systems and tenses - scienze.uniroma2.it€¦ · systems&and&tenses& •...

71
SYSTEMS AND TENSES English for Scien/sts Maria Cris/na Teodorani

Upload: others

Post on 29-Oct-2019

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

SYSTEMS  AND  TENSES  

English  for  Scien/sts  Maria  Cris/na  Teodorani  

 

Page 2: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

SYSTEMS  AND  TENSES  

•  Scien.fic  subjects  essen.ally  deal  with  both  systems’  descrip.ons  and  working  systems.  In  order  to  simply  describe  systems  or  state  something  about  them,  or  tell  about  the  way  they  usually  work  we  use  the  simple  present  tense.  But  as  soon  as  the  system  is  at  work,  whatever  system,  we  use  the  present  con3nuous.    

Page 3: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

SYSTEMS  AND  TENSES  

•  Present  simple:  statements  generally  acknowledged,  well-­‐known  behaviours,  descrip.ons,  shared  results  in  Math  models,  conclusions  and  theory  modeling.  

•  Present  con.nuous:  system’s  behaviour  while  interac.ng  with  something  as  being  emphasized  at  the  .me  of  speaking.  

•  Past  simple  and  past  con.nuous:  same  logic    

Page 4: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

GRAMMAR  REVIEW:  PRESENT  PASSIVE  

•  DESCRIBING  A  SYSTEM  (Present  simple):  •  ACTIVE:  The  solu.ons  of  a  first  order  differen.al  equa.on  (Subject)  produce  (Verb)  a  slope  field  (Object).  

•  PASSIVE:  A  slope  field  (Subject)  is  produced  (Verb)  by  the  solu.ons  of  a  first  order  differen.al  equa.on  (0bject).  

Page 5: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

GRAMMAR  REVIEW:  PRESENT  PASSIVE  

•  SYSTEMS  AT  WORK  (Present  con.nuous):  •  ACTIVE:  The  solu.ons  of  a  first  order  differen.al  equa.on  (Subject)  are  producing  (Verb)  a  slope  field  (Object).  

•  PASSIVE:  A  slope  field  (Subject)  is  being  produced  (Verb)  by  the  solu.ons  of  a  first  order  differen.al  equa.on  (0bject).  

Page 6: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

GRAMMAR  REVIEW:  PRESENT  PASSIVE  

•  General  rule  for  the  present  passive:  •  Present  simple:  Subject  +  am/is/are  +  past  par3ciple  (3rd  column  of  the  verbal  paradigms).  

•  Present  con.nuous:  Subject  +  am/is/are  +  being  +  past  par3ciple  (3rd  column  of  the  verbal  paradigms).  

Page 7: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

TEXT  BUILDING:  REDOX  REACTIONS(1)    

•  Redox  is  an  acronym  that  stands  for  reduc.on/oxida.on.  During  a  chemical  reac.on,  or  equa.on,  some  reactants  are  being  transformed  into  some  products.  We  generally  associate  an  oxida.on  state  to  the  charge  an  atom  would  have  if  all  bonds  to  atoms  of  different  elements  were  100%  ionic.  Thus  the  oxida.on  number  is  connected  to  the  charge.    

Page 8: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

REDOX  REACTIONS  

•  Let's  consider,  for  instance,  the  molecule  of  sodium  chloride.  We  know  that  sodium  is  an  alkaline  metal  and  that  it  has  one  valence  electron  in  group  I,  while  chlorine  is  an  halogen  of  group  VII  that  just  needs  1  electron  to  have  full  8  valence  electrons  in  its  shell.  Consequently,  in  the  forma.on  of  NaCl,  Na  is  going  to  give  electrons  and  Cl  is  going  to  get  them.    

Page 9: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

REDOX  REACTIONS  

•  As  a  result  of  this  we  can  write  Na+Cl  -­‐.  Here  Na+  means  +1  charge  because  the  sodium  is  giving  the  electron,  while  Cl-­‐  means  -­‐1  charge  because  the  chlorine  is  ge>ng  it.  The  bond  is  ionic.  If  the  bond  were  covalent,  we  would  focus  on  par.al  posi.ve  or  nega.ve  charges.  In  the  forma.on  of  the  molecule  of  water,  the  oxygen  is  gaining  2  electrons  from  the  2  hydrogens,  which  are  losing  them,  the  Hs  being  more  electroposi.ve  and  the  O  being  more  electronega.ve.    

Page 10: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

REDOX  REACTIONS  

•  Consequently  the  oxida.on  number  of  hydrogen  in  H20  is  +1,  while  the  oxygen's  is  -­‐1.  As  a  result  of  this  we  can  say  that  in  a  molecule  of  water  the  hydrogen  are  oxidized  by  the  oxygen:  the  electrons  are  taken  away  from  them,  so  that  they  have  a  posi.ve  charge.  

