symmetrical components explained by example

14
Symmetrical Components Explained by Example Symmetrical components is the name given to a methodology discovered by Charles Legeyt Fortescue in 1913. Fortescue demonstrated that any set of unbalanced three-phase quantities could be expressed as the sum of three symmetrical sets of balanced phasors. Using this method, unbalanced system conditions, like those caused by common fault types may be analyzed with a "Per Phase" approach. According to Fortescue’s methodology, there are three sets of independent phasors (components) in a three-phase system: Positive Sequence: β€’ Supplied by the "Generator " or "Source" and are always present. β€’ Equal in Magnitude. β€’ Rotate counter-clockwise with the "Sequence" A-B-C-A ....etc. β€’ First A, then B, then C, then A again, etc. β€’ In other words: B Lags A, C Lags B, A Lags C (by 120 Degrees.... or 5.56 sec in a 60Hz system). Negative Sequence: β€’ Negative Sequence "Generator " or "Source" Voltages will only exist if the "Source" is unbalanced. β€’ Negative Sequence System Voltages and Currents will exist during unbalanced fault conditions. β€’ Equal in magnitude. β€’ Rotate counter-clockwise with the "Sequence" A-C-B-A ....etc. β€’ First A, then C , then B, then A again, etc. β€’ In other words: C Lags A, B Lags C, A Lags B (by 120 Degrees.... or 5.56 sec in a 60Hz system). Zero Sequence: β€’ Zero Sequence "Generator " or "Source" Voltages will not exist in a "Normal" 3-Phase Source. β€’ Zero Sequence System Voltages and Currents will exist during unbalanced fault conditions when "Ground" Currents flow. β€’ Equal in magnitude. β€’ Rotate counter-clockwise with no "Sequence" . β€’ In other words: A and B and C then 360 Degrees later... A and B and C again ....etc. Question Is ..... How to "Decompose" an Unbalance set of 3-Phase Phasors into their Positive, Negative, and Zero Sequence Components Or ..... How to "Compose" a set of 3-Phase Vectors Given Phase "A" Positive, Negative, and Zero Sequence Vectors Note: The A, B, and C Phase Vectors could be Voltage or Current Positive Sequence Phasors Negative Sequence Phasors

Upload: others

Post on 18-Oct-2021

26 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Symmetrical Components Explained by Example

Symmetrical Components Explained by Example

Symmetrical components is the name given to a methodology discovered by Charles Legeyt Fortescue in 1913.Fortescue demonstrated that any set of unbalanced three-phase quantities could be expressed as the sum of three symmetrical sets of balanced phasors. Using this method, unbalanced system conditions, like those caused by common fault types may be analyzed with a "Per Phase" approach.

According to Fortescue’s methodology, there are three sets of independent phasors (components) in a three-phase system: Positive Sequence: β€’ Supplied by the "Generator " or "Source" and are always present. β€’ Equal in Magnitude.β€’ Rotate counter-clockwise with the "Sequence" A-B-C-A ....etc.β€’ First A, then B, then C, then A again, etc.β€’ In other words: B Lags A, C Lags B, A Lags C (by 120 Degrees.... or 5.56 sec in a 60Hz system).

Negative Sequence: β€’ Negative Sequence "Generator " or "Source" Voltages will only exist if the "Source" is unbalanced. β€’ Negative Sequence System Voltages and Currents will exist during unbalanced fault conditions.β€’ Equal in magnitude.β€’ Rotate counter-clockwise with the "Sequence" A-C-B-A ....etc.β€’ First A, then C , then B, then A again, etc.β€’ In other words: C Lags A, B Lags C, A Lags B (by 120 Degrees.... or 5.56 sec in a 60Hz system).

Zero Sequence: β€’ Zero Sequence "Generator " or "Source" Voltages will not exist in a "Normal" 3-Phase Source. β€’ Zero Sequence System Voltages and Currents will exist during unbalanced fault conditions when "Ground" Currents

flow.β€’ Equal in magnitude.β€’ Rotate counter-clockwise with no "Sequence" .β€’ In other words: A and B and C then 360 Degrees later... A and B and C again ....etc.

