synthesis and antimicrobial activity of 3-arylhydrazono-2,4-dioxoalkanoate esters

5
SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 3-ARYLHYDRAZONO-2,4-DIOXOALKANOATE ESTERS T. V. Levenets 1 and V. O. Kozminykh 1,2 Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 47, No. 10, pp. 25 – 29, October, 2013. Original article submitted July 2, 2012. A simple and convenient method for the synthesis of 3-arylhydrazono-2,4-dioxoalkanoate esters was pro- posed. The structures of the synthesized compounds were established based on PMR and IR spectroscopic data and an x-ray crystal structure analysis. The antimicrobial activity of these compounds was investigated. It was found that some of the tested compounds exhibited pronounced antimicrobial effects with respect to Staphylococcus aureus P-209 strains. Keywords: 3-arylhydrazono-2,4-dioxoalkanoate esters, synthesis, antimicrobial activity. 4-Aryl-3-phenylhydrazono-2,4-dioxobutanoic acids, which are prepared by azo-conjugation of aroylpyruvic acids with phenyldiazonium chloride, are known to exhibit antimicrobial activity with respect to E. coli and S. aureus strains [1]. 4-Alkyl- and 4-hetaryl-substituted 3-arylhydrazo- no-2,4-dioxobutanoic acids and their derivatives have not previously been studied. We used a three-component reac- tion of methylketones, dialkyloxalates, and aryldiazonium salts to prepare 4-alkyl(furyl)-substituted 3-arylhydrazono- 2,4-dioxoalkanoate esters (I-XXXI, forms A and B) (Fig. 1) in order to discover new compounds that exhibit antimicro- bial activity among 3-arylhydrazono-2,4-dioxoalkanoic acids and their derivatives. The synthesized compounds (I-XXXI) were yellow or yellowish-orange crystalline compounds that were soluble in CHCl 3 , DMSO, EtOH, and EtOAc and insoluble in H 2 O. Ta- ble 1 presents their physicochemical characteristics. Their structures were established using PMR and IR spectroscopy (Table 2) and an x-ray crystal structure analysis (XSA) (I, VIII, IX) [2]. PMR spectra of I-XXXI in CDCl 3 showed a resonance for the NH proton at weak field (13.98 – 15.99 ppm) that was consistent with the presence of a chelate intramolecular H-bond between the NH H atom and the O atom of the a- or g-carbonyl [3]. Compounds V , X, XII, and XXII in CHCl 3 solution existed in forms A and B, which was in agreement with the literature [1, 3]. Thus, PMR spectra exhibited dou- bled resonances for the ester protons and alkyl substituent and paired resonances for aromatic ring protons in the range 7.43 – 8.36 ppm. The existence of V , X, XII, and XXII in forms A and B was also confirmed by resonances in PMR spectra for two NH protons in the range 13.98 – 15.99 ppm. Solid-state IR spectra of 3-arylhydrazono-2,4-dioxoalka- noate esters (I-XXXI) contained bands for stretching vibra- tions of NH bonds at 3340 – 3607 cm –1 . IR spectra of V , X, XII, and XXII showed absorption bands for NH groups of forms A and B at 3356 – 3605 cm –1 . Stretching bands of es- ter carbonyl appeared in the range 1728 – 1737 cm –1 ; of ketone C 2 =O or C 4 =O, at 1628 – 1691 cm –1 . The low-fre- quency shift of the latter confirmed that a H-bond formed be- tween the ketone C 2 =O or C 4 =O O atom and the NH H atom. The XSA of single crystals of I (Fig. 2) that were grown from EtOH indicated that the orientation of the phenyl group relative to the plane O(1)C(7)C(8)N(2)N(1)H–N(1) had a torsion angle of 120.5°, which indicated that the molecule was non-planar. The N(1)–H–N(1) distance was 0.88 Å and indicated that the H atom was localized on N(1) of the NH-chelate ring. The redistribution of bond lengths in the fragment O(1)=C(7)–C(8)=N(2)–N(1)–H-N(1) of the NH-chelate ring indicated that I existed in form A in the crystal. EXPERIMENTAL CHEMICAL PART IR spectra of the synthesized compounds were recorded in vaseline oil mulls on an Infralyum FT-02 spectrophoto- meter and a Spectrum Two IR-Fourier spectrometer. PMR spectra were obtained with TMS internal standard on a Mer- 531 0091-150X/14/4710-0531 © 2014 Springer Science+Business Media New York Pharmaceutical Chemistry Journal, Vol. 47, No. 10, January, 2014 (Russian Original Vol. 47, No. 10, September, 2013) 1 Orenburg State University, Orenburg, 460018 Russia. 2 Perm State Pedagogical University, Perm, 614990 Russia

Upload: v-o

Post on 21-Dec-2016

214 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Synthesis and Antimicrobial activity of 3-Arylhydrazono-2,4-Dioxoalkanoate Esters

SYNTHESIS AND ANTIMICROBIAL ACTIVITY

OF 3-ARYLHYDRAZONO-2,4-DIOXOALKANOATE ESTERS

T. V. Levenets1 and V. O. Kozminykh1,2

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 47, No. 10, pp. 25 – 29, October, 2013.

Original article submitted July 2, 2012.

A simple and convenient method for the synthesis of 3-arylhydrazono-2,4-dioxoalkanoate esters was pro-

posed. The structures of the synthesized compounds were established based on PMR and IR spectroscopic

data and an x-ray crystal structure analysis. The antimicrobial activity of these compounds was investigated. It

was found that some of the tested compounds exhibited pronounced antimicrobial effects with respect to

Staphylococcus aureus P-209 strains.