•  Now,  let's  study  the  following  combus.on:  

Page 11: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

REDOX  REACTIONS  

•                             CH4    +  2O2  →  CO2  +  2H2O        Here  a  molecule  of  methane  is  reac3ng  with  two  molecules  of  oxygen  in  order  to  produce  a  molecule  of  carbon  dioxide  plus  2  molecules  of  water  plus  some  heat  (being  esothermic,  the  reac.on  produces  more  heat  than  you  put  into  it).  In  CH4    an  atom  of  carbon  is  bounded  with  4  hydrogens.    

Page 12: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

REDOX  REACTIONS  

•  While  reac3ng,  being  more  electronega.ve,  the  carbon  is  taking  4  electrons  from  the  hydrogens,  so  its  charge  is  going  down  by  four.  As  a  result  its  oxida.on  number  is  -­‐4  ,  while  the  hydrogen's  is  +1.  Thus,  we  can  write  C-­‐4H+1.    In  CO2,  the  carbon's  oxida.on  state  is  +4,  which  means  that  it  is  giving  up  4  electrons,  and  really  it  only  has  2  electrons  to  give  up,  for  it  has  4  electrons  in  its  valence  shell.    

Page 13: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

REDOX  REACTIONS  

•  So,  what  is  ge>ng  oxidized  and  what  is  ge>ng  reduced?  Let's  write  down  the  first  half  reac.on:  

                                                       C-­‐4  →  C+4  +  8  e-­‐          Here  carbon  is  going  from  an  oxida.on  number  of  -­‐4  on  the  leh  side  of  this  equa.on,  to  an  oxida.on  number  of  +4  on  the  right  side:  8  electrons  are  being  taken  away  from  carbon,  so  it  is  being  oxidized.    

Page 14: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

REDOX  REACTIONS  

•  As  for  the  second  half  reac.on:                                                          4O  +  8  e-­‐→  4O-­‐2          we  are  shown  4  oxygens  with  a  zero  oxida.on  state  (being  in  the  elemental  form)  turning  into  4  oxygens  with  a  -­‐2  oxida.on  state,  so  each  of  these  oxygens  are  taking  4  electrons,  the  two  of  them,  thus  there  are  8electrons.    

Page 15: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

REDOX  REACTIONS  

•  The  oxida.on  state,  that  is,  the  hypothe.cal  charge,  is  going  down,  or  it  is  being  reduced  by  carbon,  as  well  as  the  carbon  above  is  being  oxidized  by  oxygen.  Finally,  what  is  the  oxidizing  agent,  what  is  the  thing  that  is  oxidizing?  Oxygen,  of  course.  is  the  oxidizing  agent,  while  carbon  is  the  reducing  agent.  

Page 16: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

REDOX  REACTIONS  

•  Redox  can  also  be  reviewed  from  a  biological  point-­‐of-­‐view.  Biologists  usually  say  oxida.on  deals  with  losing  hydrogen  atoms,  while  reduc.on  deals  with  gaining  hydrogen  atoms,  though  the  essen.al  meaning  stays  the  same.  The  reac.ons  within  cells  which  result  in  the  ATP  (adenosine  triphosphate)  synthase  using  energy  stored  in  glucose  are  referred  to  as  cellular  respira.on.  It  requires  oxygen  as  the  final  electron  acceptor.    

Page 17: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

REDOX  REACTIONS  

•  The  equa.on  for  aerobic  respira.on  is  C6H12O6    +    6O2  →    6CO2    +    6  H2O    +    energy  

•  Here  we  are  combining  glucose  with  molecular  oxygen  so  that  cellular  respira.on  is  being  made  for.  We  end  up  with  6  carbon  dioxides  and  six  molecules  of  water,  while  the  energy  produced  is  made  up  of  some  heat  and  about  38  ATPs.  

Page 18: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

REDOX  REACTIONS  

•  Glucose  is  completely  broken  down  to  CO2  +  H2O  though,  during  fermenta.on,  it  is  only  par3ally  broken  down.    

•  Let’s  take  a  look  at  the  half  reac.ons:          H12  →  6  H2    (read:  Hydrogen  12  yielding  to  6  hydrogens  2)    says  the  hydrogen  preserves  a  +1  oxida.on  number  (o.n.)  on  both  sides  of  the  equa.on  so  that  nothing  is  happening  with  respect  to  oxida.on  and  reduc.on,  

Page 19: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

REDOX  REACTIONS  

•  while  C6    →  6C  +  24e-­‐  shows  the  number  of  electrons  lost  by  carbon  in  cellular  respira.on,  the  carbon  being  oxidized  by  the  oxygen.  Finally,  O6    +  6O2  +  24e-­‐  →  6O2  +    6O    

       emphasizes  the  fact  that  these  24  electrons  are  the  same  electrons  carbon  is  losing,  so  that  oxygen,  which  is  gaining  electrons,  is  being  reduced  by  carbon.    

Page 20: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

REDOX  REACTIONS  

•  Where  does  the  energy  come  from?  It  is  produced  because  the  electrons  are  going  from  a  higher  energy  state,  or  level,  to  a  lower  one  (lower  orbitals  are  more  stable):  

         C6H12O6    +    6O2          →            6CO2    +    6  H2O                        ↕                          ↕                                              ↘                      ↙          oxidized        reduced                    oxygens  taking  e-­‐  

       Therefore  carbon  is  losing  hydrogens,  while  oxygen  is  gaining  hydrogens.                                                  

 

Page 21: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

REDOX  REACTIONS  

•  Use  the  following  redox  reac.ons  to  build  a  coherent  text  with  appropriate  verbs  in  the  present  tense  (both  ac.ve  and  passive  forms).  