Question Is .....How to "Decompose" an Unbalance set of 3-Phase Phasors into their Positive, Negative, and Zero Sequence ComponentsOr .....How to "Compose" a set of 3-Phase Vectors Given Phase "A" Positive, Negative, and Zero Sequence VectorsNote: The A, B, and C Phase Vectors could be Voltage or Current

Positive Sequence Phasors

Negative Sequence Phasors

Page 2: Symmetrical Components Explained by Example

Symmetrical Components Explained by Example (cont.)

𝐴 = 𝐴+ + π΄βˆ’ + 𝐴0

𝐡 = 𝐡+ + π΅βˆ’ + 𝐡0

𝐢 = 𝐢+ + πΆβˆ’ + 𝐢0

A,B,C Phasors each have 3 components (positive, negative, zero)

where:

𝐡+ = 𝐴+∠240π΅βˆ’ = π΄βˆ’βˆ 120𝐡0 = 𝐴0

𝐢+ = 𝐴+∠120πΆβˆ’ = π΄βˆ’βˆ 240𝐢0 = 𝐴0

𝛼 = 1∠120°𝛼2 = 1∠240

let:

then:

𝐴 = 𝐴0 + 𝐴+ + π΄βˆ’

𝐡 = 𝐴0 + 𝛼2𝐴+ + π›Όπ΄βˆ’

𝐢 = 𝐴0 + 𝛼𝐴+ + 𝛼2π΄βˆ’

solving for A+, A-, A0

𝐴0 =1

3𝐴 + 𝐡 + 𝐢

𝐴+ =1

3𝐴 + 𝛼𝐡 + 𝛼2𝐢

π΄βˆ’ =1

3𝐴 + 𝛼2𝐡 + 𝛼𝐢

in matrix form:

𝐴0

𝐴+

π΄βˆ’=1

3

𝐴𝐡𝐢

1 1 11 𝛼 𝛼2

1 𝛼2 𝛼

𝐴𝐡𝐢

=1

3

𝐴0

𝐴+

π΄βˆ’

1 1 11 𝛼2 𝛼1 𝛼 𝛼2

start:

Page 3: Symmetrical Components Explained by Example

Symmetrical Components Explained by Example (cont.)

Now ... How to Apply Symmetrical Components to Faults in Three-Phase Power Systems:β€’ First .... important to realize that the source or generator voltage is balanced (in three-phase power systems)β€’ Phase A source voltage is chosen for the reference angle (0)

|π‘‰βˆ…| =|𝑉𝐿𝐿|

3𝑉𝐴 = |π‘‰βˆ…|∠0Β° 𝑉𝐡 = |π‘‰βˆ…|∠240Β° 𝑉𝐢 = |π‘‰βˆ…|∠120Β°

Because the source or generator voltage is balanced ..... negative and zero sequence source voltages are zero (do not exist)

π‘‰π΄βˆ’ = π‘‰π΅βˆ’ = π‘‰πΆβˆ’ = 0∠0𝑉𝐴0 = π‘‰π΅π‘œ = π‘‰πΆπ‘œ = 0∠0𝑉𝐴+ = |π‘‰βˆ…|∠0𝑉𝐡+ = |π‘‰βˆ… |∠240°𝑉𝐢+ = |π‘‰βˆ…| ∠120Β°

In other words .... β€’ The source voltages are nothing new ... the same per-phase voltages used in normal circuit analysis.

Page 4: Symmetrical Components Explained by Example

Symmetrical Components Explained by Example (cont.)

Now that a per-phase fault analysis is possible ... How to model phase impedances?β€’ First .... A,B,C phase impedances are assumed equal (in three-phase power systems)β€’ Next... Draw the Circuit to be Analyzed .... Using only Phase A.

This circuit represents the source voltage and Thevenin impedance looking into some fault on the systemβ€’ the Thevenin impedance consists of positive, negative, and zero sequence componentsβ€’ notice that loads are not considered in fault analysis.β€’ important to realize that all values are phasor quantitiesβ€’ next… draw the three sequence networks

𝑉𝐴+ = |π‘‰βˆ…|∠0Β° Load = 0

Z

𝑍 = 𝑅 + 𝑗𝑋

𝑉𝐴+

Z+ Zo

𝑉𝐴0 = 0

Z-

π‘‰π΄βˆ’ = 0

Page 5: Symmetrical Components Explained by Example

Symmetrical Components Explained by Example (cont.)