Keywords: 3-arylhydrazono-2,4-dioxoalkanoate esters, synthesis, antimicrobial activity.

4-Aryl-3-phenylhydrazono-2,4-dioxobutanoic acids,

which are prepared by azo-conjugation of aroylpyruvic acids

with phenyldiazonium chloride, are known to exhibit

antimicrobial activity with respect to E. coli and S. aureus

strains [1]. 4-Alkyl- and 4-hetaryl-substituted 3-arylhydrazo-

no-2,4-dioxobutanoic acids and their derivatives have not

previously been studied. We used a three-component reac-

tion of methylketones, dialkyloxalates, and aryldiazonium

salts to prepare 4-alkyl(furyl)-substituted 3-arylhydrazono-

2,4-dioxoalkanoate esters (I-XXXI, forms A and B) (Fig. 1)

in order to discover new compounds that exhibit antimicro-

bial activity among 3-arylhydrazono-2,4-dioxoalkanoic acids

and their derivatives.

The synthesized compounds (I-XXXI) were yellow or

yellowish-orange crystalline compounds that were soluble in

CHCl3, DMSO, EtOH, and EtOAc and insoluble in H

2O. Ta-

ble 1 presents their physicochemical characteristics. Their

structures were established using PMR and IR spectroscopy

(Table 2) and an x-ray crystal structure analysis (XSA) (I,

VIII, IX) [2].

PMR spectra of I-XXXI in CDCl3

showed a resonance

for the NH proton at weak field (13.98 – 15.99 ppm) that was

consistent with the presence of a chelate intramolecular

H-bond between the NH H atom and the O atom of the �- or

�-carbonyl [3]. Compounds V, X, XII, and XXII in CHCl3

solution existed in forms A and B, which was in agreement

with the literature [1, 3]. Thus, PMR spectra exhibited dou-

bled resonances for the ester protons and alkyl substituent

and paired resonances for aromatic ring protons in the range

7.43 – 8.36 ppm. The existence of V, X, XII, and XXII in

forms A and B was also confirmed by resonances in PMR

spectra for two NH protons in the range 13.98 – 15.99 ppm.

Solid-state IR spectra of 3-arylhydrazono-2,4-dioxoalka-

noate esters (I-XXXI) contained bands for stretching vibra-

tions of NH bonds at 3340 – 3607 cm–1

. IR spectra of V, X,

XII, and XXII showed absorption bands for NH groups of

forms A and B at 3356 – 3605 cm–1

. Stretching bands of es-

ter carbonyl appeared in the range 1728 – 1737 cm–1

; of

ketone C2=O or C

4=O, at 1628 – 1691 cm

–1. The low-fre-

quency shift of the latter confirmed that a H-bond formed be-

tween the ketone C2=O or C

4=O O atom and the NH H atom.

The XSA of single crystals of I (Fig. 2) that were grown

from EtOH indicated that the orientation of the phenyl group

relative to the plane O(1)C(7)C(8)N(2)N(1)H–N(1) had a

torsion angle of 120.5°, which indicated that the molecule

was non-planar. The N(1)–H–N(1) distance was 0.88 Å and

indicated that the H atom was localized on N(1) of the

NH-chelate ring. The redistribution of bond lengths in the

fragment O(1)=C(7)–C(8)=N(2)–N(1)–H-N(1) of the

NH-chelate ring indicated that I existed in form A in the

crystal.

EXPERIMENTAL CHEMICAL PART

IR spectra of the synthesized compounds were recorded

in vaseline oil mulls on an Infralyum FT-02 spectrophoto-

meter and a Spectrum Two IR-Fourier spectrometer. PMR

spectra were obtained with TMS internal standard on a Mer-

531

0091-150X/14/4710-0531 © 2014 Springer Science+Business Media New York

Pharmaceutical Chemistry Journal, Vol. 47, No. 10, January, 2014 (Russian Original Vol. 47, No. 10, September, 2013)

1Orenburg State University, Orenburg, 460018 Russia.

2Perm State Pedagogical University, Perm, 614990 Russia

Page 2: Synthesis and Antimicrobial activity of 3-Arylhydrazono-2,4-Dioxoalkanoate Esters

cury Plus-300 instrument (300.05 MHz). X-ray diffraction

data were obtained on an Oxford Diffraction Gemini-R

diffractometer using Mo K�-radiation in the range

2.15 < � < 26.36°. Absorption corrections were applied em-

pirically using the SCALE3 ABSPACK program. We thank

S. S. Khasanov (ISSP, RAS, Chernogolovka) for assistance

in performing the XSA.

3-Arylhydrazono-2,4-dioxoalkanoate esters (I-XXXI).

A mixture of alkyl(hetaryl)methylketone (10 mmol), dialkyl-

oxalate (10 mmol), and anhydrous toluene (80 mL) was

stirred, treated with NaH (10 mmol, 0.24 g), held for 3 – 5 h,

cooled to 5°C, treated with a mixture of aromatic amine

(10 mmol), HCl (conc., 5 mL), and NaNO2

(10 mmol,

0.69 g) in H2O (20 mL), and stirred vigorously for 1 – 1.5 h.

The upper organic layer was separated. The solvent was

evaporated. The residue was recrystallized from EtOH.

Crystallographic data for I: well-formed crystals;

C12

H12

N2O

4; monoclinic system: a = 7.0645(5) Å, b =

532 T. V. Levenets and V. O. Kozminykh

TABLE 1. Physicochemical Characteristics and Antimicrobial Activity of 3-Arylhydrazono-2,4-dioxoalkanoate Esters (I-XXXI)

Com-

pound

Substituents Yield,

%

mp,

°C

Empirical formula

(mol. wt.)