•  Zn  +  CuSO4  à  ZnSO4  +  Cu  •  Fe  +  2HCl  à  FeCl2  +  H2  •  H3PO3  +  MnO4  à  HPO4  +  Mn  •  2H2  +  O2  à  2H20  

Page 22: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

TEXT  BUILDING:  ENTHALPY(2)  

•  We  want  to  figure  out  and  quan3fy  the  concep.on  of  enthalpy  of  forma.on  of  a  substance.  To  this  extent,  let’s  consider  a  P(V)  diagram,  where  P  is  the  pressure  and  V  is  the  volume  of  the  system  (3):  

 

Page 23: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

ENTHALPY  

•  The  area  under  the  curve  in  the  clockwise  direc.on  is  the  net  work  done  by  the  system.  Here  ΔU  =  0    -­‐that  is,  there  is  no  change  in  the  internal  energy  of  the  system.  We  know  that    

                                                   ΔU  =  Q  –  W  =  0          where  Q  is  the  heat  applied  to  the  system  and  W  is  the  work  done  by  the  system.  

 

Page 24: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

ENTHALPY  

•  We  define  enthalpy  as  H  =  PV.  If  we  consider  a  finite  change  in  H  we  can  write  

                       ΔH  =  ΔU  +  Δ(PV)  =  Q  –  W  +  Δ(PV)        Here  ΔH  is  a  state  variable  because  it  is  the  sum  of  other  state  variables.  If  we  consider  a  system  with  a  piston  we  can  write  

                                           ΔH  =  Q  –  PΔV  +  ΔPV          The  change  in  enthalpy  will  equal  Q  if  the  last  two  terms  cancel  out.  

Page 25: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

ENTHALPY  

•  Under  what  condi.on?  If  and  only  if  the  pressure  is  constant,  then  we  can  factor  it  out,  so  we  get  

                                 ΔH  =  Q  –  P  Δ  V  +  PΔV  =  Qp          that  is,  heat  at  constant  pressure.          In  so  doing  we  are  kind  of  squeezing  out  the  previous  diagram,  for  we  are  making  of  the  forth  path  and  the  return  path  the  same  exact  path  –that  is,  a  horizontal  line  from  A  to  B.  

Page 26: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

ENTHALPY  

•  As  a  result,  no  net  work  is  being  added  in  going  from  A  to  B.                                                                                      Most  chemical  reac.ons  are  at  constant  pressure  (1  atm).  In  this  case  we  define  enthalpy  as  the  heat  content  when  pressure  is  constant.                                                                                                                      Let’s  consider  the  following  reac.on  as  an  example:  

Page 27: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

ENTHALPY  

•  C(s)  +  2H2  (g)  à  CH4  +  74  KJ  of  heat  released          How  much  heat  is  being  added  to  the  system?  We  realize  that    

       H(ini.al)  =  reactants  >  H(final)  =  products            and  that  Qp  =  -­‐  74  KJ  (change  in  enthalpy).          Since  this  heat  is  added  to  the  system,  what  is  the  change  in  enthalpy  of  the  reactants’  system  rela.ve  to  the  products’  system?  

 

Page 28: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

ENTHALPY  

•                                         Hf  –  Hi  =  ΔH  =  -­‐74  KJ          that  is,  Hf  is  lower  than  Hi  by  74  KJ,  so  we  conclude  that  Hf  is  at  a  lower  level  of  energy,  or  it  is  more  stable  and  that  the  reac.on  is  esothermic,  that  is,  the  heat  is  released  by  the  system.  Most  chemical  reac.ons  are  at  constant  pressure  (1  atm).  We  thus  define  enthalpy  of  forma.on  of  a  substance  as  the  heat  content  when  pressure  is  constant.  

Page 29: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

ENTHALPY  

•  Calculate  the  varia.on  of  the  standard  enthalpy  of  forma.on  for  the  process,  at  constant  pressure,  C(diamond)  à  C(graphite)  knowing  that  

•  Cgraph  +  O2  (g)  à  CO2          ΔH°f  =  -­‐393,5  KJ/mole  •  Cdiam  +  O2  (g)  à  CO2  (g)    ΔH°f  =  -­‐395,4  KJ/mole  •  You  must  write  a  coherent  text  including  numerals  and  chemical  equa.ons.              

