sustainable landfill foundation - gas modeling - literature review methane from lanfills

75
LITERATURE REVIEW: METHANE FROM LANDFILLS METHODS TO QUANTIFY GENERATION, OXIDATION AND EMISSION Hans Oonk April 2010

Upload: sughosh

Post on 07-Nov-2015

240 views

Category:

Documents


5 download

DESCRIPTION

Methane Emissions Update

TRANSCRIPT

  • LITERATUREREVIEW:METHANEFROMLANDFILLSMETHODSTOQUANTIFYGENERATION,OXIDATIONANDEMISSIONHansOonk April2010

  • Fabianusstraat127333BDApeldoorn

    TheNetherlandswww.oonkay.nl

    LITERATUREREVIEW:METHANEFROMLANDFILLSMETHODSTOQUANTIFYGENERATION, OXIDATIONANDEMISSIONFinalreportDate: April2010Author: HansOonk,OonKAY! Incooperationwith:

    For: SustainableLandfillFoundation

    c/oNVAfvalzorgHoldingPOBox21566ZGAssendelft

    Numberofpages: 75ThecopyrightofthisreportlieswithOonKAY!Allrightsarethereforereserved.Fortherightsandobligationsofcontractorandcontractant,pleasebereferredtothegeneralconditionsofOonKAY!,orthespecificconditionsundertheagreementconcludedbetweenparties.Thecontractantisallowedtosubmitthisreporttodirectstakeholders.

    Oonkay,2010

  • Literaturereview:methanefromlandfills

    Page3van75

    CONTENTSummaryandconclusions............................................................................................5Chapter1:Introduction................................................................................................8Chapter2:Modelingmethaneemissions..................................................................10

    2.1Introduction..................................................................................................102.2Modelinglandfillgasformation...................................................................10

    2.2.1General..............................................................................................102.2.2Calculatingmethanegeneration.......................................................122.2.3Availablegenerationmodels............................................................182.2.4Characterizationofgenerationmodels............................................212.2.5Evaluationofgenerationmodels......................................................24

    2.3Methanecontent,recovery..........................................................................292.4Methaneoxidation.......................................................................................30

    2.4.1Processesofmethaneoxidation.......................................................302.4.2Methodsformodelingoxidation......................................................312.4.3Evaluationofmodelsformethaneoxidation....................................33

    2.5Accuracyofmodeledmethaneemission.....................................................342.6Conclusionsmodelling..................................................................................36

    Chapter3:Measuringemissions................................................................................393.1Introduction.........................................................................................................393.2Availablemethods................................................................................................40

    3.2.1Soilcoremeasurements....................................................................403.2.2Closedchambermeasurements.......................................................413.2.3Micrometeorologicalmethods.........................................................423.2.4Massbalancemethods/Transectmeasurements.............................433.2.5Tracerplumemeasurements............................................................463.2.6Plumemeasurements.......................................................................473.2.7Qualitativeemissionmeasurements................................................48

    3.3Evaluationofmethods.................................................................................493.3.1General..............................................................................................493.3.2Accuracy............................................................................................523.3.3Equipment.........................................................................................543.3.4Constraints........................................................................................54

  • Literaturereview:methanefromlandfills

    Page4van75

    3.3.5Costs..................................................................................................553.4Measuringmethaneoxidation.....................................................................55

    3.4.1Introduction......................................................................................553.4.2Samplingmethods............................................................................553.4.3Analysisandinterpretation...............................................................56

    3.5Conclusionsmeasuringmethaneemissionsandoxidation..........................573.5.1Methaneemissions...........................................................................573.5.2Methaneoxidation............................................................................57

    Chapter4.Estimatingemissionsbasedonrecoveredamountsofmethane.............594.1General.........................................................................................................594.2Prerequisites.................................................................................................594.3Application....................................................................................................59

    Chapter5:Improvingqualityoflandfillmethaneemissioninventories....................615.1Qualityofanemissioninventory..................................................................615.2Improvingmethodstoquantifylandfillmethane........................................62

    5.2.1Harmoniseandimprovemethaneemissionmodels........................625.2.2Improveandvalidatemeasurementmethods..................................635.2.3Defineatieredapproach..................................................................645.2.4Knowledgetransfer...........................................................................65

    5.3Impactofimprovements..............................................................................65Symbols......................................................................................................................67References..................................................................................................................68

  • Literaturereview:methanefromlandfills

    Page5van75

    SUMMARYANDCONCLUSIONSMethanefromlandfillsisconsideredamajorsourceofgreenhousegases,bothinEUandworldwide.Emissionreductionfromlandfillsisamongstthemostfeasibleandcosteffectivemeasurestoreducegreenhousegasemissions.TheEuropeanLandfillDirectiveobligesEuropeanlandfilloperatorstoreducemethaneemissions.TheEPRTRregulationrequireslandfilloperatorstoreportmethaneemissionsannuallytothecompetentauthorities.Landfilloperatorscanquantifymethaneemissionsusinganemissionmodeloranappropriatemeasurementmethod.Differentemissionmodelsgiveverydifferentresults,evenwhenthesamedataareentered.Emissionsmeasurementmethodsaregenerallyconsideredinsufficientlyaccurate.Thisisnodesirablesituation,sinceitishardtoassessboththeimpactofmeasurestakenbylandfilloperatorsandpoliciesdevelopedbyregulators.TheSustainableLandfillFoundation(SLF)iscommittedtominimizationoflandfillmethaneemissions.Sinceatthemomentbothmodelapproachesanddirectmeasurementofemissionsarenotyetconsideredaccurateenough,SLFcommissionedOonKAY!toperformacomprehensiveandcriticalreviewwasperformedofbothavailablemodelsandmeasurementmethodswiththefollowingobjectives: Aliteraturereviewonmethodsforquantificationofannualaveragemethane

    emissionsfromanindividuallandfill. Evaluationofthemethods,a.o.whetherthemethodsmeettheminimumstan

    dardsasdescribedinIPCCorEPRTRguidancedocuments. Discussionofoptionsforimprovementandpotentialdirectionsforharmoniza

    tion.C O N C L U S I O N S O N M O D E L L I N G Methaneemissionscanbecalculatedfrommethanegeneration,methanerecoveryandoxidation.Thereareseveralmodelsavailablethatdescribegeneration,suchastheIPCCmodel,theTNOmodelandGasSim.TheFrenchEPRTRmodelismuchsimplerandmightbejustaseffective.ThesemodelswillproducereasonableresultsforMSWdominatedbyhouseholdwaste,landfilledinWesternEurope.TheaccuracyofthesemodelsforothertypesofwasteorindifferentregionsinEuropeislimited.Oxidationismoredifficulttodescribe,thanmethanegeneration,duetothescarcityofavailableinformationonactualoxidationunderfieldconditions.TheIPCCdefaultvalueof10%seemsalowguess,leavingroomforimprovement.Modeledapproachestoestimatemethaneoxidation,basedona.o.toplayerdesignandclimateconditionsareindevelopment.Howevertheseapproachesstilllackfullscalevalidation.

    SughoshSticky Note

    SughoshHighlight

    SughoshHighlight

    SughoshHighlight

    SughoshHighlight

    SughoshHighlight

    SughoshHighlight

    SughoshHighlight

    SughoshHighlight

    SughoshHighlight

  • Literaturereview:methanefromlandfills

    Page6van75

    Intheend,modeledmethaneemissionsarehighlyuncertain,duetoapropagationoferrors,whichishighlyunfavorable.Errorsof2535inmethanegenerationresultinerrorsof6585%inmethaneemissions.Anidealmethaneformationoremissionmodeldoesntexistandeachofthemodelshastheirprosandcons.Combiningstrengthsofdifferentmodelscouldbeonewayforharmonization(seebelow).C O N C L U S I O N S O N M E A S U R E M E N T S Themaindifficultyinmeasuringmethaneemissionsfromlandfillsisthespatialandtemporalvariabilityofemissions,incombinationwiththesizeofamodernlandfill.Severalmethodsaredevelopedandtestedtomeasuremethaneemissionsfromlandfills.Howeveratthemomentthereisnosinglemethod,thatiswidelyrecognizedasthepreferredmethodtomeasureannualaveragemethaneemissions.Closedchambermethodsarethemostfrequentlyappliedmeasurementmethod.However,thereisagrowingagreementthattheytendtounderestimateemissions,evenwhenprescribedproceduresarefollowedforgridwisemeasurementsandapplicationofgeostatisticalmethodsforinterpolation.The1Dmassbalancemethodandboththemobileandstaticplumetracermeasurementsaremethodsthatpromiseacceptableaccuracyatrelativelowcost.Claimedaccuracyofmethodsisintheorderofmagnitudeof25%,ontheconditionsthatthemeasurementstayswithinthepredefinedconstraints.Howeverthisclaimisquestionable.Itrequiresmoremeasurementintercomparisonsandmeasurementsinsituationswithcontrolledmethanerelease,toconfirmthatthisaccuracycanbeclaimedwithconfidence.Formeasuringannualaverageemissions,daytodayandseasonalvariationshavetobedealtwithand4to6onedaymeasurementswillberequired.Themostaccuratemethodtoquantifymethaneoxidationismeasurementandinterpretationof13Cintheplume.Alsothismethodisatdiscussionandmostrecentinsightsindicatethatitmightunderestimatemethaneoxidation.1Dmassbalancemeasurementsmightbeanalternative.HoweverboththemeasurementofCH4andCO2emissionsusingthistechniqueandtheestimationofmethaneoxidationfromashiftinCH4/CO2ratioisnotwidelyacknowledgedasareliablemethod.I M P R O V I N G M E T H O D S Ingeneral,thequalityofanemissioninventorydependsontheperspectiveforwhichtheemissioninventoryisused.QualitycriteriafornationalinventoriesofgreenhousegasestoUNFCCCdifferfromqualitycriteriafordataonindividualcompaniesintheframeworkofEPRTR.Fordatausedinalegalcontext(e.g.toverifywhetheracompanycompliestoitsemissionlimits),againdifferentqualitycriteriaexist:intheendtheyhavetobeconvincingincourt.

    SughoshHighlight

  • Literaturereview:methanefromlandfills

    Page7van75

    Methodstoquantifymethaneemissionsmightbeimprovedby Modelharmonizationandvalidation.Itisverywellpossibletotakethe

    strengthsofeverymodelandcombinethemintoaharmonizedversion.Thedegreeofcomplexityofsuchamodelshouldbeinbalancewithitsexpectedaccuracy.Harmonizationdoesntnecessarilyimplymoreaccuratemodels.Formoreaccuracy,fieldvalidationisrequired;

    Improvementandvalidationofmeasurementmethodse.g.bytestingmethodsinsituationswithacontrolledreleaseofaknownamountofmethane.Improvementshouldalsoimplycostreductionandproliferation,a.o.bytakingmethodsawayfromtheresearchphaseandhandknowledgeovertospecializedcompanies.

    Definitionoftieredapproachesforquantificationofemissions,allowingemissionmeasurements,ratherthanmodelingemissions.Landfillownersshouldbeallowedtoapplyhighertieredmethodstoquantifyemissions;

    Transferofknowledgeofbothmodelingandmeasuringmethaneemissionstolandfillowners,nationalgovernmentsandlocallegislativeauthorities.

    AharmonizedmodeloratieredapproachwillbeacceptableforEPRTR.ForapplicationinmakingnationalestimatesandreportingthemtoUNFCCC,suchamodelshouldbethoroughlyvalidated.Whenmethaneemissionlimitvalueshavetobeenforced,modelsandtheirinaccuraciesshouldbethoroughlyvalidated.Whenemissionlimitvaluesaretobeenforcedbymeasurement,methodsshouldbeacceptedbetweenpeersandtheaccuracyshouldbewellassessed.Testingmethodsincontrolledreleasetestsundervaryingconditionsseemstobeastrongtoolinthis.