Next... The Trick is how to Connect the Sequence Networks for Different Fault Conditions.Although it may not be Intuitive ..... This is how it works:

Three-Phase to Ground Fault (3LG):β€’ this is a balanced fault... no ground current will flowβ€’ since this is a balanced Fault..... no negative sequence current will flowβ€’ since there is no ground current... no zero sequence current will flowβ€’ the three sequence networks are not connectedβ€’ this means that you only have to deal with the positive sequence networkβ€’ the currents in the negative and zero sequence networks are zero… (no voltage to source them)β€’ analyze the positive sequence network to obtain the A phase current or voltagesβ€’ B and C phase current will have the same magnitude as A… but shifted by +/- 120

Single Line to Ground Fault (1LG):β€’ this is an unbalanced fault.... ground Current will Flowβ€’ since this is an unbalanced fault..... negative sequence current will flowβ€’ since there is ground current..... zero sequence current will flowβ€’ the positive, negative, and zero sequence networks are connected in seriesβ€’ analyze this connection to obtain the A phase currents or voltagesβ€’ you will find that the three sequence currents in phase A are equalβ€’ use the phase A currents to calculate the B and C phases (using the transformations described above)

Line-to-Line Fault (LL):β€’ this is an unbalanced fault.... but ground current will not Flowβ€’ since this is an unbalanced fault..... negative sequence current will flowβ€’ since there is no ground current..... zero sequence current will not flowβ€’ the positive and negative sequence networks are connected in parallelβ€’ analyze this connection to obtain the A phase currents or voltagesβ€’ you will find that the positive and negative sequence currents are equal but shifted by 180β€’ use the phase A currents to calculate the B and C phases (using the transformations described above)

Line-to-Line to Ground Fault (2LG):β€’ this is an unbalanced fault.... ground current will flowβ€’ Since this is an Unbalanced Fault..... Negative Sequence Current will Flowβ€’ Since there is Ground Current..... Zero Sequence Current will Flowβ€’ the positive, negative and zero sequence networks are connected in parallelβ€’ analyze this connection to obtain the A phase currents or voltagesβ€’ you will find that the positive sequence current is equal to the sum of the negative and zero sequence currents shifted by 180β€’ use the phase A currents to calculate the B and C phases (using the transformations described above)

Page 6: Symmetrical Components Explained by Example

ExampleThree-Phase Fault (3L) -or- Three-Phase to Ground Fault (3LG):

Z+

𝑉𝐴+𝐼𝐴+

Z-

πΌπ΄βˆ’ = 0

Zo

πΌπ΄π‘œ = 0

𝐿𝑒𝑑:𝑍+ = 2 + 𝑗10 = 10.2∠78.7Β° Ξ©π‘βˆ’ = π‘π‘œπ‘‘ 𝑁𝑒𝑒𝑑𝑒𝑑𝑍0 = π‘π‘œπ‘‘ π‘π‘’π‘’π‘‘π‘’π‘‘π‘†π‘¦π‘ π‘‘π‘’π‘š 𝑉𝐿𝐿 = 138π‘˜π‘‰

|π‘‰βˆ…| =𝑉𝐿𝐿

3= 79674

𝐼𝐴+ =𝑉𝐴+

𝑍+=

79674∠0°

10.2∠78.7°= 7811∠281.3°

π‘Šπ‘’ πΆπ‘Žπ‘› π‘π‘œπ‘€ πΆπ‘Žπ‘™π‘π‘’π‘™π‘Žπ‘‘π‘’ π‘‘β„Žπ‘’ 𝐡+and 𝐢+ Values:𝐼𝐡+ = 𝐼𝐴+ 1∠240Β° = 7811∠281.3Β° 1∠240Β° = 7811∠161.3°𝐼𝐢+ = 𝐼𝐴+ 1∠120Β° = 7811∠281.3Β° 1∠120Β° = 7811∠41.3Β°π‘π‘œπ‘€ πΆπ‘Žπ‘™π‘π‘’π‘™π‘Žπ‘‘π‘’ π‘‘β„Žπ‘’ "Total" 𝐴, 𝐡 and 𝐢 Values:𝐼𝐴 = 𝐼𝐴+ + πΌπ΄βˆ’ + πΌπ΄π‘œ = 𝐼𝐴+ + 0 + 0 = 𝐼𝐴+ = 7811∠281.3Β° π΄π‘šπ‘π‘ πΌπ΅ = 𝐼𝐡+ + πΌπ΅βˆ’ + πΌπ΅π‘œ = 𝐼𝐡+ + 0 + 0 = 𝐼𝐡+ = 7811∠161.3Β° π΄π‘šπ‘π‘ πΌπΆ = 𝐼𝐢+ + πΌπΆβˆ’ + πΌπΆπ‘œ = 𝐼𝐢+ + 0 + 0 = 𝐼𝐢+ = 7811∠41.3Β° π΄π‘šπ‘π‘ 