MIC,*

�g/mL

R Alk Ar E. coli M17 St. aureus P-209

I CH3 CH3 C6H5 50 96 – 98 C12H12N2O4 (248.35) 1000 1000

II CH3 CH3 4-CH3C6H4 43 106 – 108 C13H14N2O4 (262.28) 500 500

III CH3 CH3 4-NO2C6H4 79 128 – 130 C12H11N3O6 (293.38) 500 1000

IV CH3 CH3 2-NO2C6H4 53 138 C12H11N3O6 (293.32) Inactive Inactive

V CH3 CH3 C10H7 (1-naphthyl) 65 98 – 100 C16H14N2O4 (298.29) 250 1000

VI CH3 CH3 4-NH2SO2C6H4 12 122 – 124 C12H13N3O6S (327.31) 250 250

VII CH3 CH3 4-C2H5OCOC6H4 60 104 – 106 C15H16N2O6 (320.29) 1000 500

VIII CH3 C2H5 C6H5 47 105 – 107 C13H14N2O4 (262.25) Inactive Inactive

IX CH3 C2H5 4-CH3C6H4 47 110 – 112 C14H16N2O4 (276.29) 1000 1000

1X CH3 C2H5 4-NO2C6H4 42 133 – 135 C13H13N3O6 (307.25) 500 500

XI CH3 C2H5 2-NO2C6H4 53 138 – 140 C13H13N3O6 (307.25) Inactive Inactive

XII CH3 C2H5 C10H7 (1-naphthyl) 70 96 – 98 C17H16N2O4 (312.31) 1000 1000

XIII CH3 C2H5 4-NH2SO2C6H4 15 136 – 138 C13H15N3O6S (307.25) 250 250

XIV CH3 C2H5 4-C2H5OCOC6H4 56 98 – 100 C16H18N2O6 (334.32) Inactive 1000

XV C2H5 CH3 C6H5 44 116 – 118 C13H14N2O4 (262.35) Inactive Inactive

XVI C2H5 CH3 4-CH3C6H4 33 116 – 118 C14H16N2O4 (276.25) Inactive 1000

XVII C2H5 CH3 4-NO2C6H4 33 114 – 116 C13H13N3O6 (307.25) 1000 1000

XVIII C2H5 CH3 C10H7 (1-naphthyl) 56 112 – 114 C17H16N2O4 (312.32) 1000 Inactive

XIX C2H5 CH3 4-C2H5OCOC6H4 18 94 – 96 C16H18N2O6 (334.32) 500 1000

XX C2H5 C2H5 C6H5 34 82 – 84 C14H16N2O4 (276.27) Inactive Inactive

XXI C2H5 C2H5 4-CH3C6H4 38 90 – 92 C15H18N2O4 (290.31) Inactive 1000

XXII C2H5 C2H5 4-NO2C6H4 39 108 – 110 C14H15N3O6 (321.35) 250 1000

XXIII C2H5 C2H5 C10H7 (1-naphthyl) 60 114 – 116 C18H18N2O4 (326.26) Inactive Inactive

XXIV C2H5 C2H5 4-C2H5OCOC6H4 32 110 – 112 C17H20N2O6 (348.35) 1000 1000

XXV C4H3O

(2-furyl)

CH3 C6H5 72 94 – 96 C15H12N2O5 (300.38) 1000 1000

XXVI C4H3O

(2-furyl)

CH3 4-NO2C6H4 73 144 – 146 C15H11N3O7 (345.35) 1000 Inactive

XXVII C4H3O

(2-furyl)

C2H5 C6H5 23 98 – 100 C16H14N2O5 (314.25) 500 500

XXVIII C4H3O

(2-furyl)

C2H5 4-NO2C6H4 59 148 – 150 C16H13N3O7 (359.32) 1000 500

XXIX C4H3O

(2-furyl)

C2H5 C10H7 (1-naphthyl) 64 128 – 130 C20H16N2O5 (364.35) Inactive 1000

XXX C4H3O

(2-furyl)

C2H5 4-NH2SO2C6H4 10 164 – 166 C16H15N3O7S (393.37) 250 250

XXXI C4H3O

(2-furyl)

C2H5 4-C2H5OCOC6H4 50 110 – 112 C19H18N2O7 (386.35) Inactive Inactive

Ethacridine lactate 2000 500

Furacilin 125 250

*MIC, minimum inhibitory concentration [5].

Page 3: Synthesis and Antimicrobial activity of 3-Arylhydrazono-2,4-Dioxoalkanoate Esters

Synthesis and Antimicrobial Activity 533

TABLE 2. Spectral Characteristics of 3-Arylhydrazono-2,4-dioxoalkanoate Esters (I-XXXI)

Com-

poundPMR spectrum (CDCl3, �, ppm, J/Hz) IR spectrum (vaseline oil, �, cm

–1)

I 2.64 (s, 3H, CH3), 3.93 (s, 3H, CH

3O), 7.23 – 7.46 (m, 5H, C

6H

5),

14.99 (br.s, 1H, NH)

3460 �NH

, 1738 �C=O

, 1684 �C=O

, 1637 �C=O

, 1591, 1520

�CC

+ �C=N

, 1233, 1194 �ip CH

, 1165 �C-O-C

, 1075, 1025, 991 �ip CH

, 899,

843, 804 �oop CH

II 2.35 (c, 3H, CH3, 4-CH

3C

6H

4), 2.63 (s, 3H, CH

3), 3.92 (s, 3H,

CH3O), 7.19 (d, 2H, C

6H

4, J 9.0), 7.25 (d, 2H, C

6H

4, J 9.0), 15.06

(br.s, 1H, NH)