Page 30: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

TEXT  BUILDING:  MECHANICS  APPLIED  TO  MACHINES  (4)  

•  Dealing  with  mechanics  applied  to  machines  means  dealing  with  power  transmission.  Actually,  mechanical  power  is  the  rate  at  which  work  is  being  provided  once  the  system  is  in  movement.  In  symbols:    

•                   P  =  dW/dt  =  Fds/dt  =  Fv    •             W  =∫Fds  =∫F  cosθ  ds  =∫Ft  ds  

Page 31: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

MECHANICS  APPLIED  TO  MACHINES  

•  where  P  is  power,  W  is  the  work  done,  F  is  the  exerted  force  and  Ft  its  tangent  component,  while  s  denotes  movement  in  space  and  v  velocity.  We  define  work,  generally  speaking,  as  energy  transferred  by  force  and,  in  the  same  sense,  we  define  energy  as  the  ability  to  do  work.  Physically  speaking,  power  is  nothing  else  than  a  sent  unit  of  work  per  second.  

Page 32: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

MECHANICS  APPLIED  TO  MACHINES  

•  We  are  going  to  see  how  power  is  being  transmiFed  as  long  as  a  system  moves.  In  systems  such  as  cars  and  the  like,  power  is  transmiFed  via  fric.on  wheels,  cogwheels,  belts,  joints,  rod/crank  systems,  flywheels  and  similar  systems  in  such  a  way  that  a  torque  is  generated  between  driving  and  driven,  moving  and  resis.ng  structures.  

Page 33: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

MECHANICS  APPLIED  TO  MACHINES  

•  A    simple  example  of  power  transmission  between  two  shahs  not  too  distant  from  one  another  is  that  of  fric.on  wheels.  The  figure  below  shows  the  scheme  of  such  a  transmission.    

Page 34: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

MECHANICS  APPLIED  TO  MACHINES  

Page 35: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

MECHANICS  APPLIED  TO  MACHINES  

•  We  have  two  wheels  whose  diameters  are  D1  and  D2.  The  first  one  is  placed  along  the  driveshah  and  has  an  angular  velocity  ωm  and  a  torque  Mm  .  The  second  one  belongs  to  driven  shah  and  has  an  angular  velocity  ωu  and  a  torque  Mr  .  

Page 36: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

MECHANICS  APPLIED  TO  MACHINES  

•  If  we  call  I    the  distance  shown  in  the  figure  below  we  get  the  interaxis      I  =  ½(D1  +  D2)    

 

Page 37: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

MECHANICS  APPLIED  TO  MACHINES  

•  If  the  wheels  do  not  slide,  the  velocity  of  the  contact  point  on  wheel  1  will  equal  the  velocity  of  the  contact  point  on  wheel  2,  so  that  V1  =  V2.  Consequently  ½(ω1  D1)  =  ½(ω2  D2).  That  is  to  say:  

                                                 i  =  ω1    /  ω2      =    D2  /  D1                The  transmission  ra.o  i    depends  on  the  diameter  of  the  two  wheels.  We  size  the  diameters  of  the  two  wheels  correctly  using  this  last  equa.on  (together  with  that  of  the  interaxis  I).  

Page 38: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

MECHANICS  APPLIED  TO  MACHINES  

•  On  a  prac.cal  level,  the  uses  of  fric.on  wheels  are  rather  limited,  though  being  silent  and  having  a  regular  transmission,  for  we  can  use  them  only  at  low  powers.  For  high  powers  the  force  T  =  f  R    must  be  elevated,  but  since  the  fric.on  coefficient  for  commonly  used  materials  such  as  steel  or  cast  iron  is  rather  low  (f=  .10  -­‐  .15),  there  should  be  very  high  pushing  forces  R,  so  that  shahs,  pins,  bearings,  etc.,  would  be  strongly  stressed.  

Page 39: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

MECHANICS  APPLIED  TO  MACHINES  

•  Since  fric.on  wheels  undergo  a  huge  radial  stresses  in  order  to  ensure  their  adherence  they  do  not  provide  high  power  transmissions.  Anyway,  star.ng  from  two  ideal  fric.on  wheels  we  can  obtain  a  series  of  cogs  on  their  external  surfaces  –  that  is,  a  series  of  projec.ons  on  the  edge  of  a  wheel  transferring  mo.on  by  engaging  with  another  series  and  alterna.ng  with  empty  spaces.  

Page 40: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

MECHANICS  APPLIED  TO  MACHINES  

•  Once  in    mo.on  these  cogs  are  being  easily  interpenetrated;  in  this  case,  power  transmission  is  no  longer  due  to  fric.on  but  to  the  “pushing”  force  that  each  cog  of  the  driving  wheel  is  exer.ng    on  those  of  the  driven  wheel.  In  this  way,  provided  that  the  built  cogs  are  strong  enough,  we  can  transmit  high  powers.  

Page 41: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

MECHANICS  APPLIED  TO  MACHINES  

•  It  is  possible  to  convert  rota.onal  mo.on  into  linear  (transla.onal)  mo.on  using  the  pinion/rack  mechanism,  where  the  pinion’s  rota.onal  mo.on  is  being  converted  into  a  transla.onal  mo.on  by  the  rack.  Given  a  gear,  we  define  the  pinion  as  the  cogwheel  with  the  smallest  diameter  and  the  wheel  as  that  with  the  largest  diameter.  The  interaxes  is  the  distance  between  the  axis  of  the  two  wheels.  