  • Literaturereview:methanefromlandfills

    Page8van75

    CHAPTER1:INTRODUCTIONWhenwasteislandfilled,theorganicfractioninthewaste(allmaterialsfromabiogenicsource,suchasfoodandgardenresidues,textiles,paper)slowlydecomposes.Inthisprocess,landfillgasisformed,amixtureofmethaneandcarbondioxide1.Theemissionofmethanecontributessignificantlytogreenhousegasemissions.TotalEuropeanemissionsareestimatedtobeabout2%oftotalgreenhousegasof5000Mtonperyear(EEA,2009).LandfillmethaneemissionsareconsideredoneofthemaindrawbacksoflandfillingofsolidwasteandabatementofmethaneemissionsfromlandfillsisanimportantdriverforcurrentEUWastepolicy.Inthelastdecade,attentiontomethaneemissionsfromlandfillshasgrownsignificantly.Effortsofbothnationsandindividuallandfillsarecloselymonitored.NationalauthoritieshavetheobligationtoquantifylandfillmethaneemissionsandsubsequentlyreportemissionstoUNFCCC.IndividuallandfillshavetoreportemissionswithintheframeworkofEPRTR.P R O B L E M Tofulfillreportingobligationsasdescribedabove,severalmethodsaredevelopedtoquantifyannualaveragemethaneemissionsfromlandfills.SeveralmodelsaredevelopedintheframeworkofthereportingobligationstoUNFCCCandEPRTR.Howeverforanindividuallandfilldifferentmodelsresultinemissionestimatesthatarehighlyvariable.Soatafirstglance,modelsdontseemreliableandaccurateenoughtoenforcelimitvaluesformethaneemissions.Analternativetomodelingismeasuringemissions.Forthispurpose,severalmethodsaredevelopedandtestedinthepasttwodecades.Butatthemomentthereisnoagreementonwhatmethodsarebestapplicable,andnosinglemethodisgenerallyacceptedassufficientlyaccurateandstillcosteffective.Thelackofpropertoolsforestimatingmethaneemissionsisnodesirablesituation.Itishardtoassessboththeimpactofmeasurestakenbylandfilloperatorsandpoliciesdevelopedbypolicy.Asaresult,localmeasuresandnationalpoliciesforreductionoflandfillmethanecouldstillbemoreeffective.TheSustainableLandfillFoundation(SLF)iscommittedtominimizationoflandfillmethaneemissions.Sinceatthemomentbothmodelapproachesanddirectmeasurementofemissionsarenotyetconsideredaccurateenough,SLFcommissionedOonKAY!toperformacomprehensiveandcriticalreviewwasperformedofbothavailablemodelsandmeasurementmethodswiththefollowingobjectives:1Carbondioxideemissionsfromlandfillsstemfromashortcarboncycle.Upongrowthoftheorganicmaterialscarbondioxideissequestratedandthetotalcycleofgrowth,useandfinallydecompositiontakesplaceoveraintervalofseveralmonthstomaximumseveraldecades.Thisisveryshortcomparedtothetimeintervalofgrowth,useanddecompositionofmaterialsfromfossilorigin.ThereforeCO2emissionsfromsuchshortcycleare0bydefinition.

    SughoshHighlight

    SughoshHighlight

    SughoshHighlight

  • Literaturereview:methanefromlandfills

    Page9van75

    P R O J E C T O B J E C T I V E S Aliteraturereviewonmethodsforquantificationofannualaveragemethane

    emissionsfromanindividuallandfill. Evaluationofthemethods,a.o.whetherthemethodsmeettheminimumstan

    dardsasdescribedinIPCCorEPRTRguidancedocuments. Discussionofoptionsforimprovementandpotentialdirectionsforharmoniza

    tion.T H I S R E P O R T Thisreportcontainsthefindingsonthereview.Chapter2givesinformationonmodeledemission.Chapter3describesprogressindevelopingmeasurementmethods.Chapter4givessomeinformationonyetanothermethodtoquantifyemissions,basedonrecoveredamountsofmethane.Chapter2,3and4discussmethods,irrespectiveofthecontextinwhichtheyareused.Thiscontext(UNFCCCEPRTRorenforcingemissionlimits)isofimportanceconsideringpossibleimprovementsinbothmodelsandmethodsinchapter5.Differencesindefinitionofthequalityofamethodresultinslightlydifferentwaysaheadforeachapplication.

  • Literaturereview:methanefromlandfills

    Page10van75

    CHAPTER2:MODELINGMETHANEEMISSIONS

    2.1INTRODUCTIONMethaneemissionsmightbeobtainedfrommodels.Methaneemissionsaregenerallycalculatedfromthemethanemassbalance:

    emissions=generationrecoveryoxidation (eq.1)Wheremethanegenerationiscalculatedas

    methanegeneration=LFGgeneration*methanecontent (eq.2)Whenmodelingmethaneemissions,mostofthediscussionsareaboutmodelingmethaneorlandfillgasformation.Therearenumerousmodelsaround,mostofthebasedonafirstorderdecaymodeloramultiphasemodel.Modelingoxidationhasreceivedlessattention.Inmostcases10%ofmethanefluxthroughthetoplayerisassumedtobeoxidized.Howevermorerecentlyotherwaystodealwithoxidationarebeingdeveloped.Thischaptergivesanoverviewofallpartsofthemethanemassbalanceasdescribedinequations1and2.

    2.2MODELINGLANDFILLGASFORMATION2.2.1GENERAL Whenwasteislandfilled,theorganicmatterinthewasteisconvertedtolandfillgas.Landfillgasisamixtureofmethane(4560%),carbondioxide(4055%)andtracecomponents(H2S,mercaptanes,organicestersandothervolatilehydrocarbons,allofthemgivinglandfillgasitscharacteristicsmell).Biodegradationoforganicmatterproceedsinanumberofsteps.AgeneraldescriptionofconsecutivestepswasproposedbyFarquharandRovers(1973).Thedegradationoforganicmaterialwasbythemasasequentialprocessofhydrolysisofthesolidorganicmaterials(e.g.hemicellulose,cellulose)intolargersolubleorganicmolecules,subsequentfermentationofthesematerials,yieldingorganicacidsandfinallymethanogenesis.Organicmaterialisnotasinglecomponent,butconsistsofabroadspectrumofmoleculeswithvaryingdegradability.Smallermolecules,suchassimplesugarsandfatsareeasilydegraded.Hemicelluloseisalsorelativelyeasilyconverted,cellulosesomewhatslower,aslongasitisaccessibleforenzymesandbacteria.Ligninhoweverisresistanttobiodegradationunderanaerobicconditions2andlignincanshield2Anaerobic(nooxygenpresent)conditionsareeprerequisiteformethaneformation.Underaerobic(oxygenrich)conditionswastemightbiodegrade,butthisprocessonlyyieldsCO2.

    SughoshHighlight

    SughoshHighlight

    SughoshHighlight

    SughoshHighlight

    SughoshHighlight

    SughoshHighlight

    SughoshHighlight

    SughoshHighlight

    SughoshHighlight

    SughoshHighlight

    SughoshHighlight

  • Literaturereview:methanefromlandfills

    Page11van75

    cellulose,thuspreventingitfrombiodegradation.AccordingtoChandleretal.(1980)arelationshipexistsbetweenlignincontentandthemaximumbiodegradabilityoforganicmaterialunderanaerobicconditions,asindicatedinthefigurebelow.

    FIGURE 1: RELATIONSHIP BETWEENFRACTION OF ORGANIC WASTE ULTIMATELY CONVERTED AND THE LIGNINRATION OF THE WASTE (1= WHEAT STRAW, 2 = CORN STALKS, 3 = CORN LEAVES, 4 = PURPLE LOOSESTRIFE, 5 = SEAWEED, 6 = WATER HYACINT, 7 = CORN FLOUR, 8 = NEWSPAPER, 9 = ELEPHANT MANURE, 10= CHICKEN MANURE, 11 = PIGSMANURE, 12 EN13= COW DUNG;CHANDLER ET AL., 1980).Sonotallorganicmaterialcanbeconvertedtolandfillgas.Andinpracticenoteverythingthatcanbeconvertedwillbeconverted,simplybecauseconditionsinpartsofthewasteinhibitbiologicalactivity.Therearemanypossibilitieswhydegradationisinhibited,e.g.becausewasteislocallytoodryorbecausethewastewasfrozenuponlandfillingandtemperaturessubsequentlystaytoolow.Itisalsopossiblethatthewastehasexcesswater,leadingtostagnantsaturatedzonesinthewaste,wherethefirsttwostepsofbiodegradationarefastandresultinadropofpH,thuslimitingmethanogenesis.Sothemethaneformationpotentialisgenerallybasedonthetotalamountoforganicmaterial,correctedfor(i)theamountoforganicmaterialthatdoesnotdegradeunderanaerobicconditionsand(ii)theamountthatdoesntdegradebecauseconditionsarenotfavorable.Thefirstamountisdefinedbythewastecomposition.Thesecondpartisdeterminedbylandfilldesignandoperationandismostlikelyalsoinfluencedbyclimateconditions.H I S T O R Y O F L A N D F I L L G A S M O D E L I N G Attemptstomodellandfillgasformationstemfromtheearly80s.Inthosedaysmethaneemissionswasnotyetrecognizedasapotentialproblem;howeveronewasawareoftheenergeticpotentialofthelandfillgasandeagertoexploitthisalternativeenergysource.Sothefirstlandfillgasformationmodelsweremadetohelpdeterminethesizeoflandfillgasrecoveryprojects:howmuchgasisformed,whatareexpectationsforthenext10yearsandwhichpartofitcanberecovered?

    Max

    imum

    tran

    sfor

    mat

    ion

    of o

    rgan

    ic m

    atte

    r to

    biog

    as (%

    )

    Lignin (%)

    Max

    imum

    tran

    sfor

    mat

    ion

    of o

    rgan

    ic m

    atte

    r to

    biog

    as (%

    )

    Lignin (%)

    SughoshHighlight

    SughoshHighlight

    SughoshHighlight

    SughoshHighlight

    SughoshHighlight

    SughoshHighlight

    SughoshHighlight

    SughoshHighlight

    SughoshHighlight

    SughoshRectangle

  • Literaturereview:methanefromlandfills

    Page12van75

    Sincethemid90smodelingemphasisshiftstoquantificationofmethaneemissions,firstonanationalscale(intheframeworkofobligationofcountriestoreportgreenhousegasemissionstoUNFCCC)andafterwardsaswellonalandfillbylandfillbasis(intheframeworkofEPRTR).Thecallforimprovedaccuracy,transparencyandthedesireforbenchmarkemissions(comparisonofmethaneemissionsbetweennationsorbetweenlandfills,comparisonofUNFCCCreportedemissionsbyacountryandemissionsreportedbyindividuallandfillsinthiscountry)resultedinanumberofemissionmodelsthatcanbeconsideredstateoftheart.2.2.2CALCULATINGMETHANEGENERATIOND E T E R M I N I N G M E T H A N E P O T E N T I A L Themethanepotential,L0,istheamountofmethanethatisproducedthroughoutthelifetimeofthewaste.InmostgenerationmodelsL0istheamongstthemostimportantparameters.Asdescribedabove,landfillgasandmethaneareproducedupondecompositionoforganicpartsofthewaste.Anoftenapproachfordeterminingmethanegenerationfrombiodegradationisbasedon: (CH2O)nnCH4+nCO23 (eq.3)Inwhich(CH2O)nistheapproximatecompositionoforganicmatterinthewaste.Themethanepotentialorthelandfillgasgenerationpotentialisgenerallydescribedasproportionaltotheproductofamountofwastelandfilled(W)andtheconcentrationoforganiccarbon(DOC4,5)inthewaste.Howeverdescribedinchapter2.1,notallorganicmaterialisconverted.Partofit(lignin,cellulosecoveredbylignin)isnotdegradableunderanaerobicconditions.Anotherpartsimplydoesntdegradebecauseconditionsinthewasteareunfavorablefordegradation.SowhencalculatingL0,afactorDOCfisintroducedthatdescribesthepartofDOCthatultimatelyisconvertedtolandfillgas.ThemethanepotentialpertonofwastedependsonthemethaneconcentrationinthelandfillgasandL0isultimatelycalculatedas6:

    3Thereactionequationsuggestsalandfillgascompositionof50%methaneand50%CO2.Inrealitymethaneconcentrationsaresomewhathigher,duetobiodegradationofcomponentswithahigherH/Oratio.PartoftheCO2producedisalsodissolvedandreleasedasCO32inthewaterphaseinthelandfill(theleachate).4Afulloverviewofsymbolsusedisgivenattheendofthisreport.5Pleasenotethedifferencebetweenorganiccarbonanddryorganicmatter.DOCgenerallyreferstotheamountofCinthe(CH2O)nanddryorganicmattercontainsabout40%DOC.6Modeldescriptionsseemtodifferinthisaspect,butonacloserlooktheyareallthesame.E.g.IPCCcalculatesmethaneasF*16/12*DOC*DOCf,whichissimilartoequationabove.TNOcalculateslandfillgasformationpotential(inm3hr1)as1,87*DOC*DOCf.AssumingafractionFinthelandfillgasandadensityofmethaneof0,72kg/m3,L0isobtainedofF*1,87/0,72*DOC*DOCf.Afvalzorgdoesntbaseitscalculationonorganiccarbon(DOC),butondryorganicmatter(DOM)andcalculates

    SughoshRectangle

  • Literaturereview:methanefromlandfills

    Page13van75

    L0=1,33*F*DOC*DOCf (eq.4)InmostmodelsDOCfisconsideredaconstantvalueinbetween0,4and0,7,dependingonthemodel.DOCisgenerallycalculatedonthebasisofwastecomposition,eitherthroughitsorigin(DOCvaluesforhouseholdwaste,industrialwaste,etc.),orfromitsmicrocomposition(%putrescibles,%paper,%textiles,etc.).S I M P L E F I R S T O R D E R D E C A Y M O D E L Landfillgasgenerationisoftendescribedasafirstorderprocessoravariationofthis.Afirstorderdecayprocessimpliesarelativelargeamountoflandfillgasbeingformedimmediatelyafterdeposition,graduallybeingreducedintime.Characteristicofafirstorderdecayprocessisafixedhalftimeoflandfillgasgeneration.Whenahalftimeof7yearsisassumed,methanegenerationafter7yearsis50%oftheinitialgeneration(inkgmethaneperyear),after14years25%,after21years12,5%andsoon.Inafirstordermodelmethanegeneration(CH4f)intimefromaancertainamountofwaste(W),landfilledinasingleyear,isdescribedas:

    CH4f=W*L0*kekt (eq.5)InwhichL0isthemethanegenerationpotentialofthewaste,kistherateconstantofbiodegradationandtisthetimeelapsedsincelandfillingofthewaste.Alandfillgenerallyconsistsofwastedepositedinanumberofyears.Methanegenerationfromsuchalandfilliscalculatedasthesumofmultipleequations(asinequation5),eachdescribingthemethanebeingformedfromthewastelandfilledinoneyearofoperation.Eitheraspreadsheetprogramisusedforthiscalculation,orthecalculationispartofalargermathematicalprogram.N.B.Landfillgasgenerationisoftendescribedasafirstorderprocess(oravariationofthis).Fromamechanisticpointofviewitisnot.Inafirstorderreaction(wellknowninchemistryandphysics)areactanthasachancetoreactinthenexthour,dayoryear,andthischanceisindependentoftheamountofreactantstillavailable.Firstorderreactionscanbecharacterizedbytheirhalflife,whichisthetimeinwhich50%oftheoriginalamountofreactanthasreacted.Anexampleofafirstorderreactionisradioactivedecay.Thechancethatamoleculeofplutonium(238Pu)fallsbacktouranium(234Ur)inthenextyearisafixedone.Thehalflifeof238Puisabout88years,independentonactualplutoniumconcentration.Thehalftimeofbiodegradation,t1/2,canbecalculatedfromkthrough:

    t1/2=0,693/k (eq.6)I P C C R E V I S E D E Q U A T I O N Aproblemwithfirstordermodelsasdescribedaboveisthatitisanapproximation.Themethodyieldsamethanegenerationforeachyearasadiscretevalue,ratherthanacontinuousdecliningamount.Figure2illustratesthis.Asaresultanunderestimationofmethanegenerationisobtained,comparedtothecontinuouscurve.Thislandfillgasformationas0,75*DOM*DOCf.HoweverwhenassumingDOMcontains40%DOC,theAfvalzorgmodelandTNOmodelareinagreement.

    SughoshRectangle

    SughoshHighlight

    SughoshHighlight

    SughoshHighlight

    SughoshHighlight

    SughoshRectangle

    SughoshHighlight

  • Literaturereview:methanefromlandfills

    Page14van75

    underestimationisdependingontheassumedvalueofk,isabout3,5%fork=0,1y1andincreaseswhenkincreases.

    FIGURE2:ERROR IN CALCULATED METHANE GENERATION IN A CONVENTIONAL FIRSTORDER MODELTheLandgemmodelofUSEPA(Reinhartetal.,2005)minimizesthediscrepancybyapplicationoftheconventionalmodelper1/10thofayear.ThereasonforthisisthatintheUSAmoreandmorelandfillbioreactorsareexpectedtoberealized,wherewastedegradationisenhancedbyleachaterecirculation.Duetothehighkvaluesencounteredhere(Reinhardetal.,2005,expecthalflivesjustinexcessof2y)theerrorintheconventionalfirstordermodelisincreased.ToaccommodateLandgemforlandfillbioreactors,Landgemisadaptedtocalculateper1/10thofayear.IPCC(2006)comesupwithamoreaccurateequation,basedonintegratingtheactualgenerationcurve.Theactualequationismorecomplicatedasequation1andcanbedescribedas:ThediscussionwithinIPCCwas,whetherthedifferencebetweenbothmodelsissuchaproblem,becausetheerrorisrelativelysmallincomparisontoothermodelerrors.Butmoreimportant,firstorderdecaymodelparametersarevalidated(Oonketal.,1994;Vogtetal.,1997)assumingtheconventionalfirstordermodel.UponvalidationavalueforDOCfwasobtainedthatis3,5%higherthantheDOCfthatwouldhavebeenobtainedwhenamoreaccuratedescriptionwasapplied.Sorunningaconventionalfirstordermodel,usingmodelparametersvalidatedforthismodeldoesresultinanaccurateestimationofmethanegeneration.ThisiswhyIPCCconsidersconventionalfirstordermodelsequivalenttotheIPCCrevisedequation.MU L T I P H A S E M O D E L Themultiphasemodelisanotherelaborationofthefirstordermodel(Hoeks,1983).Themultiphasemodeldescribesthate.g.kitchenwastedegradesmuchfasterthanwoodorpaper.Generallyinmultiphasemodelsthreefractionsaredistinguished:fast,moderateandslowdegradingwaste,eachwiththeirownhalftimeofbiodegradation.

    SughoshHighlight

    SughoshHighlight

    SughoshHighlight

  • Literaturereview:methanefromlandfills

    Page15van75

    Thefirstapproachassumesdegradationofdifferenttypesofwastetobecompletelydependentoneachother.Sothedecayofwoodisenhancedduetothepresenceoffoodwaste,andthedecayoffoodwasteissloweddownduetothewood.Thesecondapproachassumesdegradationofdifferenttypesofwasteisindependentofeachother.Wooddegradesaswood,irrespectivewhetheritisinanalmostinertsolidwastedisposalsite(SWDS)orinaSWDSthatcontainslargeamountsofmorerapidlydegradingwastes.Inrealitythetruthwillprobablybesomewhereinthemiddle.Howeverthemultiphaseapproachrequiresdetailedinformationofcarboncontentandcarbonqualityofnumerouswastecategories.Usuallyreliableinformationisnotoronlypartlyavailable.Moreovertherehasbeenlittleresearchperformedtoidentifythebetteroneofbothapproaches(OonkandBoom,1995;Scharffetal.,2003)andthisresearchwasnotconclusive.S I M P L I F I E D M O D E L S Anumberofmodelingapproachesexist,thatgivelessdetailthanthefirstordermodeldescribedabove.Ingeneralthesearemodelsdevelopedintheearlydaysoflandfillgasgenerationmodeling,developedforsituationswherelittleornoinformationwasavailableonamount,ageandcompositionofthewaste.Sinceelaboratedfirstorderandmultiphasemodelsarenowsoreadilyavailable,thesesimplermodelscannolongerbeconsideredstateoftheartorgoodpractice(IPCC,2000,2006).Inordertobecomplete,thesemodelsareonlybrieflymentionedhere. Directdecaymodel.Inadirectdecaymodel,thewholemethanepotentialof

    thewastelandfilledisassumedtobereleasedatonesinglemoment(IPCC,1996);

    Inazeroordermodel,wasteisassumedtoformafixedamountofmethane/landfillgaseitherforafixednumberofyearsorforeternity(e.g.Peeretal.,1992).Thiszeroordermodelwasuntilthemidst1990sfrequentlyappliedindesignoflandfillgasrecovery(Vogtetal.,1997);

    Atriangularmodel(Halvadakis,1983)issimilartoazeroordermodel,butcombinedwithalinearincreaseingenerationinthefirstyearandalineardecreaseinthefinalyearsoflandfillgasgeneration;

    ASchollCanyonmodelisasimplifiedfirstordermodel(Emcon,1980).Assumingannualamountsofwastedepositedandwastecompositiontobeequalthroughouttheexploitationperiod,asimplifiedequationisobtained.

    MO R E F U N D A M E N T A L M O D E L I N G A P P R O A C H E S Asdescribedinchapter2.1,generationofmethanefromorganicmatterinthewasteactuallyprogressesinacomplexorderofreactionsteps,firstenzymesbreakapartthesolidorganicmacromoleculestosmallermolecules,thatarefurtherprocessedmicrobiologically.Anumberofscientistsareworkingonamorefundamentalunderstandingoftheseprocessesandtrytomodeltheoverallkinetics.AnoverviewofactivitiesisgivenbyLamborn(2005).Howeveruntilnow,thesemodelsdonotproducereliableestimatesoflandfillgasgenerationfromrealbatchesofwaste(Beaven,2008).Mostlikelymethanegenerationinactuallandfillsisgovernedbyitsheterogeneityandchanceplaysanimportantrole.

  • Literaturereview:methanefromlandfills

    Page16van75

    L A G T I M E Inasimplefirstorderdecaymodelitisassumedthatmethanegenerationstartsimmediatelyafterdepositionofthewaste.Inrealitythisishowevernotthecase.Mostlikelyittakesseveralmonthstoayear(Gregoryetal.,2003;Bergman,1995;KmpferandWeissenfels,2001;Barlaz,2004;IPCC,2006)beforeallmicrobiologicalprocesseshavestartedupandmethanegenerationpeaks.Severalapproachesexisttodescribemethanegenerationinthisinitialperiodmoreaccurately.Themostsimpleapproachisintroductionofalagtime.Methanegenerationisassumedzeroduringacertaintime(e.q.6months)andafterwardsmethanegenerationisdescribedasanormalfirstorderdecayprocess.Inthiswaythereisstilladiscontinuityatthemomentwhenlagtimefinishesandmethanegenerationincreasesfromzerotoitsmaximumvalueinoneday.Thereforeotherapproachesaredevelopedaswell,describingaslowincreaseofmethanegenerationinthefirstmonths,afterwhichfirstorderdecaygraduallytakesover(Findikakisetal.,1988;Keely,1994;VanZantenandScheepers,1995).M E T H A N E C O R R E C T I O N F A C T O R ( M C F ) Methanegenerationonlyoccursinpartsofthelandfillthatarestrictlyanaerobic.Inrealitymanylandfillswillnotbecompletelyanaerobic.Duetoa.o.windactivityandchangesinambientpressurepartsofalandfillmightcontainoxygen,especiallywhenalandfillislesswellmanaged(nowastecompactation,nodailycovers,morethinorpermeabletemporarycovers)andatolderlandfillswhereinternalpressureduetogasproductionisreduced.Inthesepartsmethanegenerationisinhibitedandaerobicdecayoforganicwaste(notleadingtomethane)mighttakeover.Onewaytodealwithaerobiczonesinthewasteistheintroductionofamethanecorrectionfactor(MCF),describingthepartofthelandfillthatisnotentirelyanaerobicandfromwhichnomethaneisgenerated.C L I M A T E C O R R E C T I O N : A M B I E N T T E M P E R A T U R E P R E C I P I T A T I O N ClimateinEuropeishighlydiversandmethanegenerationfromhouseholdwasteinFinlandwillbedifferentfromgenerationinItaly.Methanegenerationisinfluencedbyclimateandmainlybytemperatureandprecipitationandthishasimpactonboththedecayrateofwaste(thehalflife)andamountofmethaneultimatelygeneratedpertonofwaste(L0).Figure3describesclimatezonesinEuropeandwithrespecttomethanegeneration(andalsomethaneoxidation,seechapter2.4)atleast4zonescouldbedistinguished:(i)subarcticandhighland,(ii)humidoceanic,(iii)humidcontinentaland(iv)subtropical.

  • Literaturereview:methanefromlandfills

    Page17van75

    FIGURE 3: CLIMATEZONES INEUROPE7Itisknownthatwastetemperaturehasaneffectonthespeedofmethanegeneration(Hartzetal.,1982;Gendebienetal.,1992)butmaybealsoontheamountofmethanebeingformed.Howeverambienttemperaturehaslittledirecteffectonthetemperatureofthedeeperwaste.Buttheremightbeanindirecteffect.Initialstagesofwastedecompositiontakeplaceimmediatelyafterdepositionandmaybeevenalreadyinthebinandduringcollectionandtransportandambienttemperatureinthisperiodmighthavealonglastingeffectonmethanegenerationinthelandfill.Forexample,wasteproduced,collectedandlandfilledintheNordiccountriesinwinterwillbelargelyfrozen.Asaresultinitialstagesofwastedecompositionwillbeseriouslyhamperedandtemperaturesinthewastewillremainlow,comparedtowastelandfilledelsewhereinEurope.Theimpactofmoistureinthewasteonwastedecompositioniswidelyrecognized.Howeveritspreciseimpactisstilltopicofscientificdiscussion.Accordingtosome,wastedecompositionisenhancedbyincreasedmoisturecontentofthewaste,untilanoptimummoisturecontentisreached.Accordingtoothersmovementofmoistureinthewasteisimportant(KlinkandHam,1982).Toomuchstagnantmoistureinthewasteisevenreportedtoinhibitwastedecomposition(OonkandWoelders,1999;Wensetal.,2001).Moisturemovementspreadsmethanogenicactivitythroughoutthewasteandavoidslocalbuildupofinhibitingcomponents.Ifthefirst7Fromhttp://printablemaps.blogspot.com/2008/09/mapofclimatezonesineurope.html