πΌπ‘“π‘Žπ‘’π‘™π‘‘ = 𝐼𝐴+ + 𝐼𝐡+ + 𝐼𝐢+ = 0

3L or 3LG Fault

πΌπ΄βˆ’ = πΌπ΅βˆ’ = πΌπΆβˆ’ = 0 𝐼𝐴0 = 𝐼𝐡0 = 𝐼𝐢0 = 0

Page 7: Symmetrical Components Explained by Example

1LG Fault

ExampleSingle Line-to-Ground Fault (1LG) on Phase "A":

Z+

𝑉𝐴+𝐼𝐴+

Z-

πΌπ΄βˆ’

Zo

πΌπ΄π‘œ

𝐿𝑒𝑑:π‘†π‘¦π‘ π‘‘π‘’π‘š π‘‰π‘œπ‘™π‘‘π‘Žπ‘”π‘’ = 69π‘˜π‘‰

|π‘‰βˆ…| =𝑉𝐿𝐿

3=69π‘˜π‘‰

3= 39837 𝑉

𝑉𝐴+ = 39837∠0Β° = 39837 + 𝑗0 𝑉𝑍+ = 9 + 𝑗20 = 21.93Ω∠65.77Β° Ξ©π‘βˆ’ = 9 + 𝑗20 = 21.93Ω∠65.77Β° Ω𝑍0 = 16 + 𝑗39 = 42.15Ω∠67.69Β° Ξ©

πΉπ‘–π‘Ÿπ‘ π‘‘ π‘π‘œπ‘‘π‘–π‘π‘’: 𝐼𝐴+= πΌπ΄βˆ’ = πΌπ΄π‘œ

𝑍𝐸𝑄 = 𝑍+ + π‘βˆ’ + π‘π‘œπ‘πΈπ‘„ = 9 + 𝑗20 + 9 + 𝑗20 + 16 + 𝑗39 = 34 + 𝑗79 = 86.0∠66.71Β°

𝐼𝐴+ = πΌπ΄βˆ’ = πΌπ΄π‘œ =𝑉𝐴+

𝑍𝐸𝑄=

39837∠0°

86.0∠66.71°= 463.2∠293.3°

π‘…π‘’π‘π‘Žπ‘™π‘™ π‘‡β„Žπ‘Žπ‘‘:πΌπ΄π‘œ = πΌπ΅π‘œ = πΌπΆπ‘œ = 463.2∠293.3Β° = 183.2 βˆ’ 𝑗425.4

Page 8: Symmetrical Components Explained by Example

πΆπ‘Žπ‘™π‘π‘’π‘™π‘Žπ‘‘π‘’ π‘‘β„Žπ‘’ 𝐡+and 𝐢+ Values:𝐼𝐡+ = 𝐼𝐴+ 1∠ βˆ’ 120Β° = 463.2∠ βˆ’ 66.71 Β° 1∠240Β° = 463.2∠173.3Β° = βˆ’460.0 + 𝑗54.0𝐼𝐢+ = 𝐼𝐴+ 1∠120Β° = 463.2∠ βˆ’ 66.71 Β° 1∠120Β° = 463.2∠53.3Β° = 276.9 + 𝑗371.3

πΆπ‘Žπ‘™π‘π‘’π‘™π‘Žπ‘‘π‘’ π‘‘β„Žπ‘’ π΅βˆ’and πΆβˆ’ Values:πΌπ΅βˆ’ = πΌπ΄βˆ’ 1∠120Β° = 463.2∠ βˆ’ 66.71 Β° 1∠120Β° = 463.2∠53.3Β° = 276.9 + 𝑗371.3πΌπΆβˆ’ = πΌπ΄βˆ’ 1∠ βˆ’ 120Β° = 463.2∠ βˆ’ 66.71 Β° 1∠240Β° = 463.2∠173.3Β° = βˆ’460.0 + 𝑗54.0