3464 �NH

, 3114, 3093 �CH

, 1739 �C=O

, 1715 �C=O

, 1643 �C=O

, 1595,

1513 �CC

+ �C=N

, 1225, 1176 �ip CH

, 1163 �C-O-C

, 1111, 1095, 1009

�ip CH

, 984, 944, 910, 847, 821 �oop CH

III 2.67 (s, 3H, CH3), 3.96 (s, 3H, CH

3O), 7.43 (d, 2H, C

6H

4, J 9.0),

8.30 (d, 2H, C6H

4, J 9.0), 14.83 (br.s, 1H, NH)

3464 �NH

, 3115, 3087 �CH

, 1739 �C=O

, 1701 �C=O

, 1643 �C=O

, 1595,

1513 �CC

+ �C=N

, 1337 �sNO2, 1225, 1176 �

ip CH, 1156 �

C-O-C, 1111,

1095, 1009 �ip CH

, 984, 944, 910, 847 (NO2), 821 �

oop CH

IV 2.53 (s, 3H, CH3), 3.95 (s, 3H, CH

3O), 7.31 – 7.37 (m, 1H,

2-NO2C

6H

4), 7.74 – 7.79 (m, 1H, 2-NO

2C

6H

4), 8.15 (d, 1H,

2-O2C

6H

4, J 8.4), 8.30 (d, 1H, 2-O

2C

6H

4, J 8.4), 15.17 (br.s, 1H,

NH)

3482 �NH

, 1753 �C=O

, 1682 �C=O

, 1646 �C=O

, 1606, 1580, 1535

�CC

+ �C=N

, 1377 �sNO2, 1266, 1230, 1198 �

ip CH, 1097 �

C-O-C,

1035, 965, 954 �ip CH

, 865 (NO2)

V 2.55 (s, 3H, CH3, B, 48%), 2.72 (c, 3H, CH

3, A, 52%), 3.97 (s, 3H,

CH3O), 7.50 – 8.02 (m, 14H, 2C

10H

7, A + B), 15.29 (br.s, 1H, NH,

B), 15.99 (br.s, 1H, NH, A)

3605 �NH

(A), 3547 �NH

(B), 1739 �C=O

, 1685 �C=O

, 1637 ñë. �C=O

,

1611, 1594, 1527 �CC

+ �C=N

, 1258, 1189 �ip CH

, 1165 �C-O-C

, 1102,

1041, 1019, 996, 943 �ip CH

VI 2.67 (s, 3H, CH3), 3.94 (c,3H, CH

3O), 4.87 (s, 2H, NH

2), 7.44 (d,

2H, C6H

4, J 8.4), 7.96 (d, 2H, C

6H

4, J 8.4), 14.83 (br.s, 1H, NH)

3611 �NH

(hydraz), 3360, 3282 �NH

(amide), 3088, 3064 �CH

, 1726

�C=O

, 1690, 1648 �C2=O

+ �C4=O

+ Amide I, 1594, 1587 �NH

(amide),

1516 �CC

+ �C=N

, 1335 Amide III, 1307, 1293, 1237, 1200, 1178 �ip

CH, 1159 �

C-O-C, 1095, 1040, 1020, 1013 �

ip CH, 989, 948, 910

VII 1.40 (t, 3H, CH3CH

2OCO, J 7.2), 2.50 (s, 3H, CH

3), 3.94 (s, 3H,

CH3O), 4.38 (q, 2H, CH

3CH

2OCO, J 7.2) 7.49 (d, 2H, C

6H

4, J 8.7),

8.12 (d, 2H, C6H

4, J 8.7), 14.14 (br.s, 1H, NH)

3599 �NH

, 3082 �CH

, 1737 �C=O

, 1719 �C=O

, 1672 �C=O

, 1632 �C=O

,

1605, 1588, 1526 �CC

+ �C=N

, 1269, 1206, 1160 �ip CH

, 1163, 1103

�C-O-C

, 1042, 1017 �ip CH

, 943, 863

VIII 1.39 (t, 3H, CH3CH

2O, J 7.2), 2.64 (s, 3H, CH

3), 4.41 (q, 2H,

CH3CH

2O, J 7.2), 7.22 – 7.29 (m, 1H, C

6H

5), 7.32 – 7.47 (m, 4H,

C6H

5), 15.00 (br.s, 1H, NH)

1728 �C=O

, 1676 �C=O

, 1632 �C=O

, 1590, 1538, 1520, 1508 �CC

+

�C=N

, 1160, 1113 �ip CH

, 1109 �C-O-C

, 836, 815, 788, 755 �oop. CH

IX 1.39 (t, 3H, CH3CH

2O, J 7.2), 2.36 (s, 3H, CH

3, 4-CH

3C

6H

4), 2.64

(s, 3H, CH3), 4.40 (q, 2H, CH

3CH

2O, J 7.2), 7.20 (d, 2H, C

6H

4, J

8.4), 7.25 (d, 2H, C6H

4, J 8.4), 15.07 (br.s, 1H, NH)

1734 �C=O

, 1682 �C=O

, 1628 �C=O

, 1587, 1538, 1520, 1508

�CC

+ �C=N

, 1172, 1112 �ip CH

, 1109 �C-O-C

, 823, 798, 785 �oop CH

X 1.41 (t, 3H, CH3CH

2O, J 6.9, A), 1.41 (t, 3H, CH

3CH

2O, J 6.9, B),

2.52 ñ (3H, CH3, B, 10%), 2.68 (s, 3H, CH

3, A, 90%), 4.44 (q 2H,

CH3CH

2O, J 6.9, A), 4.46 (q 2H, CH

3CH

2O, J 6.9, form B), 7.45 (d,

2H, C6H

4, J 9.0, A), 7.57 (d, 2H, C

6H

4, J 9.0, B), 8.30 (d, 2H, C

6H

4,

J 9.0, A), 8.32 (d, 2H, C6H

4, J 9.0, B), 14.05 (br.s, 1H, NH, B),

14.84 (br.s, 1H, NH, A)