  • Literaturereview:methanefromlandfills

    Page18van75

    istrue,wastedecompositionisfavoredbymoisturecontentofthewaste;ifthelatteristrue,wastedecompositionisfavoredbyprecipitation(Alexanderetal.,2005)andamorepermeabletoplayer.Ofcoursethereisacorrelationbetweenmoisturecontentofthewasteandprecipitationseveralmodelssimplyassumeacorrelationbetweenthemoisturecontentofthewasteandthemeanannualprecipitation(ChianandDeWalle,1979;McDougalandPyrah,2003).2.2.3AVAILABLEGENERATIONMODELSThemethodsofcalculatingmethanegenerationinthepreviousparagrapharemeredescriptionshowacertainpotentialofmethaneisreleased.Forapracticalapplication,thesedescriptionsdonotsuffice.Thereforemodelsaredevelopedthatenablecalculationofmethanegenerationinaspecificyearfromlandfilledwaste.Inputparametersinthesegenerationmodelsistheamountofwastelandfilledineachyearofexploitationandinmostmodelsalsoaspecificationofthewaste.ThemodelitselfsubsequentlycalculatesDOC,DOCf,L0andcalculatesthewaythismethanepotentialisreleasedthroughouttheyears.Inthepastyearsanumberofmodelshavebecomeavailable.Mostofthemconsistofaspreadsheetprogram.Someofthemareexecutables8.Themostwidelyappliedmodelsareamongsttheonesreviewedbelow.Somemodels(e.g.Calmin,theFinnishEPRTRmodel)areconsideredinthisevaluation,becauseoftheycontaininterestingfeaturesthatmightdeservefollowup.TheIPCCmodel(tobeobtainedfromIPCC,2010)isdevelopedbyaninternationalteamofexperts,andisintendedtogiveguidancetonationalauthoritiesinthequantificationofmethaneemissionsfromalllandfillsinacountry.Butthemodelitselfcanalsobeusedforindividuallandfills.ThemodelitselfisfreewareandcanbedownloadedfromtheIPCCwebsite.WithintheIPCCprocess,transparencyisofutmostimportanceandthemethodisdescribedindetailbyIPCC(2006).Inputofthemodelisamountofwasteperyearandaclassificationofthecompositionofthewasteinoriginofthewaste(householdwaste,industrialwaste,etc.).Alternativelythemodelalsoallowsforawastecompositionoption,wherewastecanbedefinedin%foodwaste,%paper,%wood,etc.Thechoiceexistsbetweenafirstorderdecaymodel(theIPCCrevisedequation)andamultiphasemodel(alsobasedontheIPCCrevisedequation)andthedefaultlagtimeof6monthscanbeadapted.TheIPCCmodelaccommodatesfor4differentclimateregions:wetborealortemperate;dryborealortemperate;wettropicalanddrytropical.Theclimateconditionschosenaffectthechosenkvalue.TheTNOmodel(Oonketal.,1994)isthefirstmodel,wheremodelparameterswerebasedonrealdataoflandfillgasgenerationatalargergroupoflandfills.MethaneandCO2emissionmeasurementswereusedtovalidatethemodel(Oonketal.,1995,Scharffetal.,2003).Bothafirstorderandamultiphasemodelweremade,thatdescribelandfillgasgenerationasafunctionofamountofwastedepositedfromdif8anexecutable(file)causesacomputer"toperformindicatedtasksaccordingtoencodedinstructions".

  • Literaturereview:methanefromlandfills

    Page19van75

    ferentorigin(householdwaste,industrialwaste,etc.).Themodelitselfexistsasapublicationonpaper,butaspreadsheetversionisavailableondemand(Oonk,2010).

    FIGURE 4: VALIDATION OF TNOMODEL. COMPARISON OF CALCULATED AND MEASURED LANDFILL GASGENERATION. BLUE DOTS ARE ESTIMATED FROM LANDFILL GAS RECOVERY (OONK ET AL, 1994), OPEN DOTS BLUE DOTSAREFROMEARLY 90SMEASUREMENTS (OONK AND BOOM, 1995), RED DOTSAREFROMEARLY 2000SEMISSION MEASUREMENTS (SCHARFF ET AL., 2003)GasSimLiteisdevelopedbyGolderAssociates(2010)fortheEnvironmentAgencyofEnglandandWales.GasSimquantifiesalllandfillgasrelatedproblemsofalandfill,rangingfrommethaneemissions,effectsofutilizationoflandfillgasonlocalairqualitytolandfillgasmigrationviathesubsoiltoadjacentbuildings.Atthemoment(March2010)GasSim2.1isthelatestversionandiscommerciallyavailable;howeveraliteversion1.5isavailableasfreeware,andisdesignedtohelpoperatorswiththeirpollutioninventory,.GasSimisanexecutableanddefaultvaluesused,algorithmsappliedandassumptionsmadearesomewhatmorehiddenintheprogram.InformationishowevernotconfidentialandstaffofGolderAssociatesarewillingtoprovidemoreinformationondemand(Gregory,2010).GasSimisbasedonUKwastestatisticsandstartsfromhemicellulosesandcellulosecontentinthevariouswastefractions.ForeachwastefractionaDOCfisassumed,basedonresearchbyNorthCarolinaStateUniversity(Gregory,2010).LandgemisamodeldevelopedforandmadeavailablebyUSEPA(2010).Itisafirstorderdecaymodel,withseparatedefaultvaluesforkconventionalregions,aridregionsandforenhanceddegradationcells9.Themostrecentversionofthemodelisthe3.02version,datedMay2005.ThemathematicsofLandgemissometimesdescribedsomewhatconfusinglyas(notetheW/10),9Incellsforenhancedbiodegradation(bioreactors)landfillgasformationisacceleratedbyrecirculationofleachate.

    0

    500

    1000

    1500

    2000

    2500

    3000

    0 500 1000 1500 2000 2500 3000

    calculated formation (m3 hr-1)

    meas

    ured

    for

    mati

    on (m

    3 hr

    -1)

    Nauerna

    3e Merwedehaven

    Wieringermeer

    Braambergen

  • Literaturereview:methanefromlandfills

    Page20van75

    CH4fT=(W/10)*L0*f(T) (eq.7)butinthiswaythemodelcalculatesmethaneemissionsper1/10thofayear(forthispurposeTisalsoexpressedintenthsofayear,Reinhartetal,2005).Thereasonforthisistoavoidinaccuracieswhenkvaluesareusedinexcessof0,1y1.TheAfvalzorgmodelisdevelopedbyNVAfvalzorgintheNetherlands.Itisbasedonacombinationofliterature(asaccumulatedinthe2006IPCCmodel)andownexperienceswithlandfillgasgenerationandmeasuredemissionsattheAfvalzorgsitesatNauerna,BraambergenenWieringermeer.Themodelitselfisamultiphasemodelandisintendedtogiveamorerealisticprognosisofmethanegenerationatlandfillswithlittleornohouseholdwastedeposited.Themodelitselfisfreewareandavailableondemand(Scharff,2010).TheFrenchEPRTRmodel(Ademe,2003)isasimplifiedfirstorderdecaymodel.Themodeldescribesmethanegenerationof4.8kg(6.6m3)pertonwasteperyearinthefirst5yearsafterlandfilling;2.4kgpertonwasteperyearthe5yearsafter,1,3kgpertonwasteperyearinthe2nddecadeand0,6kgpertonwasteperyearinthe3rddecadeafterlandfilling.Formoderatelydecomposablewaste(e.g.nonhazardousindustrialwaste;householdwastethatismilledorcomposted),methaneformationis50%ofthesevalues.Themodelisnotavailableasaspreadsheet,butconsistsofasimplefillintable.TheFinnishEPRTRmodel(Petj,2010)isamultiphasemodelwithmodelparametersinlinewiththeIPCCmodelforwetboralortemperateregions.ThemodelitselfiscompletelyinFinnish,whichmakesittoughertoevaluatehereanddifficulttoapplyforlandfilloperatorsoutsideFinland.ThemodelitselfhoweverisinterestingbecausethedefinitionofwastestreamsisbasedontheEWCcodes.Thisconnectstothesystemofwasteregistrationatlandfillsandreducesproblemswithwastedefinition.Calminisnogenerationmodel,howeveritservesasimilarfunctionandforreasonsofclarityitisdiscussedinthischapter.CalminisdevelopedbyresearchersinUSAbyorderofauthoritiesinCalifornia,andquantifiesmethaneemissionsinanewandinterestingapproach.Atthemomentthebetaversionisavailableondemand(Spokas,2010).ThemodelintendstoprovideanimprovedmethodforquantificationoflandfillmethaneemissionsfortheCaliforniagreenhousegasinventory.Calminisnotbasedonthemethanemassbalanceasdescribedinequation1.Insteaditcalculatesmethanediffusionthroughthetoplayerandmethaneoxidationinthetoplayer,ultimatelyyieldingamethaneemission.Thismethaneemissionisafunctionofthetoplayerscompositionandthelocationofthelandfillontheglobe.Forthelatterpurpose,thelandfillscoordinatesaretranslatedintoclimateconditions,processesarecalculatedforeachdayintheyearandsubsequentlyemissionsareaveraged.Weakpointofthemodelistheassumptionthatemissionstakeplacethroughdiffusion.AsaresultthemodelapplicabilityofCalminmightbelimitedonlandfillswherelargepartofemissionstakeplacethroughpreferentialchannels.CalminanditsoutcomearevalidatedinanumberofclosedchambermeasurementsontwoCalifornianlandfills.Howeverasindicatedinchapter3,closedchambermea

  • Literaturereview:methanefromlandfills

    Page21van75

    surementscannotbeconsideredareliablemeasurementmethod,sincetheytendtomissmethaneemissionsthroughpreferentialchannels.Inthisrespect,modelandvalidationmethodseemtohavesimilarflawsandtheCalminitselfmightgiveagoodestimateofthepartofmethanethatisemittedthroughdiffusion.2.2.4CHARACTERIZATIONOFGENERATIONMODELSSotherearenumerouslandfillgasgenerationmodelsaround.Howeveralllandfillgasgenerationmodelconsistoftwoparts: adescriptionofthetotalmethanepotential,L0,whichisthetotalamountof

    landfillgaswhichisformedduringthelifetimeofthelandfill; afunctionf(t),thatdescribeshowthispotentialisreleasedovertime.Sowhich

    fractionofthetotalmethanepotentialisreleasedinthe1st,2nd,3rdyearandsoon.

    TotalmethanegenerationinyearT(CH4gT)canbedescribedasfollows:CH4gT=W*L0*f(T) (eq.8)

    Thefunctionf(t)isinmostmodelsafirstorderdecaymodel,amultiphasemodeloravariationofthis.R A T E C O N S T A N T O F B I O D E G R A D A T I O N ( K ) , H A L F L I F E O F M E T H A N E G E N E R A T I O N Inmanyevaluationsofmodelparameters(e.g.KhleWeidemeierandBogon,2009),mostattentionispaidtothehalflifeofmethanegeneration(ortherateconstantofbiodegradation,k).However,inmanycases,theoutcomeisnotthatsensitiveforassumedhalflifeorassumingmultiphasedegradation,ratherthanfirstorderdegreedegradation.ThisisillustratedinthemodelcalculationinFigure5.Inthisexample,ofkonmethanegenerationislimitedtoabout20%,forkbetween0,07and0,14(halflivesof5tot1years).Achangeinkonlyresultsinachangeoftimewhenmethaneisassumedtobereleased.Shorterhalflivesorhighervaluesofkimplythatthemethanepotentialisreleasedsomewhatearlier,moreduringadimmediatelyafterexploitation.Longerhalflivesimplyashiftinmethanegenerationtotheperiodafterexploitation.Attheverylowendofk(halflivesassumedinexcessof15years),resultinamethanegenerationthatisbothreducedduringexploitationandalsoafterwards(comparedtotheassumedgenerationwithk=0,1/y).Onlyonaverylogterm,thiswillbecompensatedbyanincreasedmethanegeneration.Studiesindicatingverylonghalflivesofmethanegeneration(e.g.underaridconditions,Atabietal.,2009)shouldbeconsideredwithgreatcare.Inthesecasesreducedmethanegasformationcanbecausedbybothareducedrateofbiodegradationaswellasareducedmethanegenerationpotential(L0,seebelow)andthedifferencebetweenbothcanonlybeobserveddecadesafterclosure.

  • Literaturereview:methanefromlandfills

    Page22van75

    FIGURE 5: EFFECT OF ASSUMED RATECONSTANT OF BIODEGRADATION ON METHANE GENERATION (METHANE GENERATION COMPARED TO GENERATION, CALCULATED ASSUMING K=0,1/Y).CALCULATION PERFORMED WITH THE AFVALZORGMODELFOR A LANDFILL WHERESIMILAR AMOUNTS OF WASTE ARE DUMPED DURING 20 YEARS.M E T H A N E G E N E R A T I O N P O T E N T I A L , L 0 Comparedtok,L0(themethanegenerationovertimefromatonofwaste),hasreceivedconsiderablylessattention.TherearetwowaystoquantifyL0.OnewayisadirectestimationofthemethaneorlandfillgasgenerationpotentialinafieldvalidationastheTNOmodelandthemodelbyVogtetal.(1997.Fromalargerdatasetofwastecharacteristicsatonehand,andmethanegenerationattheotherhand,L0canbeobtainedbylinearregression.AssumingavalueforDOC,DOCfissubsequentlyestimated.)Theothermethodistoquantifyitfromequation4,whereDOCgenerallyisestimatedfromwasteanalysesandDOCfisobtainedfromliterature.Mostgenerationmodelsin2.2.2arebuiltthisway.