πΆπ‘Žπ‘™π‘π‘’π‘™π‘Žπ‘‘π‘’ π‘‘β„Žπ‘’ "Total" 𝐴, 𝐡 and 𝐢 Values:𝐼𝐴 = 𝐼𝐴+ + πΌπ΄βˆ’ + πΌπ΄π‘œ = 3πΌπ΄π‘œ = 3 463.2∠293.3Β° = 1389.6∠293.3°𝐼𝐡 = 𝐼𝐡+ + πΌπ΅βˆ’ + πΌπ΅π‘œ = βˆ’460.0 + 𝑗54.0 + 276.9 + 𝑗371.3 + 183.1 βˆ’ 𝑗425.5 = 0 + 𝑗0 = 0𝐼𝐢 = 𝐼𝐢+ + πΌπΆβˆ’ + πΌπΆπ‘œ = 276.9 + 𝑗371.3 βˆ’ 460.0 + 𝑗54.0 + 183.1 βˆ’ 𝑗425.5 = 0 + 𝑗0 = 0

π‘‡β„Žπ‘’π‘ π‘’ π‘Ÿπ‘’π‘ π‘’π‘™π‘‘π‘  π‘ β„Žπ‘œπ‘€ π‘‘β„Žπ‘Žπ‘‘ π‘›π‘œ π‘“π‘Žπ‘’π‘™π‘‘ π‘π‘’π‘Ÿπ‘Ÿπ‘’π‘›π‘‘ 𝑖𝑠 π‘π‘œπ‘›π‘‘π‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘Ÿπ‘œπ‘š 𝐡 π‘Žπ‘›π‘‘ 𝐢 π‘β„Žπ‘Žπ‘ π‘’π‘  … .π‘šπ‘Žπ‘˜π‘’π‘  𝑠𝑒𝑛𝑠𝑒

1LG Fault (cont.)

πΌπ‘“π‘Žπ‘’π‘™π‘‘ = 𝐼𝐴 + 𝐼𝐡 + πΌπΆπΌπ‘“π‘Žπ‘’π‘™π‘‘ = 1389.6∠293.3Β°

𝑙𝑒𝑑:πΌπ΅π‘Žπ‘ π‘’ = 𝐼𝐴+ = 463.2π‘‘β„Žπ‘’π‘›:

πΌπ‘“π‘Žπ‘’π‘™π‘‘π‘π‘’

=πΌπ‘“π‘Žπ‘’π‘™π‘‘πΌπ΅π‘Žπ‘ π‘’

=1389.6∠293.3°

463.2πΌπ‘“π‘Žπ‘’π‘™π‘‘π‘π‘’

= 3.0∠293.3Β° = 3.0∠ βˆ’ 66.7

Page 9: Symmetrical Components Explained by Example

LL Fault

ExampleLine-to-Line Fault (LL) on Phases B to C:

𝐼𝐴+

Z+

𝑉𝐴+

-Z

πΌπ΄βˆ’

Zo

πΌπ΄π‘œ = 0

𝐿𝑒𝑑:π‘†π‘¦π‘ π‘‘π‘’π‘š π‘‰π‘œπ‘™π‘‘π‘Žπ‘”π‘’ = 138π‘˜π‘‰π‘+ = 1Ξ© + 𝑗8Ξ© = 8.06Ω∠82.87Β°π‘βˆ’ = 1Ξ© + 𝑗8Ξ© = 8.06Ω∠82.87°𝑍0 = π‘π‘œπ‘‘ 𝑁𝑒𝑒𝑑𝑒𝑑

|π‘‰βˆ…| =𝑉𝐿𝐿

3=138π‘˜π‘‰

3= 79674

𝑉𝐴+ = 79674∠0Β° = 79674 + 𝑗0

πΉπ‘–π‘Ÿπ‘ π‘‘ π‘π‘œπ‘‘π‘–π‘π‘’: 𝐼𝐴+= βˆ’πΌπ΄βˆ’ π‘Žπ‘›π‘‘ πΌπ΄π‘œ = 0𝑍𝐸𝑄 = 𝑍+ + π‘βˆ’ = 1 + 𝑗8 + 1 + 𝑗8 = 2 + 𝑗16 = 16.1245∠82.87Β°