3493 �NH

(A), 3385 �NH

(B), 1735 �C=O

, 1681 �C=O

, 1642 �C=O

,

1596, 1538, 1520, 1509 �CC

+ �C=N

, 1338 �sNO2, 1164,

1099 �ip. CH

, 1100 �C-O-C

, 848 (NO2), 822, 792, 733 �

oop CH

XI 1.40 (t, 3H, CH3CH

2O, J 7.2), 2.53 (s, 3H, CH

3), 4.42 (q 2H,

CH3CH

2O, J 7.2), 7.31 – 7.37 (m, 1H, 2-NO

2C

6H

4), 7.74 – 7.79 (m,

1H, 2-NO2C

6H

4), 8.15 (d, 1H, 2-HO

2C

6H

4, J 8.4), 8.30 (d, 1H,

2-NO2C

6H

4, J 8.4), 15.18 (br.s, 1H, NH)

3481 �NH

, 1754 �C=O

, 1681 �C=O

, 1646 �C=O

, 1606, 1580, 1534

�CC

+ �C=N

, 1364 �sNO2, 1282, 1267, 1230, 1198, 1141 �

ip CH, 1095

�C-O-C

, 1034, 954 �ip CH

, 865, 850 (NO2), 821 �

oop CH

XII 1.38 – 1.43 (m, 6H, 2CH3CH

2O, A + B), 2.55 (s, 3H, CH

3, B, 47%),

2.72 (c, 3H, CH3, A, 53%), 4.40 – 4.49 (m, 4H, 2CH

3CH

2O,

A + B), 7.48 – 8.02 (m, 14H, 2C10

H7, A + B), 15.30 (br.s, 1H, NH,

B), 15.99 (br.s, 1H, NH, A)

3479 �NH

(A), 3356 �NH

(B), 1736 �C=O

, 1672 �C=O

, 1634 ñë. �C=O

,

1619, 1595, 1527, 1503 �CC

+ �C=N

, 1256, 1224, 1172 �C-O-C

, 1099,

1039, 1008, 982, 935 �ip CH

XIII 1.40 (t, 3H, CH3CH

2O, J 7.2), 2.67 (s, 3H, CH

3), 4.41 (q 2H,

CH3CH

2O, J 7.2), 4.80 (br.s, 2H, NH

2), 7.38 (d, 2H, C

6H

4, J 8.4),

7.44 (d, 2H, C6H

4, J 8.4), 14.84 (br.s, 1H, NH)

3614 �NH

(hydraz), 3363, 3282 �NH

(amide), 3088, 3064 �CH

, 1724

�C=O

, 1691, 1650 �C2=O

+ �C4=O

+ Amide I, 1593, 1585 �NH

(amide),

1551, 1516 �CC

+ �C=N

, 1340 Amide III, 1306, 1295, 1238, 1199,

1178 �ip CH

, 1161 �C-O-C

, 1095, 1039, 1015 �ip CH

, 987, 948, 910

XIV 1.37 – 1.42 (m, 3H, CH3CH

2O + 3H, CH

3CH

2OCO), 2.66 (s, 3H,

CH3), 4.34 – 4.46 (m, 2H, CH

3CH

2O + 2H, CH

3CH

2OCO), 7.38 (d,

2H, C6H

4, J 8.7), 8.08 (d, 2H, C

6H

4, J 8.7), 14.88 (br.s, 1H, NH)

1732 �C=O

, 1718 �C=O

, 1683 �C=O

, 1642 �C=O

, 1606, 1589, 1518

�CC

+ �C=N

, 1273, 1158 �C-O-C

, 1111, 1018 �ip CH

, 937, 885

XV 1.14 (t, 3H, CH3CH

2, J 7.5), 3.07 (q 2H, CH

3CH

2, J 7.5), 3.92 (s,

3H, CH3O), 7.22 – 7.45 (m, 5H, C

6H

5), 15.02 (br.s, 1H, NH)

3479 �NH

, 3082, 3064 �CH

, 1748 �C=O

, 1673 �C=O

, 1637 �C=O

, 1587,

1518 �CC

+ �C=N

, 1297, 1219, 1191 �ip CH

, 1112 �C-O-C

, 1048, 1021

�ip CH

, 993, 979, 906, 835, 815, 787, 755 �oop CH

XVI 1.14 (t, 3H, CH3CH

2, J 7.2), 2.35 (s, 3H, CH

3), 3.06 (q 2H,

CH3CH

2, J 7.2), 3.91 (s, 3H, CH

3O), 7.18 – 7.24 (m, 4H, C

6H

4),

15.08 (br.s, 1H, NH)

3461 �NH

, 3076, 3049 �CH

, 1739 �C=O

, 1682 �C=O

, 1637 �C=O

, 1584,

1521 �CC

+ �C=N

, 1291, 1218, 1194 �ip CH

, 1118 �C-O-C

, 1072, 1047

�ip CH

, 995, 979, 911, 809, 779, 754 �oop CH

Page 4: Synthesis and Antimicrobial activity of 3-Arylhydrazono-2,4-Dioxoalkanoate Esters

534 T. V. Levenets and V. O. Kozminykh

Com-

poundPMR spectrum (CDCl3, �, ppm, J/Hz) IR spectrum (vaseline oil, �, cm

–1)