Page 42: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

MECHANICS  APPLIED  TO  MACHINES  

•  If  ω1    is  the  angular  velocity  of  the  pinion  and    ω2  the  angular  velocity  of  the  wheel,  then  we  define  the  transmission  ra.o  as  i  =  ω1    /  ω2        

Page 43: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

MECHANICS  APPLIED  TO  MACHINES  

•  An  example  of  this  is  the  car’s  steering-­‐wheel  mechanism.  While  driving,  the  steering’s  rota.on  is  being  converted  into  the  transla.on  of  the  elements  ac.ng  upon  the  wheels.  

 

Page 44: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

MECHANICS  APPLIED  TO  MACHINES  

•  As  shown  in  the  figure  below,  the  force  transmiFed  from  the  driving  wheel  to  the  driven  one  is  the  tangent  component  FT  .  

Page 45: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

MECHANICS  APPLIED  TO  MACHINES  

•  It  is  Ft    =  Fcosθ  =  Cm  /  R1  =  Cr  /  R2,  where  Cm  is  the  machine  torque    and  Cr  is  the  resis.ng  torque.  Of  course  the  radial  component  Fr  is  not  responsible  for  mo.on  and  cons3tutes  a  solicita.on  all  over  the  shah  on  which  the  wheels  are  keyed.  Its  module  is  Fr  =  Fsinθ.  This  suggests  we  ought  to  render  the  pressure  angle  θ  very  small  in  order  to  increase  the  value  of  FT  .  

Page 46: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

MECHANICS  APPLIED  TO  MACHINES  

•  The  value  of  the  angle  of  pressure  affects  the  minimum  number  of  cogs  that  a  wheel  can  have.  In  prac.ce,  we  assign  the  number  of  cogs  as  a  func.on  of  the  pressure  angle  and  of  the  transmission  ra.o  using    the  following  formula:    

                                       Zmin  =  2  /  [i2  +  (1+2i)sin2θ  -­‐  i]½  •  As  for  the  minimum  cogs’  number  (Zmin)  as  a  func.on  of  θ  and  i  we  have  the  following  table:  

           

Page 47: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

MECHANICS  APPLIED  TO  MACHINES  

i 1 2 3 4 5 6 7 8 9 10

θ=15° 21 25 26 27 28 28 29 29 29 29

θ=20° 13 15 15 16 16 16 17 17 17 17

θ=25° 9 10 10 11 11 11 11 11 11 11

Page 48: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

EXERCISES  

•  Write  a  text  describing  the  previous  table.  •  Describe  how  the  pinion/rank  system  works  with  respect  to  your  own  car  in  mo.on:  what  happens  if  you  have  to  turn  right,  leh,  or  get  straight  on?    

•  Write  a  coherent  text  in  your  area  using  appropriate  tenses.  

Page 49: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

DIFFERENTIAL  EQUATIONS  (DE)  (5)    

•  Differen.al  equa.ons  are  useful  for  modeling  and  simula.ng  phenomena  and  understanding  how  they  operate.  They  are  ‘available’  in  different  nota.ons:  

•  y’’  +  2y’  =  3y  •  (read:  the  second  deriva.ve  of  y  (or  “  y  prime  prime”)  plus  twice  the  first  deriva.ve  of  y  is  equal  to  three  y)  

Page 50: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

DIFFERENTIAL  EQUATIONS  (DE)    

•  Func.on  nota.on:  •  f’’(x)  +  2f’(x)  =  3f(x)  •  (read:  the  second  deriva.ve  of  the  func.on  with  respect  to  x  plus….)  

•  Leibnitz  ‘s  nota.on:  •  d2y/dx2  +  2  dy/dx  =  3y  •  (read:  the  second  deriva.ve  of  y  with  respect  to  x  twice  plus….).  

Page 51: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

DIFFERENTIAL  EQUATIONS  (DE)    

•  The  solu.on  of  a  DE  is  a  func.on  or  class  of  func.ons.  One  solu.on  is  y1(x)  =  e-­‐3x  :  it  sa3sfies  the  equa.on  y’’  +  2y’  =  3y.  In  fact  since  the  first  deriva.ve  is  y1’(x)  =  -­‐3e-­‐3x      (read:  y  subset  1  prime  of  x  equals  nega.ve  3  .mes  e  (raised)  to  the  nega.ve  3x)  and  the  second  deriva.ve  is  y1’’(x)  =  9e-­‐3x    (read:  y  subset  1  prime  prime  of  x…),  then  subs.tu.ng  into  the  equa.on  we  realize  we  get  an  iden.ty,  so  that  it  works.  No.ce  that  y1    is  a  solu.on,  but  not  the  only  one  :  for  example  y2(x)  =  ex          is  another  solu.on.  

Page 52: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

 PARTICULAR  LINEAR  SOLUTIONS  TO  

DIFFERENTIAL  EQUATIONS.(6)    •  Let’s  consider  dy/dx  =  -­‐2x  +  3y  -­‐5.  A  solu.on  is  

a  linear  func.on  in  the  form  y=mx  +  b.  Therefore  we  have  to  find  out  the  m  and  b  that  make  this  linear  func.on  sa.sfy  the  DE.  In  order  for  y=mx  +  b  to  sa.sfy  the  DE  this  has  to  be  true  for  all  x  in  the  linear  equa.on.  So  dy/dx  =  m  =  -­‐2x  +  3y  -­‐5,  so  that  m  =  -­‐2x  +  3(mx  +  b)  -­‐5  and  m  =  (3m-­‐2)x  +  3b  -­‐5.    