𝐼𝐴+ = βˆ’πΌπ΄βˆ’=𝑉𝐴+

𝑍𝐸𝑄=

79674∠0°

16.1245∠82.87°= 4941.18 ∠277.13°

𝐼𝐴+ = 4941.18 ∠277.13Β° = 613.30 βˆ’ 𝑗4903.0πΌπ΄βˆ’ = 4941.18 ∠97.13Β° = βˆ’613.30 + 𝑗4903.0

π‘π‘’π‘Ÿπ‘œ π‘†π‘’π‘žπ‘’π‘’π‘›π‘π‘’:πΌπ΄π‘œ = πΌπ΅π‘œ = πΌπΆπ‘œ = 0

πΆπ‘Žπ‘™π‘π‘’π‘™π‘Žπ‘‘π‘’ π‘‘β„Žπ‘’ 𝐡+and 𝐢+ Values:𝐼𝐡+ = 𝐼𝐴+ 1∠240Β° = 4941.18∠277.13Β° 1∠240Β° = 4941.18∠157.13Β° = βˆ’4552.75 + 𝑗1920.35𝐼𝐢+ = 𝐼𝐴+ 1∠120Β° = 4941.18∠277.13Β° 1∠120Β° = 4941.18∠37.13Β° = 3939.44 + 𝑗2982.62

Page 10: Symmetrical Components Explained by Example

LL Fault (cont.)

πΆπ‘Žπ‘™π‘π‘’π‘™π‘Žπ‘‘π‘’ π‘‘β„Žπ‘’ π΅βˆ’and πΆβˆ’ Values:πΌπ΅βˆ’ = πΌπ΄βˆ’ 1∠120Β° = 4941.18∠97.13Β° 1∠120Β° = 4941.18∠217.13Β° = βˆ’3939.44 βˆ’ 𝑗2982.62πΌπΆβˆ’ = πΌπ΄βˆ’ 1∠240Β° = 4941.18∠97.13Β° 1∠240Β° = 4941.18∠337.13Β° = 4552.75 βˆ’ 𝑗1920.35

πΆπ‘Žπ‘™π‘π‘’π‘™π‘Žπ‘‘π‘’ π‘‘β„Žπ‘’ "Total" 𝐴, 𝐡 and 𝐢 Values:𝐼𝐴 = 𝐼𝐴+ + πΌπ΄βˆ’ + πΌπ΄π‘œ = 613.30 βˆ’ 𝑗4903.0 βˆ’ 613.30 + 𝑗4903.0 + 0 = 0𝐼𝐡 = 𝐼𝐡+ + πΌπ΅βˆ’ + πΌπ΅π‘œ = βˆ’4552.75 + 𝑗1920.35 βˆ’ 3939.44 βˆ’ 𝑗2982.6 + 0 = βˆ’8492.2 + 𝑗1062.25 = 8558.19∠187.1°𝐼𝐢 = 𝐼𝐢+ + πΌπΆβˆ’ + πΌπΆπ‘œ = 3939.44 + 𝑗2982.62 + 4552.75 βˆ’ 𝑗1920.35 + 0 = 8492.2 βˆ’ 𝑗1062.25 = 8558.19∠7.1

π‘‡β„Žπ‘’π‘ π‘’ π‘Ÿπ‘’π‘ π‘’π‘™π‘‘π‘  π‘ β„Žπ‘œπ‘€ π‘‘β„Žπ‘Žπ‘‘:

π‘›π‘œ π‘“π‘Žπ‘’π‘™π‘‘ π‘π‘’π‘Ÿπ‘Ÿπ‘’π‘›π‘‘ π‘“π‘™π‘œπ‘€π‘  𝑖𝑛 𝐴 π‘β„Žπ‘Žπ‘ π‘’β€¦

π‘œπ‘˜ 𝑠𝑖𝑛𝑐𝑒 𝐴 π‘β„Žπ‘Žπ‘ π‘’ π‘€π‘Žπ‘  π‘›π‘œπ‘‘ π‘“π‘Žπ‘’π‘™π‘‘π‘’π‘‘.

