC­192

Size: 32 bays in standard 19 in. rack

Power Consumption: ~200 kW

Each Port Protocol Specific up to OC­192

One Semiconductor Chip Switching Fabric Size: 1 shelf in 1 bay in standard 19 in. rack

Power Consumption: ~50 W Each Port Protocol Independent up to OC­768 Can achieve Packet /Burst /Circuit Switching Scalable to 42 Petabit/Sec Switching Capacity

Conventional System All­Optical System on a Chip MAC

MAC

Multi­Tb/s optical routing system on a Chip (1.28 Tb/s example)

11

OUTLINE

§Optical Label­Switching Routers §Optical CDMA §Optical Arbitrary Waveform Generators §Photonic Interconnect Nano Processors

Higher Capacity Networking (~ 1 Tb/s LAN) More flexible bandwidth assignment Higher Level of Security

12

Optical CDMA Technology

Substrate Array Waveguides

Input Waveguide Output Waveguide

modulators

Substrate Array Waveguides

Input Waveguide Output Waveguide

modulators

INPUT PULSE

Encoded PULSE

OUTPUT PULSE

Grating Grating

Lens Lens SLPM

Input Output

Phase

Grating

Lens Lens SLPM

Input Output

Phase

Weiner­Heritage ’85; Heritage Tutorial OFC 2006 OThT1

J. Cao et al OFC 2006 OWL2

13

O­CDMA Testbed Cong et al OFC 2006 OThT5

14

4 Users 8 Users 16 Users 32 Users 16 Users 32 Users 8 Users 4 Users

320 Gb/s O­CDMA Network Testbed Demonstration

Without FEC With FEC V. J. Hernandez, W. Cong, R. P. Scott, C. Yang, N. K. Fontaine, B. H. Kolner, J. P. Heritage, S. J. B. Yoo, "320­Gb/s capacity (32 users x 10 Gb/s) SPECTS O­CDMA local area network testbed," post­deadline paper OFC'06, Mar. 2006.

15

DEMUX

Substrate

Mode­locked Laser

TE Cooler

Silicon Micro­bench

Output Fiber

Input Fiber

Electrical Contacts

Mode­locked Laser

Differential MZI

Photo Diode

O­CDMA TRANSMITTER

O­CDMA RECEIVER

Data Modulator

Encoder

MUX DEMUX

MUX

Phase Shifter

Decoder

4 cm

1 cm

PXtal Reflectors

O­CDMA System on a Chip

16

OCDMA

Encoder/

decoder

Differential

MachZehnder

FP Absorber

waveguide

Colliding

Pulse

Modelocked

Laser

O­CDMA Microsystem Integration

17

6 mm

2 mm

O­CDMA Encoder Decoder Integration

18

Substrate Array Waveguides

Input Waveguide Output Waveguide

modulators

INPUT PULSE

Encoded PULSE

OUTPUT PULSE

W5 encoding

­10 0 10

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14 Experimental result Simulation

SHG (m

V)

Time (ps)

W5 en; W5* decoding

­10 0 10 0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14 Experimental result Simulation

SHG (m

V)

Time (ps)

W5 en; W6 * decoding

­10 0 10 0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14 Experimental result Simulation

SHG (m

V)

Time (ps)

Pulse without coding

­10 0 10 0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14 Experimental result Simulation

SHG (m

V)

Time (ps)

InP O­CDMA Microsystem Encoding/Decoding Experiments

19

26mm

13m

m

8x200

16x100

32x50

64x25

8, 16, 32, and 64 ch InP O­CDMA Encoder/Decoders

20

32 channel OCDMA encoder/decoder

12 x 6.3 mm 2

Phase shifters

AWG

Delay lines

InP­chip

Testing WGs

SOA

32 channel

50 GHz spacing

12x6.3 mm 2

21

64 channel OCDMA encoder/decoder

16.8 x 11.4 mm 2

Phase shifters

AWG

Delay lines

InP­chip

Bond pads Testing WGs

SOA

64 channel

25 GHz spacing

16.8x11.4 mm 2 Monolithically Fabricated Chip

22

Passive Active

MQW

passive active passive

saturable absorber

1.4nm

1556.47nm

0.5nm/div

0 2 4 6 8 10 12 14 16

­10 ­5 0 5 10 time (ps)

sech 2 fit experiment

SHG signal (mV)

20ps/div

• Minimal pulse width, time­bandwidth product 0.32

1.82 ps

Time BW product = 0.32 ( transform limited)

Hybrid

ML

10 Gb/s Colliding Pulse Medelocked Laser Transform Limited Operation

23

0.68 psec CPM laser with Injection Locking & Linear Chirp Correction

­5 0 5 0

0.5

1

Time (p.s .)