Page 53: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

PARTICULAR  LINEAR  SOLUTIONS  TO  DIFFERENTIAL  EQUATIONS.  

•  This  has  to  be  true  for  all  x,  so  that  3m-­‐2=0  and  m=2/3=3b-­‐5.  Consequently  b=17/9  and  the  solu.on  is  y  =  (2/3)x  +  17/9.    

•  EXERCISE.  Find  out  any  similar  DE  and  write  down  a  coherent  text  describing  it.  

Page 54: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

SLOPE  FIELDS  (7)  

•  We  use  slope  fields  to  visualize  solu.ons  of  differen.al  equa.ons.  

•  In  other  words,  the  solu.ons  of  a  first  order  DE  produce  a  slope  field  –that  is,  their  graphical  representa.on.    

•  Given  dy/dx  =  -­‐x/y  let’s  say  we  do  not  know  the  solu.on  and  want  to  give  a  general  sense  of  what  a  solu.on  might  look  like.    

Page 55: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

SLOPE  FIELDS  

•  To  this  extent  we  create  a  table  labeling  its  columns  x,  y  and  dy/dx.  When  x=0  and  y=1,  then  dy/dx  =  0.  It  means  if  the  solu.on  goes  through  the  point  (0,1),  then  the  slope  is  going  to  be  0  (marked  as  a  short  horizontal  line  parallel  to  the  x-­‐axis).  At  the  point  (1,1)  (read:  “1  comma  1”  or  “ordered  pair  1,1”)  the  slope  is  -­‐1  (a  nega.ve  downward  slope);    

Page 56: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

SLOPE  FIELDS  

•  at  (1,0)  the  slope  is  undefined;  at  (-­‐1,-­‐1)  the  value  of  the  slope  is  again  nega.ve  1,  while  if  the  solu.on  goes  through  (1,-­‐1),  we  will  have  a  posi.ve  upward  slope  of  1.  When  plo�ng  the  table  onto  a  graph  a  slope  field  is  being  produced.  The  solu.ons,  corresponding  to  some  condi.ons,  look  like  circles.    

Page 57: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

SLOPE  FIELDS  (8)  

•  EXERCISE  .  The  graph  below  shows  the  slope  field  of  dy/dx=x2-­‐x-­‐2,  with  the  blue,  red,  and  turquoise  lines  being  (x3/3)-­‐(x2/2)-­‐2x+4,  (x3/3)-­‐(x2/2)-­‐2x,  and  (x3/3)-­‐(x2/2)-­‐2x-­‐4  respec.vely.  Write  a  coherent  introduc.on/data  descrip.on/conclusion  text  including  the  graph  and  the  Math  equa.ons  converted  into  words.  Use  the  present  passive  in  both  the  system’s  descrip.on  and  func.oning.  

Page 58: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

SLOPE  FIELDS  (8)  

Page 59: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

SEPARABLE  DIFFERENTIAL  EQUATIONS(9)    

•  Given  the  DE  dy/dx  =  -­‐x  /  yex^2  ,  we  want  to  find  the  par.cular  solu.on  that  is  going  through  the  point  (0,1).  This  ordered  pair  is  being  given  as  our  ini.al  condi.on.  Separa.ng  the  variables  means  get  the  dy  and  dx  on  separate  sides.  Therefore  mul.plying  by  ydx  both  sides  of  the  equa.on  we  are  being  leH  with  ydy  =  -­‐xe-­‐x^2  dx,  so  that,  integra.ng  both  sides,  we  get  

Page 60: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

SEPARABLE  DIFFERENTIAL  EQUATIONS    

•  ∫ydy  =  -­‐  ½∫2xe-­‐x^2  •  (read:  “the  integral  of  y  (.mes)  dy  is  equal  to  nega.ve  one  half  .mes  the  integral  of  2x  (.mes)  e  to  the  nega.ve  x  squared).    

•  As  a  result  we  get  y2/2  +  C1  =  ½  e-­‐x^2  +  C2,  where  C1  and  C2  are  two  constants.    

•  (read:  y  squared  over  2  plus  C1  is  equal  to  one  half  .mes  e  to  the  nega.ve  x  squared,  which  is  the  an.-­‐deriva.ve,  plus  C2  ).  

Page 61: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

SEPARABLE  DIFFERENTIAL  EQUATIONS    

•  At  the  point  (0,1)  we  get  ½=  ½  +  C,  where  C  =  C2  –  C1  ,  so  that  y  =  e-­‐x^2/2,  which  is  the  par.cular  solu.on  that  sa3sfies  our  ini.al  condi.on.  