XVII 1.18 (t, 3H, CH3CH

2, J 7.2), 3.27 (q 2H, CH

3CH

2, J 7.2), 3.94 (s,

3H, CH3O), 7.44 (d, 2H, C

6H

4, J 9.0), 8.32 (d, 2H, C

6H

4, J 9.0),

14.82 (br.s, 1H, NH)

3347 �NH

, 1732 �C=O

, 1680 �C=O

, 1639 �C=O

, 1610, 1597, 1520

�CC

+ �C=N

, 1339 �sNO2, 1244, 1207, 1164 �

ip CH, 1093 �

C-O-C, 931,

853 (NO2), 810

XVIII 1.21 (t, 3H, CH3CH

2, J 7.5), 3.16 (q 2H, CH

3CH

2, J 7.5), 3.95 (s, 3H,

CH3O), 7.48 – 8.04 (m, 7H, C

10H

7), 15.99 (br.s, 1H, NH)

3600 �NH

, 1734 �C=O

, 1669 �C=O

, 1636 ñë. �C=O

, 1621, 1594, 1526,

1502 �CC

+ �C=N

, 1350, 1301, 1200, 1242 �ip CH

, 1222, 1114 �C-O-C

,

1049, 998, 977, 935 �ip CH

, 900, 885

XIX 1.15 (t, 3H, CH3CH

2, J 6.9), 3.09 (q 2H, CH

3CH

2, J 6.9), 3.94 (s,

3H, CH3O), 7.35 (d, 2H, C

6H

4, J 8.4), 8.09 (d, 2H, C

6H

4, J 8.4),

14.92 (br.s, 1H, NH)

3605 �NH

, 1737 �C=O

, 1679 �C=O

, 1635 ñë. �C=O

, 1605, 1512

�CC

+ �C=N

, 1193, 1163 �ip CH

, 1107 �C-O-C

, 1048, 1018, 987, 941,

904

XX 1.14 (t, 3H, CH3CH

2, J 7.5), 1.39 (t, 3H, CH

3CH

2O, J 7.5), 3.07 (q

2H, CH3CH

2, J 7.5), 4.40 (q 2H, CH

3CH

2O, J 7.5), 7.21 – 7.46 (m,

5H, C6H

5), 15.03 (br.s, 1H, NH)

3457 �NH

, 1737 �C=O

, 1683 �C=O

, 1642 �C=O

, 1591, 1525

�CC

+ �C=N

, 1219, 1190, 1163 �ip CH

, 1116 �C-O-C

, 1051, 1016, 990,

951, 907, 866, 812 �oop CH

XXI 1.14 (t, 3H, CH3CH

2, J 7.5), 1.38 (t, 3H, CH

3CH

2O, J 7.5), 2.35 (s,

3H, CH3), 3.07 (q 2H, CH

3CH

2, J 7.5), 4.39 (q 2H, CH

3CH

2O, J

7.5), 7.19 (d, 2H, C6H

4, J 8.4), 7.24 (d, 2H, C

6H

4,

J 8.4), 15.10 (br.s, 1H, NH)

3455 �NH

, 1736 �C=O

, 1682 �C=O

, 1632 �C=O

, 1588,

1519 �CC

+ �C=N

, 1215, 1195, 1148 �ip CH

, 1110 �C-O-C

, 990, 949,

866, 812, 778 �oop CH

XXII 1.13 (t, 3H, CH3CH

2, J 7.5, B), 1.18 (t, 3H, CH

3CH

2, J 7.5, A), 1.38

(t, 3H, CH3CH

2O, J 7.5, B), 1.40 (t, 3H, CH

3CH

2O, J 6.9, A), 2.96

(q 2H, CH3CH

2, J 7.5, A, 79%), 3.10 (q 2H, CH

3CH

2, J 7.5, B,

21%), 4.42 (q 2H, CH3CH

2O, J 7.5, A), 7.43 (d, 2H, C

6H

4, J 9.0,

B), 7.54 (d, 2H, C6H

4, J 9.0, A), 8.28 (d, 2H, C

6H

4, J 9.0, B), 8.32

(d, 2H, C6H

4, J 9.0, A), 13.98 (br.s, 1H, NH, A), 14.87 (br.s, 1H,

NH, B)

3495 �NH

(A), 3378 �NH

(B),1733 �C=O

, 1680 �C=O

, 1639 �C=O

,

1596, 1531, 1519 �CC

+ �C=N

, 1340 �sNO2, 1206, 1166,

1112 �ip CH

, 1092 �C-O-C

, 931, 851 (NO2), 810 �

oop CH

XXIII 1.21 (t, 3H, CH3CH

2, J 7.5), 1.40 (t, 3H, CH

3CH

2O, J 7.5), 3.16 (q

2H, CH3CH

2, J 7.5), 4.43 (q 2H, CH

3CH

2O, J 7.5), 7.48 – 8.04 (m,

7H, C10

H7), 15.99 (br.s, 1H, NH)

3091, 3058 �CH

, 1737 �C=O

, 1675 �C=O

, 1624 �C=O

, 1695,

1525 �CC

+ �C=N

, 1349, 1318, 1302, 1256, 1237 �ip CH

,

1169, 1144, 1114 �C-O-C

, 1048, 1016 �ip CH

, 939, 883

XXIV 1.15 (t, 3H, CH3CH

2, J 7.5), 1.37 – 1.42 (m, 3H, CH

3CH

2O + 3H,

CH3CH

2OCO), 3.09 (q 2H, CH

3CH

2, J 7.5), 4.34 – 4.45 (m, 2H,

CH3CH

2O + 2H, CH

3CH

2OCO), 7.37 (d, 2H, C

6H

4, J 8.7), 8.08 (d,

2H, C6H

4, J 8.7), 14.93 (br.s, 1H, NH)