    L0=1,33*F*DOC*DOCf (eq.4)V A L U E S F O R M O D E L P A R A M E T E R S Table1referstohouseholdwasteorMSW.Mostoftheexperienceswithlandfillgasgenerationcomesfromlandfillrecoveryonthistypeofwaste;thelargescalevalidationstudiesbyOonketal.(1994)andVogtetal.(1997)areperformedonthistypeofwaste;mostoftheemissionmeasurementsareperformedonlandfillswithMSW.HoweverinEurope,landfillingofMSWismoreandmorediscouragedandasaresultthenonmunicipalsolidwastebecomesmoreandmoreimportantformethaneformation.Table2describeshowmethaneemissionsfromindustrialwastearehandledbyvariousmodels.ItiswellknownthatindustrialwastecancontainawiderangeofDOC.ExamplesofwasteswithoutanysignificantDOCarewastesfromthesteelindustryorasbestoswastes.Incountrieswherebiodegradablewastesaretoalargeextentbannedfromlandfillsanaverageindustrialwastecarboncontentmaynolongerbeappropriate.TheFinnishapproachdefiningDOCforeachwasteintheEuropeanWasteCataloguecannotbepresentedinTable2.TheEuropeanWasteCata

    0

    0,2

    0,4

    0,6

    0,8

    1

    1,2

    1,4

    0 0,05 0,1 0,15 0,2 0,25

    methane

    gene

    ration

    comparedt

    ok=0

    .1/y

    k(1/y)

    immediatelyafterclosure5yearafterclosure10yearafterclosure

  • Literaturereview:methanefromlandfills

    Page23van75

    loguehasapproximately800entries.ThismayneverthelessbeamoresuitableapproachforlandfillsacceptingwasteswithlowDOC.Sincetheyarebasedonextensivefieldstudies,theTNOmodelandthemodelbyVogtetal(1997)mightbeconsideredasbestguesses.TheTNOmodelcanbeconsideredrepresentativeforhumidoceanicregionandthemodelofVogtetal.(obtainedforlandfillsinCalifornia)asbeingrepresentativeforlandfillsinmoresubtropicalconditions,whereconditionsaremoredry,landfillgenerationmightbeinhibited,resultinginlongerhalftimesandultimatelyalsoareducedconversionoforganicmaterialtolandfillgas(henceareducedDOCfandL0).Table1:Comparisonofmodelsformethanepotential(kgmethanepertonwaste)andhalflifesforbiodegradationforhouseholdwasteorMSW

    L0 (kg/ton) halflife(year) remarkIPCCmodel 631 1223(slow)2,3

    7(moderate)24(fastdegradable)2

    MSWEurope

    TNOmodel 60 7 DutchHHWGasSim 514 15(slow)

    9(moderate)6(fastdegradable)

    HHWUK

    Landgem 122(CAA)572(inventory)5

    14(conventional)635(arid)6

    MSWUSA

    Afvalzorg 3945 23(slow)7(moderate)3(fastdegradable)

    DutchHHW

    EPRTR(Fr) 55 510 HHWFranceEPRTR(Fi) 65 23(slow)

    14(moderate)3,5(fastdegradable)

    HHWFinland

    Vogtetal.(1997) 44 17 MSWCalifornia1valueforbulkMSW2valuesforwetborealandtemperateregions.Fordryregionsandtropicalconditionsotherkvaluesaresuggested;3differenthalflivesspecifiedforpaperlikematerialsandwoodlikematerials;4sumofmethaneemissionsinthe1st100yearsafterlandfillingof1tonof19802010100%householdwaste,assumingnorecoveryand0%oxidation,ascalculatedusingGasSimLite5CAAdefaultsarebasedonrequirementsforUSlandfills,asspecifiedintheCleanAirAct.InventorydefaultsarebasedonresultsofaninventorybyUSEPA6aridreferstoregionswithlessthan625mm(25inch)rainfallperyear.Conventionalreferstononaridregions.ComparedtotheTNOmodel,theIPCCmodelandtheFinnishEPRTRmodelhasaboutthesameL0.TheaveragehalftimeofthehalftimesoftheIPCCmodelisaboutthesameasthehalftimeoftheTNOmodel.Applicationofbothmodelswill

  • Literaturereview:methanefromlandfills

    Page24van75

    giveaboutthesameresult,whenappliedtoalandfill10.GasSimwillgiveabout20%lessmethanegeneration.Afvalzorgabout3035%lessmethaneemissions.Landgem(inventoryL0andconventionalhalftime)however,hasahigherL0butasubstantiallylongerhalftime.AsaresultinitialmethanegenerationmightbecomparabletoIPCC,TNOorGasSim).Onthelongerterm,Landgemwillmostlikelyoverestimateemissions.TABLE 2: COMPARISON OF MODELSFOR METHANE POTENTIAL AND HALFLIFES FOR BIODEGRADATION FOR INDUSTRIAL WASTE

    L0 (kg/ton) halflife (year) IPCCmodel 50 1223(slow)1,2

    7(moderate)14(fastdegradable)1

    TNOmodel 50 7 GasSim 263 15(slow)

    9(moderate)6(fastdegradable)

    Landgem notspecified notspecified Afvalzorg 3639 23(slow)

    7(moderate)3(fastdegradable)

    EPRTR(Fr) 28 510 1valuesforwetborealandtemperateregions.Fordryregionsandtropicalconditionsotherkvaluesaresuggested;2differenthalflifesspecifiedforpaperlikematerialsandwoodlikematerials;3sumofmethaneemissionsinthe1st100yearsafterlandfillingof1tonof19802010100%industrialwaste,assumingnorecoveryand0%oxidation,ascalculatedusingGasSimLite2.2.5EVALUATIONOFGENERATIONMODELSApartfromtheaforementionedvalidationeffortsoftheTNOmodel(Oonketal.,1994;OonkandBoom,1995;Scharffetal.,2003)andthevalidationstudyofVogtetal.,(1997),therehavebeenseveralotherattemptstovalidateformationoremissionmodels,forexample: EhrigandScheelhase(1999)interpretedrecoveredamountsofmethaneat

    Germanlandfill.Onthebasisofthesedatatheysuggestamethanegeneration

    10IthastobenotedthattheIPCCmodelendsupatassimilarL0butinadifferentway.IPCCcombinesarelativehighvalueofDOCwithalowvalueofDOCfandF.Inthiswayoneendsupatsimilarmethanegenerationpotential.HoweverthesameDOCandDOCfarealsoatthebasisofanotherimportanteffectoflandfilling:theamountoforganiccarbonthatissequestratedinthelandfill.AsaresultofthesamerelativehighDOCandlowDOCf,IPCCendsupwithamuchhigheramountofcarbonsequestratedase.g.theAfvalzorgmodel.

  • Literaturereview:methanefromlandfills

    Page25van75

    ofabout2,5kgmethanepertonwaste11,10yearsafterclosureofthesite.KhleWeidemeierandBogon(2008)reinterpretthesedataandconcludeabestfitisobtainedassuminganL0of80kgmethanepertonwaste12andahalflifeofbiodegradationof3,5to6years.

    Fellneretal.(2003)comparesmodeledmethanegenerationwithactualmethanegenerationforlandfillsdescribedinliterature.UnfortunatelytheyonlyvalidateamodelbyTabasaranandRettenberger(1987)withaL0of93kgmethanepertonwasteandahalftimeofbiodegradationof20years.Theconclusionwasthatthemodeloverestimatesgenerationinmostofthecases.

    ScharffandJacobs(2005)comparedtheoutcomeofanumberofmodels(a.o.TheTNOmodel,theAfvalzorgmodel,Landgem,GasSimandazeroordermodels)withmeasuredemissionsatthreeDutchlandfills.Forindividuallandfills,differencesbetweenmodelswasenormous(differencebetweenthelowestandhighestestimationwasmorethanafactor10.Inonecaseevenafactor20).AccordingtoScharffandJacobs,thisisinindicationthatcurrentmodelsgivenoreliablemethaneemission.Methaneemissionmeasurementsarealsouncertain;howeverdiscrepancybetweendifferentmeasuredemissionsismuchlessasthedifferencebetweenmodeledemissions.

    Fredenslundetal.(2007)compare4generationmodels(Landgem,IPCCmodel,GasSimandtheAfvalzorgmodel)atalandfillsiteinDenmark.Hugedifferencesareobservedbetweenmodels,withhighestgenerationinLandgemandlowestgenerationandlowestgenerationforGasSimandtheAfvalzorgmodel.Alsowithinamodel,resultsarehighlydependingonspecificassumptions.Onbasisofthiscomparison,KhleWeidemeierandBogon(2008)concludeitisquestionablewhethergenerationsmodelsarereliable.

    Thompsonetal.(2009)validatedanumberofgenerationmodelsinacomparisonwithrecoveryatCanadianlandfills.Thisarticlehoweverhastobeinterpretedwithcare,sinceitappearstobeerratic13.

    Therearealsosomeeffortstovalidatemodelsinveryaridortropicalzones.AlthoughsimilarclimatesarenotfoundinEU,thesestudiesareofinterest,sincetheyillustratetheeffectofclimateonmethanegeneration: Atabietal.,(2009)validateLandgemforalandfillinIraninextremearidcondi

    tionsinacomparisonwithrecoveredamountsoflandfillgas.Landgem,assumingarateconstantofbiodegradationof0,02/y(ahalftimeofbiodegradationof35years)gavegooddescriptionoflandfillgasgeneration.Asdescribedinchap

    11Interpretation:EhrigandScheelhaseconcludegasformationtenyearsafterclosureofthesite

  • Literaturereview:methanefromlandfills

    Page26van75

    ter2.2.3,itislikelythatreducedlandfillgasformationhereistheresultofbothareducedmethanegenerationpotential(L0)andareducedrateofbiodegradation(k)

    Machadoetal.(2009)measuredthemethanegenerationpotentialinwastesamplesofdifferentageataBrazilianlandfill.ReductioninthispotentialcouldexplainedbyafirstorderdecayprocesswithaL0ofabout70kgmethanepertonwasteandahalflifeofbiodegradation,of3.5years.

    Wangyaoetal.(2009)describerapiddecompositionofwasteonalandfillinThailand.Methaneemissionsweremeasuredin2008and2009.Despitethehighheterogeneityofemissions,areductioninarithmeticmeanemissionswasobserved,fromwhichahalflifeofbiodegradationofabout2yearswasestimated.Thishighrateofbiodegradationisrelatedtoboththenatureofthewaste(containingalotofputrescibles)andclimate.

    Howeverinterestingthesevalidationsmayseem,theyareallbasedononetofewlandfills.areillustrativeforproblemsencounteredwhentryingtofindasuitablemodelforthespecificemissionsituation.AsillustratedfortheTNOmodelinFigure4,theuncertaintyinagenerationmodelislarge,anddependingonthequalityofwastedata,thechanceexiststhatgenerationisoverorunderestimatedby2550%.Thismakesithardtodrawconclusionsonthebasisofexperiencesatonlyoneorafewlandfills.Forapropervalidationofemissionsamuchlargersetofobservationsisrequired,beforeonecanconcludewhetheramodelisonaverageagoodpredictorofmethanegeneration.Inthisreport,evaluationofmodelsisnotonlyrelatedtoaccuracy.Indicatorsasscientificbasis,transparencyandvalidatedarealsoused.Theyindicatewhethermodelassumptionsmadeareclearandinlinewithscience.TheevaluationissummarizedinTable3andexplainedinmoredetailintheparagraphsbelow.Availability:Allmodelsarefreeware.ThisincludesGasSimLite,whichisthefreewareversionofGasSim.GasSimLiteenableslandfillownerstofulfilltheirreportingobligationsintheframeworkofEPRTR.InTable3a++meansthatthemodelcanbedownloadedfromtheweb.A4meansavailableondemand.Aormeansthatusershavetodoconsiderableeffortstoobtainaversionofthemodel.Easeofoperationreferstotherequiredexpertiseoftheuserwiththespecificmodelandthecomplexityofchoicesrequiredbytheuser.Numberofdifferentmanipulations/actionsbeforearesultisderived.IncaseofGasSimaisgiven,alsobecausethemodelrequiresinformationthatisnotusedincalculatingmethaneemissions.TheFinnishEPRTRmodelgeta,becauseitissetinFinnishandthereforelesseasytooperatefornonFinnishlanguage.Transparencyreferstoaproperdescriptionofthemodel,modelparametersused,assumptionsmadeandeffortsdonedovalidatetheoutcomeofthemodel.AspreadsheetbasedmodelisinitselfmoretransparentthanexecutablesasGasSimandCalmin,sincethemethodofcalculationanddefaultvaluesusedcanbetracedback.Forliteraturereferencesrelatedtotransparency,seethedescriptionofthemodelschapter2.2.3).