Page 62: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

SEPARABLE  DIFFERENTIAL  EQUATIONS    

•  EXERCISE.  Find  out  any  separable  DE  and  build  a  coherent  text.  As  usual,  numerals  and/or  diagrams  must  be  a  part  of  the  text.  Equa.ons  must  be  wri�en  in  words  (just  once  for  each  new  equa.on  and  only  if  quan..es  are  different).  The  text  must  be  structured  according  to  an  introduc.on/data  descrip.on/conclusion  layout.  Support  your  text  with  samples  of  separable  DE  applica.ons  to  any  phenomena,  using  appropriate  connec.ves  when  paragraphing.  

Page 63: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

 MODELING  WITH  DIFFERENTIAL  

EQUATIONS  (10)    •  Let’s  use  DE  for  modeling  popula.on.  If  P  

stands  for  popula.on  and  t  stands  for  .me,  say,  in  days,  then  dP/dt  stands  for  the  rate  of  change  of  popula.on  with  respect  to  .me.  

•  If  we  consider  the  rate  of  change  as  being  propor.onal  to  the  actual  popula.on,  then  we  can  write  dP/dt  =  KP,  which  is  a  reasonable  statement  since  the  larger  the  popula.on  the  larger  the  rate  of  growth  at  any  given  .me.  

Page 64: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

MODELING  WITH  DIFFERENTIAL  EQUATIONS  

•  Integra.ng  both  sides  of  the  equa.on  we  get  ∫dP/dt  =  ∫kP,  or  ln|P|=  Kt  +  C1.    

•  (read:  the  logarithm  of  the  module  of  P  (or  the  absolute  value  of  P)  is  equal  to  Kt  plus  C  subset  1).  

•  Therefore  |P|  =  eKt+C1    =  eKt  eC1  =  C  eKt    .  

Page 65: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

MODELING  WITH  DIFFERENTIAL  EQUATIONS  

•                         |P|  =  eKt+C1    =  eKt  eC1  =  C  eKt  •  (read:  the  module  of  P  (or  the  absolute  value  of  P)  is  equal  to  e  to  the  kt  plus  C  subset  1,  which  is  equal  to  e  to  the  kt  power  .mes  e  to  C  subset  1,  which  is  in  turn  equal  to  a  constant  C  .mes  e  to  the  kt).  

•  If  P>0,  then  P=  C  eKt    .  •  EXERCISE.  Model  anything  with  DE  and  write  down  a  coherent  text.  

Page 66: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

HOMOGENEOUS  DIFFERENTIAL  EQUATIONS  (11)  

•  Given  dy/dx  =  f(x,y),  if  we  algebraically  manipulate  this  statement  so  that  dy/dx  =  F(y/x),  then  we  can  make  a  variable  subs.tu.on  that  makes  it  separable.  So  for  example  if  dy/dx  =  (x+y)/x  then  dy/dx  =  1  +  y/x.  By  se>ng  y/x  =  V,  then  we  get  y=xV,  so  that  dy/dx  =  V  +  x  dV/dx,  or  dV=  (1/x)dx,  from  which  V  =  ln|x|+  C.  Unsubs3tu3ng  back  we  get  y/x  =  ln|x|+  C  or  y  =  xln|x|+  xC.  To  figure  out  C  we  need  some  ini.al  condi.ons.  

Page 67: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

SECOND  ORDER  DIFFERENTIAL  EQUATIONS  (12)  

•  A  second  order  DE  is  in  the  form                                  a(x)y’’  +  b(x)y’  +  c(x)y  =  d(x)  •  (read:  a  of  x  .mes  the  second  deriva.ve  of  y  with  respect  to  x  (or  y  “prime  prime”)  plus…)  

•  where  coefficients  are  func.ons  of  x.  The  associated  linear  homogenous  equa.on  is  in  the  form  

•  Ay’’  +  By’  +  Cy  =  0,  where  A,  B  and  C  are  constants.  

Page 68: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

SECOND  ORDER  DIFFERENTIAL  EQUATIONS  

•  Let’s  consider  the  following  example:  •  y’’  +  5y’  +  6y  =  0  •  In  order  to  find  out  a  solu.on  we  have  to  ask  ourselves  if  there  is  any  func.ons  that  when  taking  its  1st,  2nd,  3rd,  4th,  5th,  …  nth    deriva.ve  it  essen.ally  becomes  the  same  func.on.  The  func.on  we  are  searching  for  is  ex  .  

•  Let’s  set  y  =  erx  .  

Page 69: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

SECOND  ORDER  DIFFERENTIAL  EQUATIONS  

•  Then  •  (erx)’’  +  (erx)’  +  6  erx  =  0  or    •  erx  (r2  +  5r  +  6)  =  0  •  where  r2  +  5r  +  6  =  0    is  the  characteris.c  equa.on,  from  which  we  get  r1  =  -­‐2  and  r2  =  -­‐3,  so  that  y1  =  e  -­‐2x  and  y2  =  e-­‐3x  .  

•  EXERCISE.  Write  a  coherent  text  with  an  appropriate  layout  about  any  second  order  DE  and  their  applica.ons.  