𝐡 π‘Žπ‘›π‘‘ 𝐢 π‘β„Žπ‘Žπ‘ π‘’ π‘“π‘Žπ‘’π‘™π‘‘ π‘π‘’π‘Ÿπ‘Ÿπ‘’π‘›π‘‘π‘  π‘Žπ‘Ÿπ‘’ π‘’π‘žπ‘’π‘Žπ‘™ π‘Žπ‘›π‘‘ π‘œπ‘π‘π‘œπ‘ π‘–π‘‘π‘’β€¦

π‘šπ‘Žπ‘˜π‘’π‘  𝑠𝑒𝑛𝑠𝑒 π‘“π‘œπ‘Ÿ π‘π‘Žπ‘ π‘ π‘–π‘£π‘’ 𝑠𝑖𝑔𝑛 π‘π‘œπ‘›π‘£π‘’π‘›π‘‘π‘–π‘œπ‘›.

π‘π‘œπ‘‘ π‘π‘Žπ‘™π‘π‘’π‘™π‘Žπ‘‘π‘’π‘‘ β„Žπ‘’π‘Ÿπ‘’, 𝑏𝑒𝑑…

𝐡 π‘‘π‘œ 𝐢 π‘“π‘Žπ‘’π‘™π‘‘ π‘£π‘œπ‘™π‘‘π‘Žπ‘”π‘’ 𝑖𝑠 π‘œπ‘π‘£π‘–π‘œπ‘’π‘ π‘™π‘¦ π‘§π‘’π‘Ÿπ‘œ, β„Žπ‘œπ‘€π‘’π‘£π‘’π‘Ÿβ€¦

π‘‘β„Žπ‘’ π‘£π‘œπ‘‘π‘Žπ‘”π‘’ π‘Žπ‘‘ π‘‘β„Žπ‘’ 𝐡𝐢 "π‘“π‘Žπ‘’π‘™π‘‘ π‘ƒπ‘œπ‘–π‘›π‘‘" π‘€π‘–π‘‘β„Ž π‘Ÿπ‘’π‘ π‘π‘’π‘π‘‘ π‘‘π‘œ π‘›π‘’π‘’π‘‘π‘Ÿπ‘Žπ‘™

𝑖𝑠 1/2 π‘œπ‘“ π‘‘β„Žπ‘’ π‘β„Žπ‘Žπ‘ π‘’ π‘£π‘œπ‘™π‘‘π‘Žπ‘”π‘’

𝑙𝑒𝑑:πΌπ΅π‘Žπ‘ π‘’ = 𝐼𝐴+ = 4941.18π‘‘β„Žπ‘’π‘›:

𝐼𝐡𝑝𝑒

=𝐼𝐡

πΌπ΅π‘Žπ‘ π‘’=8558.19∠187.1Β°

4941.18= 1.732∠187.1°

𝐼𝐢𝑝𝑒

=𝐼𝐢

πΌπ΅π‘Žπ‘ π‘’=8558.19∠7.1Β°

4941.18= 1.732∠7.1°

Page 11: Symmetrical Components Explained by Example

2LG Fault

ExampleLine-to-Line-to-Ground Fault (2LG) on Phases B to C to Ground:

𝐼𝐴+

Z+

𝑉𝐴+

𝐿𝑒𝑑:𝑍+ = 0.6 + 𝑗4 = 4.0447∠81.469Β° Ξ©π‘βˆ’ = 0.6 + 𝑗4 = 4.0447∠81.469Β° Ω𝑍0 = 1.4 + 𝑗6 = 6.161∠76.866Β° Ξ©π‘†π‘¦π‘ π‘‘π‘’π‘š π‘‰π‘œπ‘™π‘‘π‘Žπ‘”π‘’ = 69π‘˜π‘‰

|π‘‰βˆ…| =𝑉𝐿𝐿

3=69π‘˜π‘‰

3= 39837.2

𝑉𝐴+ = 39837∠0Β° = 39837 + 𝑗0

πΉπ‘–π‘Ÿπ‘ π‘‘ π‘π‘œπ‘‘π‘–π‘π‘’: 𝐼𝐴++ πΌπ΄βˆ’+ πΌπ΄π‘œ = 0𝑍𝐸𝑄 = 𝑍+ + π‘βˆ’ βˆ₯ 𝑍0