  • Literaturereview:methanefromlandfills

    Page27van75

    TABLE 3: SUMMARY OF EVALUATIONOF METHANE GENERATION MODELS1)

    1)Inthistable++meansverygoodandmeansverypoor.Ifagenerationmodelscoresorlessononeoftheevaluationparameters,usersofthemodelshouldbewellawareofthelimitsofthemodel.Requiredinput.Moredetailofinputisconsideredhereanadvantage.Itallowsamoreaccurateprognosisoflandfillgasgeneration,sinceitmightbringtheflexibilitytoincorporatecircumstancesthatarespecificforthislandfill.Themodelitselfisevaluatedinamorepositiveway,whenthewaytheinputparameterscanbedefinedisinlinewiththetypeofinformationavailableatthelandfill.Sowastecanbespecifiedaccordingtoitssource(householdwaste,officeswaste,commercialwaste,etc.,asintheTNO,Afvalzorgmodel)ratherthanitscomposition(putrescibles,paper,plastics,etc.asintheIPCCmodel).Specificationaccordingtoitssourceispreferred,sinceitconnectstothewayinformationisavailableatthelandfill.GasSimandtheFinnishEPRTRmodelgivethepossibilitytobothchangetheamountsofwasteperwastecategorie,butontopalsoaccommodateschangesincompositionofthewastestreams.Soalandfilloperatorcancalculatetheeffectofbothlesshouseholdwasteandachangeinhouseholdwastecomposition,e.g.duetoareducedpapercontent.IncaseofLandgemandtheFrenchEPRTRmodel,littleornoroomexiststospecifywastecompositiondetailofinputisconsideredtoolowforanaccuratemodel.Scientificbasisreferstowhetheramodelcanbeconsideredstateoftheartfromascientificpointofviewandtransparancyreferstohowclearassumptionare.TheIPCCmodel,TheTNOmodelandtheAfvalzorgmodelcanbeconsideredstateoftheart.GasSimseemstobestateoftheartaswell,butisgivenaneutralvalue,becausethescientificbasiscannotbeevaluatedduetolackoftransparency.TheFrenchEPRTRmodelisverysimpleincomparisontoothermodels.HoweveritsL0andhalflifeareinlinewithothermodels,anditsoutcomewillbeaboutthesame.Thereis

    IPCC

    TNO

    mod

    el

    GasSim

    Land

    gem

    Afvalzorg

    Calmin

    EPRTR(

    Fr)

    EPRTR(

    Fi)

    operationalavailabil ity ++ + ++ ++ + + + +easeofoperation + + + + 0 ++ requiredinput 0 + + 0 + 0 0 +

    performancescientificbasis + + 0 0 + + +transparancy ++ + 0 0 0 + validated 0 + 0 0 0 0 0

    constraintswastechanges + 0 + + +climatezones 0/+ 0 +

    accuracy 0 0 0 0 0 0

  • Literaturereview:methanefromlandfills

    Page28van75

    noevidencethatitsprognosisofmethanegenerationwillbelessaccuratethanothermodelprognoses.ThescientificbasisofLandgemisconsideredless,becauseofthehighvalesforL0assumedinthemodel.Calmingetsforthemomentanegativeevaluation,sincethediscussiononCalminsapproachisstillpending.ValidatedmodelTheTNOmodelismostextensivelyvalidated.Themodelparametersthemselvesaredeterminedinacomparisonwithlandfillgasrecoveryat9landfills.TheresultinggenerationisvalidatedinacomparisonwithmeasurementsoflandfillgasemissionsDutchon25Dutchlandfills,usinga1Dmassbalancemethod.TheAfvalzorgmodelisvalidatedinamorelimitedeffort,usingexperiencesfromoneDanishandthreeDutchlandfills.LandgemisbasedontheresultsofthevalidationofVogtetal.(1997).Calminisvalidatedinacomparisonwithresultsofclosedchambermeasurementson2Californianlandfills.Howeverasconcludedinchapter3,closedchambersmeasurementscannotbeconsideredareliablemethodtomeasuremethaneemissions.TheIPCCmodelisnotvalidateditself,butisforalargepartbasedontheTNOmodelandusesacomparableL0(althoughcalculatedinadifferentway).Validationoftheothermodelsisunclear.Wastechanges.TheIPCC,TNO,GasSimandAfvalzorgmodelcanhandlechangesinwastecomposition.ThedefaultvaluesintheTNOmodelhoweverseemtobeabitoutdated.TheapproachintheIPCCandGasSimatonehandandAfvalzorgmodelandTNOmodelattheotherhanddiffers:InIPCCandLandgemthecompositionofthewastecanbedefined(amountofputrescibles,paper,plastics,etc.).IntheAfvalzorgandTNOmodelchangesinoriginofthewastecandefined(e.g.amountofhouseholdwaste,officeswaste,commercialwaste,etc.).Asaresult,theAfvalzorgmodelismoresuitedtodealwithchangesinoriginofthewaste,wheretheIPCCmodelchangesinthecompositionofe.g.householdwaste.GasSimandtheFinnishEPRTRmodelaccommodatebothchangesinoriginofthewasteandchangesinthecompositionofeachindividualstream.TheFrenchEPRTRmodeldoesaccommodateforchangesinwaste,butitsassumptionofa50%reductioninmethanegenerationisquiterough.Landgemdoesnotaccommodateforchangesinwastecomposition.InCalminwastecompositionisassumednottobeofinfluenceonmethaneemissions.Applicabilitytovariousclimatezones.Asdescribedinchapter2.2,climatehasimpactonmethanegenerationandboththeamountofmethanegeneratedpertonofwaste,andthespeedatwhichthisisgeneratedisinfluencedbyclimate.MostmodelshoweveraremadeandvalidatedfornorthwesternEurope(sothepartindicatedinFigure3ashumidoceanic)andhavetobeconsideredlessaccuratewhenappliedtootherregionsinEurope.OutofallmodelsevaluatedonlytheIPCCmodelandLandgemdistinguishsomewhatbetweenclimatezones(thesetwomodelsonlytheeffectofwetanddryonhalflifeofmethanegeneration,somethanegenerationinlandfillsinthesouthofEuropewillbesomewhatdelayed).TheaccuracyinTable3referstotheaccuracyfortypesofwasteandclimateconditionsforwhichthemethodisdeveloped.ApartfortheTNOmodel,whichisvalidatedforwastelandfilledintheNetherlandsintheperiodupto2000,thereislittle

  • Literaturereview:methanefromlandfills

    Page29van75

    ornoinformationavailableonthebasisofwhichmethodsmutuallycanbecompared.Ingeneralmostgenerationmodelsarebuiltonreasonableassumptionsitisimpossibletoconcludethatonesetofreasonableassumptionsyieldsamoreaccurateresultthantheotherset.Havingsaidthis,theIPCCmodel,GasSimandtheFinnishandFrenchEPRTRmodelseemtobeinfairtogoodagreementwiththeTNOmodelforhouseholdwaste/MSW.SoforhumidoceaniczoneandforwastedominatedbyMSWthesemodelswontbetoofaroff.TheAfvalzorgmodelseemstounderestimatemethanegenerationfromMSW,butthestrengthofthismodelliesinlandfillswithwastefromothersources.OntheotherhandassumptionsinLandgemandCalminseemtobelessreasonable.Themethanepotential,L0,inLandgemseemsratherhigh(alsoincomparisonwiththevalidationstudyofVogtetal.,1997)andthereforeLandgemwillmostlikelyoverestimategenerationatmostlandfills.Calminonlymakesanimplicitprognosisoflandfillgasgeneration.Thisgenerationexcludesmethaneemittedthroughshortcutsandthereforeresultsinanunderestimationofmethaneformationatlandfills,wherelargepartofmethaneisemittedthroughtheseshortcuts.

    2.3METHANECONTENT,RECOVERYTheamountofmethanerecoveredisgenerallycalculatedfromtheamountoflandfillgasrecoveredandthemethanecontent:

    methanerecovery=landfillgasrecovery*methanecontent(eq.9)L A N D F I L L G A S R E C O V E R Y Themostaccuratewaytoobtaintheamountoflandfillgasrecoveredisbycontinuouslymeasuringtheflowoflandfillgastoutilizationand/orflare,byusingaturbinemeter.Themeasurementhastobecorrectedfortemperature,pressureandmoisturecontent,sopressureandtemperaturehastobemeasuredandmoisturecontentcanbecalculatedfromtemperature,assumingfullsaturationofthegas.Whenamountofgasisnotmetered,landfillgasrecoverymightbeestimatedfromenergyproduction,e.g.assuming1,8kWhproducedperm3oflandfillgasextracted.Howeverthisestimateoflandfillgasrecoveryismuchlesaccurateasameteredrecovery.Thereisnoaccuratewaytoestimatetheamountoflandfillgasrecovered.Asindicatedinchapter4inthisreport,25%to75%recoveryefficiencycanbeexpected,whenthesystemoflandfillgasrecoverycanbeconsideredstateoftheart.IPCCgivesadefaultrecoveryefficiencyof20%forsystemswithoutanyfurtherspecification(IPCC,2006).

  • Literaturereview:methanefromlandfills

    Page30van75

    M E T H A N E C O N T E N T Methanecontentofthelandfillgasgeneratedisasomewhatneglectedparameter.Someemissionmodels(astheIPCCmodelandGasSim)assumeadefaultvalueof50%.Howeveractualmeasurementsindicatethataveragemethanecontentinlandfillswillbemoreintheorderofmagnitudeof57%(OonkandBoom,1995).Methanecontentarerelativelyeasymeasuredusingfromtimetotime(dailytoweekly)asimpleFIDanalyzerinthetotalamountofrecoveredgas.Onbasisofthesemeasurementsweighedannualaveragemethaneconcentrationcanbecalculated.

    2.4METHANEOXIDATION2.4.1PROCESSESOFMETHANEOXIDATIONWhenmethanepassesthroughthetoplayer,itentersanoxygencontainingzonewherebacteriacanconvertpartofthemethanetoproduceCO2.Thisprocess,normallyreferredtoasmethaneoxidationcanbedescribedas:

    CH4+2O2CO2+2H2O (eq.10)Thereareseveralfactorsthatcontroltheamountofmethanebeingoxidized,themostimportantonesbeing: Thehomogeneityatwhichmethaneisemitted.Atlandfills,largepartoftheme

    thaneisreleasedthroughshortcuts.Theseshortcutsarealltypesofcracksandrupturesatthesurfaceorsubsurface,butalsogaswellsordrainagepipesthatarenotwellsealedorareleaking.Asaresultmethaneemissionsarehighlyheterogeneous(seealsochapter3.1)andmethaneoxidationathotspotsismostlikelymuchlessthanoxidationmethanethatisemittedinamorehomogeneousway;

    Thefluxofhomogeneouslyemittedmethane(theflowofmethanefromthebulkofthewastetothebottomofthetoplayer).Whenthisfluxincreases,diffusionofoxygenintothetoplayerisreducedandmethaneoxidationitselfaswell(Scheutzetal.,2009a);

    Theporosityofthetoplayer.Increasedporosityimpliesatonehandamorehomogeneousmethaneemission.Attheotherhand,oxygendiffusionintothetoplayerisenhanced.Soincreasedporosityisadvantageoustomethaneoxidation.Waterlogginginperiodswithhighprecipitationdecreasesporosity(Gebertetal.,2009);

    Thewatercontentofthetoplayer.Bacterianeedmoisturetobeactiveandbacteriologicalactivityisfavoredbymoisture.Howevertoomuchwatermightblockthepores.Sothereisanoptimumwatercontentofthetoplayer(Brjessonetal.,1997,Cabral,2004)

    Thetemperatureofthecoverlayer,whichiscloselyconnectedtoambienttemperatures.Athighertemperaturesbacteriabecomemoreactive.Every10oCtemperatureincreasemeansabout24foldincreaseinmethaneoxidation(Gebert,2007).

  • Literaturereview:methanefromlandfills

    Page31van75

    Asaresultofitsmoistureandtemperaturedependency,methaneoxidationdependsonaverageweatherconditions.Soitisclimatedependent.Methaneoxidationisdescribedtobeatitsmaximumintemperatetowarmconditionswithlimitedexcessrainfall.Methaneoxidationismostlikelylessincolderclimatesandunderwarmbutdryconditions(e.g.Abichouetal.,2010).Foraspecifictoplayeritisalsodependingontheseason;methaneoxidationisinwinterislessthaninsummer.ThisisobservedinNordiccountries,asDenmark(ChristophersenandKjeldsen,1999),Sweden(MauriceandLagerkvist,1997;Brjessonetal.,2007),Belgium(Boeckxetal.,1996)eninnorthernpartsofUSA(Czepieletal.,1996b).2.4.2METHODSFORMODELINGOXIDATIONA P P L I C A T I O N O F S I M P L E D E F A U L T S : IPCC(2006)acknowledgesthelackofreliablefieldmeasurementsonoxidationandthereforeproposeacareful10%defaultvalueforwellmanagedlandfills.This10%defaultismeanttobeaconservativefirstguess,leavingroomforimprovement.Sincetheywerepublished,theIPCCdefaultvaluedrewalotofdiscussionandproposalsforimprovement: Brjessonetal.(2007,seeFigure6)performedmeasurementsatafewlandfills

    inSweden.Somelandfillswerestillinoperationwhileotherswererecentlyclosed.Themeasurementmethodisbasedon13Cofthemethaneintheplume,amethodwhichcanbeconsideredasoneofthemorereliablemethodstoquantifymethaneoxidation(seechapter2.4.2).Brjessonetal.explicitlypayattentiontoimproveddefaultvaluesformethaneoxidationandpropose10%foractiveand20%forclosedlandfills.