Page 70: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

LISTENING  EXERCISES  •  Listen  to  the  following  videos,  take  notes  of  the  key-­‐words  while  listening  and  write  down  a  

coherent  text  using  appropriate  phrasal/preposi.onal  verbs  and  logical  connec.ves.  •  h�ps://www.khanacademy.org/science/chemistry/oxida.on-­‐reduc.on/redox-­‐oxida.on-­‐reduc.on/v/balance-­‐and-­‐

redox-­‐reac.ons1  •  h�ps://www.khanacademy.org/science/chemistry/oxida.on-­‐reduc.on/redox-­‐oxida.on-­‐reduc.on/v/prac.ce-­‐

determining-­‐oxida.on-­‐states  •  h�ps://www.khanacademy.org/science/physics/thermodynamics/v/heat-­‐of-­‐forma.on  •  h�ps://www.khanacademy.org/test-­‐prep/mcat/biomolecules/principles-­‐of-­‐bioenerge.cs/v/enthalpy-­‐1  •  h�ps://www.khanacademy.org/science/physics/torque-­‐angular-­‐momentum/torque-­‐tutorial/v/

rela.onship-­‐between-­‐angular-­‐velocity-­‐and-­‐speed  •  h�ps://www.khanacademy.org/science/physics/torque-­‐angular-­‐momentum/torque-­‐tutorial/v/

rela.onship-­‐between-­‐angular-­‐velocity-­‐and-­‐speed  •  h�ps://www.khanacademy.org/science/physics/torque-­‐angular-­‐momentum/torque-­‐tutorial/v/constant-­‐

angular-­‐momentum-­‐when-­‐no-­‐net-­‐torque  •  h�ps://www.khanacademy.org/science/physics/torque-­‐angular-­‐momentum/torque-­‐tutorial/v/cross-­‐

product-­‐and-­‐torque  •  h�ps://www.khanacademy.org/math/differen.al-­‐equa.ons/second-­‐order-­‐differen.al-­‐equa.ons/

complex-­‐roots-­‐characteris.c-­‐equa.on/v/complex-­‐roots-­‐of-­‐the-­‐characteris.c-­‐equa.ons-­‐1  •  h�ps://www.khanacademy.org/math/differen.al-­‐equa.ons/second-­‐order-­‐differen.al-­‐equa.ons/

undetermined-­‐coefficients/v/undetermined-­‐coefficients-­‐1  

Page 71: SYSTEMS AND TENSES - scienze.uniroma2.it€¦ · SYSTEMS&AND&TENSES& • Scien.fic&subjects&essen.ally&deal&with&both& systems’&descrip.ons&and&working&systems.&In& order&to&simply&describe(systems

REFERENCES  •  1)  Listening  exercise  at    h�ps://www.khanacademy.org/science/chemistry/oxida.on-­‐reduc.on/

redox-­‐oxida.on-­‐reduc.on/v/introduc.on-­‐to-­‐oxida.on-­‐and-­‐reduc.on    All  Khan  Academy  content  is  available  for  free  at  www.khanacademy.org.      

•  2)  Listening  exercise:  h�ps://www.khanacademy.org/science/physics/thermodynamics/v/enthalpy  •  3)  Graph  at  h�p://en.wikipedia.org/wiki/Pressure_volume_diagram  •  4)  Adapted  from  www.is.tutopesen..it/dipar.men./meccanica/meccanica.pdf  •  5)  Listening  exercise:  h�ps://www.khanacademy.org/math/differen.al-­‐equa.ons/first-­‐order-­‐

differen.al-­‐equa.ons/differen.al-­‐equa.ons-­‐intro/v/differen.al-­‐equa.on-­‐introduc.on  •  6)  Listening  exercise:  h�ps://www.khanacademy.org/math/differen.al-­‐equa.ons/first-­‐order-­‐

differen.al-­‐equa.ons/differen.al-­‐equa.ons-­‐intro/v/finding-­‐par.cular-­‐linear-­‐solu.on-­‐to-­‐differen.al-­‐equa.on  

•  7)  Listening  exercise:  h�ps://www.khanacademy.org/math/differen.al-­‐equa.ons/first-­‐order-­‐differen.al-­‐equa.ons/differen.al-­‐equa.ons-­‐intro/v/crea.ng-­‐a-­‐slope-­‐field  

•  8)  From  h�p://en.wikipedia.org/wiki/Slope_field  •  9)  Listening  exercise:  separable-­‐differen.al-­‐equa.ons-­‐introduc.on  •  10)  Listening  at  h�ps://www.khanacademy.org/math/differen.al-­‐equa.ons/first-­‐order-­‐

differen.al-­‐equa.ons/modeling-­‐with-­‐differen.al-­‐equa.ons/v/modeling-­‐popula.on-­‐with-­‐simple-­‐differen.al-­‐equa.on  

•  11)  Listening.  h�ps://www.khanacademy.org/math/differen.al-­‐equa.ons/first-­‐order-­‐differen.al-­‐equa.ons/homogeneous-­‐equa.ons/v/first-­‐order-­‐homegenous-­‐equa.ons  

•  12)  Listening  exercise:  2nd-­‐order-­‐linear-­‐homogeneous-­‐differen.al-­‐equa.ons-­‐2