3461 �NH

, 3082 �CH

, 1735 �C=O

, 1717 �C=O

, 1681 �C=O

,

1634 �C=O

, 1606, 1588, 1515 �CC

+ �C=N

, 1325, 1306, 1287, 1268,

1216, 1191, 1163 �ip CH

, 1110 �C-O-C

, 1049, 1020 �ip CH

, 949, 904

XXV 3.95 (s, 3H, CH3), 6.60 – 6.62 (m, 1H, C

4H

3O), 7.40 – 7.49

(m, 5H, C6H

5+ 1H, C

4H

3O), 7.72 (m, 1H, C

4H

3O), 14.40 (br.s, 1H,

NH)

3599 �NH

, 1739 �C=O

, 1687 �C=O

, 1620 �C=O

, 1591, 1560,

1522 �CC

+ �C=N

, 1350, 1295, 1263, 1202, 1153, 1080,

1064 �C-O-C

, 1019, 936

XXVI 3.95 (s, 3H, CH3), 6.63 – 6.66 (m, 1H, C

4H

3O), 7.44 – 7.45 (m, 1H,

C4H

3O), 7.52 (d, 2H, C

6H

4, J 9.0), 7.76 – 7.77 (m, 1H, C

4H

3O),

8.33 (d, 2H, C6H

4, J 9.0), 14.02 (br.s, 1H, NH)

3599 �NH

, 1732 �C=O

, 1687 �C=O

, 1623 �C=O

, 1606, 1593,

1560 �CC

+ �C=N

, 1279, 1250, 1210, 1085, 1108, 1054 �C-O-C

, 1017,

938, 908

XXVII 1.40 (t, 3H, CH3CH

2O, J 7.2), 4.42 (q 2H, CH

3CH

2O, J 7.2),

6.59 – 6.61 (m, 1H, C4H

3O), 7.26 – 7.48 (m, 5H, C

6H

5+ 1H,

C4H

3O), 7.71 – 7.72 (m, 1H, C

4H

3O), 14.39 (br.s, 1H, NH)

1738 �C=O

, 1687 �C=O

, 1619 �C=O

, 1592, 1561, 1521 �CC

+ �C=N

,

1265, 1201, 1168, 1155 �ip CH

, 1094, 1079, 1062 �C-O-C

, 1019, 936,

895

XXVIII 1.39 (t, 3H, CH3CH

2O, J 7.2), 4.42 (q 2H, CH

3CH

2O, J 7.2),

6.64 – 6.66 (m, 1H, C4H

3O), 7.44 – 7.45 (m, 1H, C

4H

3O), 7.52 (d,

2H, C6H

4, J 9.0), 7.76 – 7.77 (m, 1H, C

4H

3O), 8.33 (d, 2H, C

6H

4, J

9.0), 14.01 (br.s, 1H, NH)

3598 �NH

, 3211 �CH

(2-furyl), 1737 �C=O

, 1694 �C=O

, 1640 �C=O

,

1611, 1599, 1562, 1532, 1515 �CC

(4-NO2C

6H

4) + �

C=N+ �

CC

(2-furyl), 1341 �sNO2, 1312, 1169, 1154 �

ip CH, 1066 �

C-O-C, 1021,

944, 862

XXIX 1.43 (t, 3H, CH3CH

2O, J 7.5), 4.46 (q 2H, CH

3CH

2O, J 7.5),

6.62 – 6.64 (m, 1H, C4H

3O), 7.54 – 8.05 (m, 7H, C

10H

7+ 2H,

C4H

3O), 15.38 (br.s, 1H, NH)

1730 �C=O

, 1688 �C=O

, 1622 �C=O

, 1606, 1560, 1536, 1503

�CC

+ �C=N

, 1309, 1259, 1238, 1198, 1149, 1069 �C-O-C

, 942, 901

XXX 1.40 (t, 3H, CH3CH

2O, J 7.5), 4.42 (q 2H, CH

3CH

2O, J 7.5), 4.79

(s, 2H, NH2), 6.63 – 6.65 (m, 1H, C

4H

3O), 7.42 – 7.44 (m, 1H,

C4H

3O), 7.53 (d, 2H, C

6H

4, J 9.0), 7.75 – 7.76 (m, 1H, C

4H

3O),

8.01 (d, 2H, C6H

4, J 9.0), 14.09 (br.s, 1H, NH)

3601 �NH

(hydraz), 3230 �NH

(amide), 3061, 3035 �CH

, 1722 �C=O

,

1691, 1650, 1613 �C2=O

+ �C4=O

+ Amide I, 1594, 1587 �NH

(amide),

1553, 1513 �CC

+ �C=N

, 1327 Amide III, 1310, 1289, 1249, 1207,

1188, 1177 �ip CH

, 1158 �C-O-C

, 1094, 1015,

1003 �ip CH

, 938, 910, 902

XXXI 1.40 (t, 3H, CH3CH

2O, J 7.5), 4.41 (q 2H, CH

3CH

2O, J 7.5),

6.62 – 6.64 (m, 1H, C4H

3O), 7.44 – 7.48 (m, 2H, C

6H

4+ 1H,

C4H

3O), 7.73 – 7.74 (m, 1H, C

4H

3O), 8.13 (d, 2H, C

6H

4, J 9.0),

14.19 (br.s, 1H, NH)

1733 �C=O

, 1685 �C=O

, 1630 �C=O

, 1606, 1588, 1557, 1520

�CC

+ �C=N

, 1275, 1207, 1166, 1128, 1110 �ip CH

, 1067 �C-O-C

, 1024,

936, 925, 903

Page 5: Synthesis and Antimicrobial activity of 3-Arylhydrazono-2,4-Dioxoalkanoate Esters

14.7509(11), c = 11.9370(9); � = 90.00°, � = 101.144(7)°,

� = 90.00°; V = 1220.47 Å3; MW = 248.35; Z = 4; space

group P21/c.