  • Literaturereview:methanefromlandfills

    Page32van75

    FIGURE 6: CORRELATIONBETWEEN SOIL TEMPERATUREAND METHANE OXIDATION ON SWEDISH LANDFILLS (BRJESSON ET AL., 2007) KhleWiedemeijerandBogon(2008)reviewincludingmethaneoxidationon

    thebasisofaliteraturesurveyinscientificjournalsandavailablegreyliteratureonthistopic(o.a.GermanresearchonmethaneoxidationatlandfillsformechanicallybiologicallypretreatedwasteandaninterpretationofthemeasurementsofOonkandBoom,1995andScharffetal.,2003).TheyultimatelyconcludethereisnosolidbasisforthedefinitionofmoreaccuratedefaultvaluesandthereforetheyproposetostayclosetotheIPCCdefaultvalues(10%whenmethanefluxishigherthan1,5gCH4m2hr1and15%oxidationwhenthefluxislower),butmentionthisismostlikelyanunderestimation.

    Chantonetal.(2009)alsoputtheIPCCdefaultvalueatdiscussioninareviewthatlimitsitselftopeerreviewedliterature.Theyconcludethatonly1outof10measurementsresultinavalueoflessthan10%.Averageofallavailablemeasurementsis35%.IthastobenotedthatChantonetal.(2009)arenotcriticaltowardsanyofthemeasurementsandsimplymakeanaverageofallavailablemeasurements,boththereliableonesaswellastheonesperformedwithlessreliablemethods(e.g.manymeasurementsareperformedusingfluxchambers,amethodknownforitsinaccuracyonlargersurfaces).

    GasSimgivestheopportunityeithertochoosethe10%IPCCdefault,ortouseyourownvalue.WhenthelatterischosenGasSimproducesadefaultof25%oxidation,exceptfor10%ofthemethanethatisemittedthroughpreferentialchannels.Itisunclearonwhatinformationthisisbasedupon.

    Oonk(2010)reviewsavailableliterature.Importantconclusionisthatlargepartofmethaneisemittedthroughpreferentialchannelsandthepercentagethatis

  • Literaturereview:methanefromlandfills

    Page33van75

    emittedinamorehomogeneouswaydeterminesmethaneoxidation.Howeverthereisamaximumoxidationcapacityinperm2peryear.Hesuggestsa1030%oxidationforDutchlandfillsinexploitationand2040%oxidationforclosedlandfillswithamaximumof510kgCH4/m2/yr.

    AlsoinAustraliathe10%IPCCdefaultisatdiscussion(Dever,2010).Deverconfirmstheimportanceofshortcutsandindicatesthatactualoxidationwillbesignificantlyinfluencedbytheseshortcuts.

    MO D E L E D A P P R O A C H E S Themostelaboratedmodelofmethaneoxidationisperformedintheframe

    workofCalmin(Spokasetal.,2009;Abichouetal.,2010).Methaneoxidationisdeterminedonthebasisofthecompositionofthetoplayerandclimateconditions.Themodelitselfultimatelyproducesamaximummethaneoxidationinkg/m2/yrandwhenthefluxofmethanetothetoplayerisbelowthismaximum,methaneemissionisassumedtobezero.Ultimatelymethaneoxidationismuchhigherthanthe1035%mentionedaboveandisintheorderofmagnitudeof75%.ThishighvalueiscausedbytheassumptioninCalminthatallmethaneisemittedhomogeneously.Asdescribedbefore,largepartofmethaneisemittedthroughshortcutsandhotspotsandoxidationhereismostlikelylowornegligible.Forlandfillswhereshortcutsandhotspotsplayaroleinemissions,Calminwilloverestimatemethaneoxidation.

    TheCLEARgroup(aninternationalgroupofleadingexpertsonmethaneoxidation14)discussesimprovementofquantificationofmethaneoxidation.Somemembersofthegrouphaveproposedadraftmodelinwhichmethaneoxidationiseitherlimitedbytheamountofmethanethatishomogeneouslyemittedorthemaximumoxidationcapacityofthetoplayer.Bothparametersareestimatedasafunctionofmethaneflux,toplayermaterial,porosity,moisturecontentandambienttemperatureandthelowestofbothisactualmethaneoxidation.Thedraftmodelwillbediscussed,revisedanddefinedinmoredetailbythewholeCLEARgroupduringthenextmonths(Scharff,2010b).

    2.4.3EVALUATIONOFMODELSFORMETHANEOXIDATIONMajorproblemindefiningandevaluatingmodelsformethaneoxidationisthelackoffielddata.Mostofthemeasurementsthatareavailablearedoneusingclosedchambersandthismethodmostlikelyoverestimatesmethaneoxidation(seechapter3.4).MorerecentevaluationsofavailableinformationallyieldeddefaultvaluesintheorderofmagnitudeoftheIPCCdefaultvalueof10%.Mostlikelylandfillsitesinoperationhavelessmethaneoxidationthanclosedlandfillsites.Methaneoxidationisgenerallyexpressedasapercentageofthemethanefluxfromthebulkofthetoplayer.Butmostlikely,thereisalsoamaximummethaneoxidation,whenexpressedingm2hr1.Sobeyondthismaximum,thefixedpercentagemightleadtoanunderestimation.Theprinciplesoutlinedinthedraftmodelformethaneoxidation,being14FormoreinformationonCLEAR,seehttp://ch4ox.lmem.us/

  • Literaturereview:methanefromlandfills

    Page34van75

    discussedbytheCLEARgroup(Scharff,2010b),mightresultinthebestguessformethaneoxidationatthemoment.D I F F E R E N T C L I M A T E Z O N E S Althoughitisgenerallyacknowledgedthatclimateandseasonhasimpactonmethaneoxidation,thisimpactisnotincludedinmostoftheevaluationsformethaneoxidation.AnexceptionisCalmin.HoweverCalminassumesallmethaneemissionstotakeplacehomogeneously.Itunderestimatesmethaneemissionsfromlandfills,whereshortcutsandhotspotsareimportantpathwaysformethaneemissions.ThedraftCLEARoxidationmodeldoescorrectfortheimpactofambienttemperature.Thecurrentversiondoesnotyetcorrectfortheeffectofprecipitation.A C C U R A C Y Theaccuracyofmethaneoxidationisunclear.E.g.IPCC(2006)doesntgiveguidanceonthistopic.InterpretationofemissionmeasurementsfromOonkandBoom(1995)givevaluesformethaneoxidationinbetween10and30%forlandfillsinexploitationand10to60%forclosedlandfills.GasSimgivestheopportunitytopickarealisticmethaneoxidationof25%andarangeoferrorfrom10to40%.Bothuncertaintyrangesareobtainedforcountriesinahumidoceanicclimate.Methaneoxidationinsubarcticorhighlandregionscanbeexpectedless,duetoonaveragecoldertemperatures.Methaneoxidationinsubtropicalregionscanbeexpectedlessbecauseofrelativedryconditionsofthetopsoil.Methaneinlandfillsinhumidcontinentalregionscanbeexpectedlessaswell,partiallybecauseofthelongerandcolderwintersandmoredrysummers.

    2.5ACCURACYOFMODELEDMETHANEEMISSIONTheaccuracyofmodeledmethaneemissionisafunctionoftheaccuracyofmodeledmethanegeneration,theaccuracyofmethanerecoveryandtheaccuracyinmethaneoxidation.Sincemethaneemissionisobtainedasadifferencebetweengenerationandthesumofextractionandoxidation,theaccuracyoftheoverallresultisquitepoor.Outofallavailableemissionmodels,GasSimpaysmostattentiontoaccuracyoftheestimatedemission.InGasSimanaccuracydistributionofallinputvariablesandmodelparameterscanbeintroduced.InaMonteCarloanalysis15,1to99%confidenceintervalsarecalculatedformethaneemission.IthastobenotedthatsuchaMonteCarloanalysisonlyquantifiestheeffectofknowninaccuracies.Therearealsounknownmodelinaccuracies,e.g.theinherentinaccuracyoftheassumptionthat15InaMonteCarloanalysisallparametersarevariedatrandom,withinthedefineddistributionofaccuracy.Subsequentlymethaneemissionsarecalculated.Thiscalculationisrepeated100times,everytimewithadifferentrandomchoiceofparameters.Resultisaprobabilitydistributionofmethaneemissions(1%chancemethaneemissionsarelessthanxkg/yr;5%thattheyarelessthanykg/yrto99%theyarelessthanzkg/yr).

  • Literaturereview:methanefromlandfills

    Page35van75

    methanegenerationcanbedescribedthroughafirstorderormultiphasemodel(eveninthetheoreticalcasethattheexactamount,compositionandrateofbiodegradationofthewasteisknown,thereisstilluncertaintyaboutmethanegenerationbecauseitisnotclearwhetherthemodelisanexactdescriptionofhowmethaneisbeingformed).UnfortunatelyGasSimdoesnotspecifyanydefaultuncertainty,soitrequiresanexperiencedandknowledgeableusertomakeuseofthisknowledge.Inallothermodels,accuracyhastobecalculatedbyhandandbypropagationoferrors.Ingeneraltheminimumandmaximummethaneemissioncanbecalculatedasfollows:

    CH4emin=CH4gmin(Rmax*Fmin)OXmax (eq.10)CH4emax=CH4gmax(Rmin*Fmax)OXmax (eq.11)

    IPCC(2006)givesguidancetoestimatingtheaccuracyinmethaneemissionthrougherrorpropagationandthismethodcanbeappliedtoothermodelsaswell.AlthoughtheIPCCmethodologyismadeforestimationofmethaneemissionsfromalllandfillsinacountry,guidanceisalsoapplicabletoindividuallandfills.AccordingtoIPCCtheerrorinlandfillgasgenerationpertonofwasteconsistsof theerrorinamountoforganiccarboninthewaste(20%whenbasedonIPCC

    defaultvalues,10%whenbasedonregularsamplingandanalysis); fractionoforganiccarbonthatactuallydecomposes(20%whenbasedonIPCC

    defaultvalues,10%whenbasedonexperimentaldataforreallandfillsoverlongertimeperiods);

    anerrorinthemethanecorrectionfactor(10%formanagedlandfills)and anerrorintheassumedmethanecontentofthelandfillgasformed(5%);Totalsumoferrorsinmethanegenerationpertonofwaste,accordingtoIPCC,rangesbetween35%and55%,dependingonlocalinformationavailable.HoweverasdescribedinIPCC(2000),someoftheparametersaremutuallydependentandtotalerrormightbelessthantheonespecified.E.g.organiccarboncontentisknownwithlimitedaccuracyandthesamegoesforthefractionoforganiccarbonthatactuallydecomposesandthemethanecorrectionfactor.Theproductofthethreeistheamountoflandfillgasthatisproducedpertonofwaste,andthisoneisknownmoreaccuratelythanthesumofuncertaintyofallthreefactorssuggest.Soactualuncertaintyinamountofmethaneproducedpertonofwastewillbelessthanthe35to55%andmightbe20to40%.

  • Literaturereview:methanefromlandfills

    Page36van75

    TABLE 4: INDICATION OF UNCERTAINTIES IN METHANE MASS BALANCEgoodcase badcase

    amountofwaste 1 2%:weighed waste 20%:estimatedbasedonlandfillvolume

    L0 20%:accuratewastedescription,humidoceanicclimatezone

    40%:noaccuratewastedescription,otherclimatezone

    modeluncertainty 5 10% 10%methanerecovery 10%:measured 25%:estimatedmethanecontent 5%:measured 10%:estimatedmethaneoxidation 150%:otherclimatezone 250%:humidoceaniccli

    matezoneTable5givesanexampleoftheresultofasimpleerrorpropagationofmethaneemissionsfromalandfill.Evenwithmodestassumptionsonaccuracyofmethanegenerationandotherfactorsinvolved,theinaccuracyinmethaneemissioninthisexampleturnsouttobe65%.Asaruleofthumb,inaccuracyinmethaneemissionincreaseswhentheefficiencyoflandfillgasrecoveryincreases.TABLE 5: EXAMPLE OF PROPAGATION OF ERRORS WHENCALCULATING METHANE EMISSIONSFROM THEMETHANE MASS BALANCE (LANDFILLIS CHOSEN IN SUCH A WAY THAT BEST GUESS METHANE EMISSIONIS 100 KG/Y)

    minimum mean maximumLFGgeneration(m3/y) 300 (30%) 428 557(+30%)methanecontent (vol%) 50 54 58methanegeneration (kg/y) 108 167 232methanerecovery (kg/y) 61 (+10%) 56 50(10%)methaneoxidation (kg/y) 12 (25%) 11(10%) 18(10%)methaneemission (kg/y) 35 100 164

    Howeveronanindividuallandfill,knowledgeofthelocalsituation,e.g.onthequalityoflandfillgasextractionmightimprovetheaccuracyconsiderably.Inthisexample,theminimumvaluewouldimplyover50%recoveryefficiency,wherethemaximumemissionwouldimplyjustover20%efficiencyoflandfillgasrecovery.Anexpertjudgmentofthequalityoftherecoverysystem,andeffortsdoneinthepasttooptimizerecoveryshouldhelptoseewhatrangeinrecoveryvalueisrealistic(seealsochapter4).Basedonthis,theerrorinmodeledemissioncouldbereduced.