Field Intensity

Intensity

­5 0 5 ­3

­2

­1

0

1

2

3

phase (rads)

1545 1550 1555 1560 0

0.5

1

Wavelength (nm)

Spec trum

Intensity

1545 1550 1555 1560

­3

­2

­1

0

1

2

3

phase (rads)

0.6 ps FWHM attainable

0

1

2

3

4

5

­10 ­5 0 5 10 Time (ps)

y = m4+m2*3/(sinh(1.7627/m1*... Error Value

0.003059 0.68336 m1 0.017192 4.7122 m2

0.0018977 0.022452 m3 0.0029284 0.093381 m4

NA 2.6496 Chisq NA 0.99728 R

Dash line: experimental Solid: sech 2 fit with 0.68 ps FWHM

SIMULA

TION

EXPE

RIMEN

T

24

MZI­OCDMA Detection in Testbed

Modelocked Laser

(a)

(b)

Trace 1

Trace 2

Trace 3

Trace 4

Trace 1

Trace 2

Trace 3

Trace 4

(a)

(b)

Trace 1

Trace 2

Trace 3

Trace 4

Trace 1

Trace 2

Trace 3

Trace 4

SOAs MMI MMI

I1 1550nm

SOA

SOA

SOA

SOA

SOA

SOA

φ 1

φ 2

δτ

δτ λ 1

λ 2

λ 2 (cw probe) λ 1

SOA

SOA

SOA

SOA

SOA

SOA

φ 1

φ 2

δτ δτ δτ

δτ δτ δτ λ 1

λ 2

λ 2 (cw probe) λ 1

(cw probe)

SOA

SOA

SOA

SOA

SOA

SOA

φ 1

φ 2

δτ

δτ

λ 1

λ 2

λ 2 λ 1

(cw probe)

SOA

SOA

SOA

SOA

SOA

SOA

φ 1

φ 2

δτ δτ δτ

δτ δτ δτ

λ 1

λ 2

λ 2 λ 1

25

14mm

13.5mm

Integrated O­CDMA Transceiver

Mask Layout Fabricated Chip

26

HVPE planarized 16 channel InP Encoder (AWG­PM­ AWG)

27

Waveguide core

Fe doped InP

SiO2 mask

HVPE regrown AWGs and MZIs

Nearly Perfect Planarization: independent of Crystal Orientations

28

DEMUX

Substrate

Mode­locked Laser

TE Cooler

Silicon Micro­bench

Output Fiber

Input Fiber

Electrical Contacts

Mode­locked Laser

Differential MZI

Photo Diode

O­CDMA TRANSMITTER

O­CDMA RECEIVER

Data Modulator

Encoder

MUX DEMUX

MUX

Phase Shifter

Decoder

4 cm

1 cm

PXtal Reflectors

O­CDMA System on a Chip

29

OPTICAL ARBITRARY WAVEFORM GENERATION

AWG1 AWG2

Phase modulators

Bond pads

Delay lines

AWG1 AWG2

Phase modulators

Bond pads

Delay lines

Amplitude and Phase Modulator Array Arrayed

Waveguide Grating

1 5 4 0 1 5 4 5 1 5 5 0 1 5 5 5 1 5 6 0

­ 4 0

­ 3 5

­ 3 0

­ 2 5

­ 2 0

­ 1 5

Transm

ission (d

B)

W a v e l e n g t h ( n m )

T r a n s m i s s i o n S p e c t r u m o f A W G P a i r

f Optical Comb Source

30

Highly Scalable O­AWG Encoder/Decoder 320 chx40GHz

9.5mm x 17mm R=100um

Amplitude

Modulator Phase

Modulator

­30.00

­20.00

­10.00

0.00

1.5 1.525 1.55 1.575 1.6

Wavelength [um]

Loss [d

B]

32ch x 400GHz

31

Nano Photonic Interconnect

Ref. IBM

Photo from: J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature, vol. 386, pp. 143 (1997)

32

“Client”

“Server”

Collaborative Applications on CITRIS­net

CITRIS net Nodes

PoP node

DARK Fiber

Circuit Connection OC­48 or lower

In the Future CITRIS­Net, perhaps Optical Routers

Optical Access Nodes Photonic Interconnected Nano Processors with Integrated Micro/Nano Photonics Inside

33

saturable absorber

passive active passive

n­InP

1.15Q WG MQW

Passive Active p­InP

500nm

MQW

P­metal

1.15Q wave guiding core

Regrown Fe doped InP

10 Gb/s Colliding Pulse Medelocked Lasers with Active/Passive Integration