Principal bond lengths (d, Å): O(1) – C(7) 1,230(2),

O(2) – C(9) 1,216(2), O(3) – C(10) 1,199(2), O(4) – C(10)

1,333(2), O(4) – C(12) 1,457(2), N(1) – N(2) 1,297(2),

N(1) – C(1) 1,411(2), N(1) – H-N(1) 0,88(2), N(2) – C(8)

1,328(2), C(1) – C(2) 1,389(2), C(1)–C(6) 1,387(2),

C(2) – C(3) 1,388(2), C(3) – C(4) 1,385(2), C(4) – C(5)

1,387(2), C(5) – C(6) 1,389(2), C(7) – C(8) 1,476(2),

C(7) – C(11) 1,493(2), C(8) – C(9) 1,461(2), C(9) – C(10)

1,539(2); principal bond angles (, °): C(10)O(4)C(12)

116,1(1), N(2)N(1)C(1) 120,5(1), N(2)N(1)H – N(1) 116(1),

C(1)N(1)H – N(1) 124(1), N(1)N(2)C(8) 121,3(1),

N(1)C(1)C(2) 117,5(1), N(1)C(1)C(6) 121,8(1),

C(2)C(1)C(6) 120,7(1), C(1)C(2)C(3) 119,4(1),

C(2)C(3)C(4) 120,4(1), C(3)C(4)C(5) 119,6(1),

C(4)C(5)C(6) 120,7(1), C(1)C(6)C(5) 119,2(1),

O(1)C(7)C(8) 118,3(1), O(1)C(7)C(11) 120,9(1),

C(8)C(7)C(11) 120,8(1), N(2)C(8)C(7) 124,6(1),

N(2)C(8)C(9) 111,0(1), C(7)C(8)C(9) 124,4(1),

O(2)C(9)C(8) 127,3(1), O(2)C(9)C(10) 118,1(1),

C(8)C(9)C(10) 114,6(1), O(3)C(10)O(4) 126,5(1),

O(3)C(10)C(9) 122,6(1), O(4)C(10)C(9) 110,8(1). The com-

plete table of atomic coordinates and bond lengths and an-

gles was deposited in the Cambridge Crystallographic Data

Centre (No. 873482).

EXPERIMENTAL BIOLOGICAL PART

Antimicrobial activity of the synthesized compounds

with respect to standard strains of E. coli M17

and Staphylo-

coccus aureus P-209 was determined by the standard method

of serial dilutions in meat-peptone bullion with bacterial

loading 5 � 106

microbes/mL of solution [4]. The minimum

inhibitory concentration (MIC) of the compounds, i.e., the

maximum dilution that gave complete growth inhibition of

the bacterial test cultures, was taken as the active dose [5].

The antimicrobial effects of the synthesized compounds were

compared with those of ethacridine lactate and furacilin.

It was found that the majority of the tested compounds

exhibited weak antimicrobial effects with respect to strains

E. coli M17

and S. aureus P-209 with MIC from 250 to

1,000 �g/mL (Table 1). Six compounds (XIV, XVI, XVIII,

XXI, XXVI, and XIX) were inactive with respect to one of

the tested strains; seven compounds (IV, VIII, XI, XV, XX,

XXIII, and XXXI), with respect to both test strains. Com-

pounds VI, XIII, and XXX were most active with respect to

S. aureus P-209 (MIC 250 �g/mL) and were similar in

strength to furacilin. However, their effects were half as great

with respect to E. coli M17

(MIC 500 �g/mL). The signifi-

cant antimicrobial activity of compounds VI, XIII, and XXX

was probably due to the presence in their structures of an am-

ide, in analogy to furacilin.

REFERENCES

1. E. V. Pimenova, R. A. Khamatgaleev, E. V. Voronina, et al.,

Khim.-farm. Zh., 33(8), 22 – 23 (1999).

2. T. V. Levenets, V. O. Kozminykh, and A. O. Tolstikova, Vestn.

Yuzhno-Ural. Gos. Univ., Ser. Khim., No. 9, 24(283), 32 – 38

(2012).

3. S. G. Perevalov, Ya. V. Burgart, V. I. Saloutin, et al., Usp. Khim.,

70(11), 1039 – 1058 (2001).

4. G. N. Pershin, Methods of Experimental Chemotherapy [in Rus-

sian], Meditsinskaya Literatura, Moscow (1971), pp. 100,

109 – 117.

5. L. S. Strachunskii, Yu. B. Belousov, and S. N. Kozlov (eds.),

Practical Handbook of Anti-infection Chemotherapy [in Rus-

sian], ZAO Borges, Moscow (2002), pp. 17, 73 – 78.

Synthesis and Antimicrobial Activity 535

O

R CH3

AlkO

OAlk

O

O

NaH

+

I – XXXI

A B

O

R

OAlk

O

O

H

N

N ArN

NO

OAlk

Ar

O

R

O

H

Ar N+

N Cl-

ArNH2

+ HCl + NaNO2

Fig. 1. Synthetic scheme for 4-substituted 3-arylhydrazono-2,4-

dioxoalkanoate esters (I-XXXI).

O3

C12C10

O2

C9

C11

C7 O1

C8

N2O4

C6C5

C1

N1

C3

C2 C4

Fig. 2. Molecular structure of methyl 3-phenylhydrazono-2,4-di-

oxopentanoate (I).