    2.6CONCLUSIONSMODELLINGModelingemissionsofmethanegenerallyrequiresmodelingofmethanegeneration,measuringlandfillgasrecoveryandassumingsomemethaneoxidation.Inthelastfewyearsdevelopmentofmethaneorlandfillgasgenerationmodelshavereceivedmostattentionandseemtohavedeveloped.Thereareseveralmodels

  • Literaturereview:methanefromlandfills

    Page37van75

    available,suchastheIPCCmodel,theTNOmodelandGasSim,allbuiltupfromreasonableassumptions.Howeverduetoalackofvalidationonreallandfilldata,theseassumptionsmightresultinonlyanapparentaccuracy.TheFrenchEPRTRmodelismuchsimplerandmightbejustaseffective.AlltheaforementionedmodelsmightproducereasonableresultsforMSWdominatedbyhouseholdwaste,landfilledinWesternEurope.TheaccuracyofthesemodelsforothertypesofwasteorindifferentregionsinEuropeislimited: Theimpactofclimateonlandfillgasformationiswidelyrecognized.Climatewill

    haveimpactonboththeamountofmethanethatisultimatelyreleasedpertonofwaste(L0)andthespeedatwhichmethaneisreleased(halflifevalues).TheimpactofclimateonL0isuntilnowneglectedinformationmodels.TheimpactofclimateonhalflifeisonlydescribedintheIPCCmodel,butinaveryrudimentaryway.Foranimproveddescription,4climatezonesinEuropecouldbedistinguished:(i)subarcticandhighland,(ii)humidoceanic,(iii)humidcontinentaland(iv)subtropical;

    Asaresultofexistingpolicy,landfillingoforganicwasteismoreandmorediscouraged.ThischangeinwastecompositionalsorequiresimproveddefaultvaluesforL0.Itisalsopossiblethatthespeedandcompletenesswillbeaffectedatwhichorganicwastethatremainstobelandfilleddegrades;

    Oxidationismoredifficulttodescribe,thanmethanegeneration.Knowledgeonoxidationisalsolimitedbyscarceinformationavailableonactualmethaneoxidationunderfieldconditions.TheIPCCdefaultvalueof10%hastobeconsideredasalowguess,aconservativevalue,leavingroomforimprovement.Actualmethaneoxidationisagaindependentonthedesignofthetoplayer,themethanefluxthroughthetoplayerandclimateconditions(precipitationandambienttemperature).Hotspotsandshortcutsformethaneemissionlimitmethaneoxidation,sinceatmanylandfillslargepartofmethanewillescapewithoutpassingtheoxidizingzoneinthetoplayer.Mostlikelyismethaneoxidation(expressedin%)somewhathigheratclosedlandfills,somewhatlessatlandfillsinexploitationandbecomesmoreorlessaconstantvalueinkg/m2/yrwhenmethanefluxtothetoplayerishigh(e.g.deeplandfills,withoutstateoftheartlandfillgasrecovery).Intheend,modeledmethaneemissionsarehighlyuncertain,evenwhenmethaneformationandoxidationcanbedescribedrelativelyaccurately.Thereasonforthisisthepropagationoferrors,whichishighlyunfavorable.Thisisbecausemethaneemissioniscalculatedasthedifferenceofthreeuncertainparameters.Anidealmethaneformationoremissionmodeldoesntexist.SuchanidealmodelshouldhavethetransparencyofIPCCmodel,thelevelofvalidationoftheTNOmodel,awasteinputmodulefornonhouseholdwasteofAfvalzorg,anuncertaintyanalysisasinGasSim,amorereliabledescriptionofoxidationasafunctionofclimateconditionsasinCalmin,butthenwithmorerealisticassumptionsonshortcutsasinthedraftoxidationmodeloftheCLEARworkinggroup.However,aslongasnoadditionalvalidationeffortsareperformed,oneshouldbeawarethatmodelswithmoresophistication,builtonevenmoreassumptionsmightonlygiveanimproved

  • Literaturereview:methanefromlandfills

    Page38van75

    apparentaccuracy.SosimplicityasintheFrenchEPRTRmodelmightalsohaveitsbenefits.

  • Literaturereview:methanefromlandfills

    Page39van75

    CHAPTER3:MEASURINGEMISSIONS

    3.1IntroductionInthepastdecadestherehasbeenconsiderableinterestinmeasurementmethodsformethanefromlandfills.Inthisperiod,variousmethodsareproposed,developed,tested,improved.Howeveratthemomentthereisnosinglemethod,thatiswidelyrecognizedasthepreferredmethodtomeasureannualaveragemethaneemissions.Themaindifficultyinmeasuringmethaneemissionsfromlandfillsisthespatialandtemporalvariabilityofemissions,incombinationwiththesheersizeofamodernlandfill.Thespatialvariabilityofmethaneemissionsisreportedbyvariousresearchers.Emissionsatonespotcanbe1.000foldofemissionfromaspotlocatedafewmetersaway(Verschutetal.,1991).AccordingtoCzepieletal.(1996)thereisnocorrelationbetweenemissionataspotatthelandfillandtheemission6metersaway.Theyestimatethat50%ofemissionsisreleasedat5%ofthelandfillsurface;Bergamaschietal.(1998)estimatethat70%ofmethaneemissionsarereleasedthroughshortcuts.Figure7givesatypicaldistributionofdistributionofemissionsatalandfillandsimilarpatternsarepublishedbyNozhevnikovaetal.(1993),butsimilardistributionsarereportedbyOonketal.(2004),MackieandCooper(2009)andChantonetal(2010).RachorandGebert(2009)studiedvariationinemissionswithinthesquaremeterandevenatthissmallscaleemissionsprovedtobehighlyheterogeneous.

    FIGURE 7: METHANEEMISSIONS FROMTHEKUCHINOLANDFILL SURFACE(NOZHEVNIKOVA ET AL., 1993)Changesinweathercauseatemporalvariability.Verschutetal.(1992)indicatepressurevariationstobeveryimportant.Czepieletal(1996)indicatethathigheremissionsareobtainedduringdayswithlowerpressure.AlsoScharffetal.(2003)reportacorrelationofmethaneemissionsandchangesinambientpressure.Rainfall,windandeventsinthegasextractionsystemareotheraspectsthathaveimpactonmethaneemissions.

  • Literaturereview:methanefromlandfills

    Page40van75

    FIGURE 8: VARIABILITY INEMISSIONSAND CHANGES IN PRESSURE DROP. RECONSTRUCTED FROM A 1D MASSBALANCEMETHOD MEASUREMENT(SCHARFF ET AL., 2003)BasedondaytodayvariabilitiesasinFigure8,Scharffetal.(2003)estimate46daymeasurementsthroughouttheyeararerequiredtoobtainanaccurateannualaverageemissionestimate.Ontopofthedaytodayvariationmentionedabove,aseasonalvariationinmethaneemissionsisexpected,duetoaseasonalvariationintemperatureandmoisturecontent.Asdescribedinchapter2.4.1,averagemethaneemissionsinwinterissomewhathigherthanaverageemissionsinsummer,especiallyinNordiccountries.Soamethodtomeasureannualaveragemethaneemissionsshouldbeabletodealwiththetemporalandspatialfluctuationsasdescribedabove.

    3.2Availablemethods3.2.1SOILCOREMEASUREMENTSMeasurementsinthetoplayermaygiveusefulmechanisticinformationaboutthefundamentalstepsleadingtomethaneemissions:diffusionandoxidation.Methaneandcarbondioxideconcentrationgradientsinthesoilmaygiveanindicationofmethaneandcarbondioxidediffusionthroughthelayer(Bogneretal.,1995);landfillsoilcoresmaybecollectedandtransportedtothelabfordeterminingbacteriologicalactivityofmethanotrophes.ThelatterisdonebyexposingthesoilsampletoahighconcentrationofCH4andmeasurethedecreaseoftheCH4concentrationintime,thusgivinganindicationoftheoxidationcapacityofthesoil.Theseexperimentsmaybecarriedoutatdifferenttemperaturesorsoilmoisturelevelsetc.tostudyimprovethemechanisticunderstandingofoxidation.ADVANTAGES AND DISADVANTAGES Theadvantageofsoilcoremeasurementsisthatitgivesinsightinthefundamentalstepsleadingtoemissions.Themethodhoweveralsohassomedisadvantages:it

    50250

    25

    50

    75

    100

    125

    150

    175

    200

    200100

    0

    100

    200

    300

    400

    500

    600

    700

    800

    4100

    1

    9100

    1

    1410

    01

    1910

    01

    2410

    01

    2910

    01

    3110

    1

    8110

    1

    1311

    01

    1811

    01

    2311

    01

    dp/dt(m

    bard

    ay1 )

    CH4em

    ission

    (m3hr

    1 )

    methaneemission

    variationofairpressure

    date

  • Literaturereview:methanefromlandfills

    Page41van75

    doesnottakeintoaccountemissionscausedbyconvectionanditsspatialandtemporalresolutionarelow(onegetsanimpressionofemissionandoxidationofaverysmallspotonasinglemoment).Besides,themethodologyisverylaborintensive.3.2.2CLOSEDCHAMBERMEASUREMENTSApplicationofclosedchamberismostfrequentappliedtomeasuremethaneemissionsfromlandfills.Itisappliedbymanyresearchgroupsaroundtheworld,bothformonitoringmethaneemissionsfromsmallerpartsofalandfill(e.g.testfieldsforenhancedmethaneoxidation)aswellasestimatingemissionsfromanentirelandfill.AnoverviewofselectedapplicationsofclosedchambersisgivenbyScheutzetal.(2009).Ingeneralterms,inaclosedchambermeasurementafluxboxisputonthelandfill,andtheincreaseofmethaneconcentrationsintheboxintimeismeasured.Themethanefluxiscalculatedfromtheincreaseofmethaneconcentrationintime,thevolumeoftheboxandthesurfacecapturedbythebox.Theareafewpitfalls,whenperformingaclosedchambermeasurement: Whenlandfillgasiscollectedwithinthebox,thepressureintheboxincreases.

    Sowhenthemeasurementisperformedoveratoolongtime,landfillgasemissionfromthesurfaceencapsulatedbytheboxmightbeaffectedandmethanefluxisunderestimated;

    Withvegetationonthelandfillsurface,sealingoftheboxtothesurfaceisofimportance.Anyleakageswilldisturbthemeasurement.Incaseofexcessivevegetation,mowingpriortothemeasurementmightbeanoption.Toimprovesealingsomeresearchprojectswherethesamespotismeasuredmultipletimesovertime,usefixedcollarswhicharemountedtothegroundonwhichclosedchamberscanbepositioned;

    Whenvegetationispresent,themethodisnotsuitedformeasuringcarbondioxide.Thisisbecauseofdissimilationofcarbondioxidefromthevegetation.

    Somevariationsonclosedchambermeasurementare: Dynamicboxes,openchannelsthroughwhichacontinuousairstreamisled.Us

    ingamatchingpairofinletandoutletventilatorthepressureintheboxiskeptambientandlandfillgasemissionisnotinfluenced(Verschutetal,1991;HuberHumerandLechner,2001ab);

    Fastboxmeasurements,usinganalyticalequipmentthatalreadycandetectafewppbincreaseinmethaneconcentration.Usingthisbox,asinglemeasurementtakeslessthanaminute.Asaconsequencethenumberofmeasurementthatcanbeperformedinonesingledayissignificantlyincreased(Oonketal.,2004).

    G R I D W I S E M E A S U R E M E N T S Thelargestdrawbackofclosedchambermeasurementsisthesmallsurfaceareasampledpermeasurement.Inanattempttoobtainareliablemethaneemissionestimate,systematicsamplingstrategiesareproposed(BognerandScott,1995;Bour,2007;Long,2004;Rosevaeretal.(2004);Savanneetal.,1997;Spokasetal.,2006).Suchasamplingstrategyconsistsofsamplingatpointslocatedonasystematicgrid,

  • Literaturereview:methanefromlandfills

    Page42van75

    sometimesfollowedbyapplicationofgeostatisticalmodels(Spokasetal.,2003).Typicaldistancesbetweenpointsonsuchasamplinggridare1060meters;themoremeasurementsmade,themoreaccuratetheresult.Anotheroptiontoimproveclosedchambermeasurementsistousequalitativesurveys(seechapter3.2.7)toidentifyhotspotsandsubsequentlydecreasethegriddistanceatplaceswherehotspotsofemissionsaresuspected.Thisdoeshoweverintroducetheissueofweighingthehotspotsmeasurementsandtheothermeasurementscorrectlytoobtainanoveralllandfillaverage.A D V A N T A G E S A N D D I S A D V A N T A G E S Closedchambermeasurementshaveanumberclearadvantages.Tostartwith,themethodiseasytounderstand,doesntrequireanalyticalequipmentbeyondacommonFIDoraIRanalyzer.Themethodisabletodetectsmallfluxesofmethaneandisnotsensitivetotopographicconstraintsorothersourcesofmethanenearthelandfill.Themethoditselfalsohascleardisadvantages.Themostimportantoneisthatonmanylandfillsmethaneemissionstakeplaceinsuchaheterogeneousway,thatclosedchambersdonotgiveareliableaveragemethaneemission.Thereisabigchancethathotspotsofmethaneemissionsaremissed,resultinginanunderestimationofem