π‘βˆ’ βˆ₯ 𝑍0 =π‘βˆ’π‘0

π‘βˆ’ + 𝑍0=(4.0447∠81.47Β°)(6.161∠76.87Β° )

0.6 + 𝑗4 + (1.4 + 𝑗6)=24.919∠158.34Β°

10.198∠78.69Β°= 2.4436∠79.645Β° = 0.4392 + 𝑗2.4038

𝑍𝐸𝑄 = 0.6 + 𝑗4 + 0.4392 + 𝑗2.4038 = 1.03923 + 𝑗6.40385 = 6.487623∠80.782Β°

𝐼𝐴+ =𝑉𝐴+

𝑍𝐸𝑄=

39837∠0°

6.487623∠80.782Β°= 6140.46 ∠279.218Β° = 983.62 βˆ’ 𝑗6061.19

πΌπ΄βˆ’ =βˆ’πΌπ΄+𝑍0π‘βˆ’ + 𝑍0

𝐼𝐴0 =βˆ’πΌπ΄+π‘βˆ’π‘βˆ’ + 𝑍0

Page 12: Symmetrical Components Explained by Example

2LG Fault (cont.)

Page 13: Symmetrical Components Explained by Example

2LG Fault (cont.)

πΊπ‘Ÿπ‘œπ‘’π‘›π‘‘ π‘“π‘Žπ‘’π‘™π‘‘ πΆπ‘’π‘Ÿπ‘Ÿπ‘’π‘›π‘‘:𝐼𝐺 = 𝐼𝐴 + 𝐼𝐡 + 𝐼𝐢 = 0 + 𝑗0 βˆ’ 9194.4 + 𝑗2308.1 + 7675.7 + 𝑗4838.8 = βˆ’1518.3 + 𝑗7146.9 = 7306.4∠102.0Β°π‘‘β„Žπ‘’π‘ π‘’ π‘Ÿπ‘’π‘ π‘’π‘™π‘‘π‘  π‘ β„Žπ‘œπ‘€ π‘‘β„Žπ‘Žπ‘‘ π‘›π‘œ π‘“π‘Žπ‘’π‘™π‘‘ π‘π‘’π‘Ÿπ‘Ÿπ‘’π‘›π‘‘ πΉπ‘™π‘œπ‘€π‘  𝑖𝑛 π‘ƒβ„Žπ‘Žπ‘ π‘’ 𝐴… π‘œπ‘˜ 𝑠𝑖𝑛𝑐𝑒 𝐴 𝑝hπ‘Žπ‘ π‘’ π‘€π‘Žπ‘  π‘›π‘œπ‘‘ π‘“π‘Žπ‘’π‘™π‘‘π‘’π‘‘.π‘Žπ‘™π‘ π‘œβ€¦ . π‘‘β„Žπ‘’ π‘ π‘’π‘š π‘œπ‘“ 𝐴, 𝐡, π‘Žπ‘›π‘‘ 𝐢 π‘“π‘Žπ‘’π‘™π‘‘ π‘π‘’π‘Ÿπ‘Ÿπ‘’π‘›π‘‘π‘  = π‘”π‘Ÿπ‘œπ‘’π‘›π‘‘ π‘“π‘Žπ‘’π‘™π‘‘ π‘π‘’π‘Ÿπ‘Ÿπ‘’π‘›π‘‘ 3𝐼𝐴0

𝑙𝑒𝑑:πΌπ΅π‘Žπ‘ π‘’ = 𝐼𝐴+ = 6140.46π‘‘β„Žπ‘’π‘›:

𝐼𝐡𝑝𝑒

=𝐼𝐡

πΌπ΅π‘Žπ‘ π‘’=9479.7∠165.9Β°

6140.46= 1.544∠165.9°

𝐼𝐢𝑝𝑒

=𝐼𝐢

πΌπ΅π‘Žπ‘ π‘’=9073.6∠32.23Β°

6140.46= 1.478∠32.23°

𝐼𝐺𝑝𝑒

=𝐼𝐺

πΌπ΅π‘Žπ‘ π‘’=7306.4∠102.0Β°

6140.46= 1.190∠102.0°

Page 14: Symmetrical Components Explained by Example

Questions or Comments …

contact us