suppressed ion-scale turbulence and critical density ... · measured saturated spectrum •...

24
Suppressed Ion-Scale Turbulence and Critical Density Gradient in the C-2 Field-Reversed Configuration L. Schmitz (UCLA, TAE) with C. Lau, D. Fulton, I. Holod, Z. Lin, (UCI), T. Tajima, M. Binderbauer, H. Gota, B. Deng, J. Douglass (TAE) and the TAE Team Norman Rostoker Memorial Symposium August 24-25, 2015 Irvine, CA 5 0 -5 f D (MHz) 0 1 2 Time (ms)

Upload: others

Post on 26-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Suppressed Ion-Scale Turbulence and Critical Density Gradient in the C-2

Field-Reversed Configuration L. Schmitz (UCLA, TAE)

with C. Lau, D. Fulton, I. Holod, Z. Lin, (UCI), !

T. Tajima, M. Binderbauer, H. Gota, B. Deng, J. Douglass (TAE) and the TAE Team!

!

!!

Norman Rostoker !Memorial Symposium!August 24-25, 2015!

Irvine, CA!!

5

0

-5

f D (

MH

z)

0 1 2Time (ms)

2 L. Schmitz Norman Rostoker

Memorial Symposium

Goal of FRC Turbulence/Transport Studies:�Active Profile, Boundary, and Transport Control

Transport Models,

Dimensionless Scaling

Predictive Kinetic

Turbulence Modeling

Advanced Turbulence/

Profile Measurements

Active Profile,

Boundary, Transport Control

3 L. Schmitz Norman Rostoker

Memorial Symposium

Outline § Introduction

§ Experimental fluctuation/turbulence studies in the C-2 FRC

§ Gyrokinetic Modeling: FRC core and boundary fluctuations

§ Critical gradients, core/SOL transition and barrier effects

§ Summary

4 L. Schmitz Norman Rostoker

Memorial Symposium

FRC Geometry / C-2 Parameters

Solenoid coil (External B-Field)

B-Field Null (R)

Separatrix (Rs) Scrape-off layer

Core Plasma

Bez  

Typical C-2 Parameters

FRC  Core          SOL  Density        (1019  m-­‐3)  

         2-­‐4        0.5-­‐2  

Ti  (eV)   600-­‐1000        ≤250  Te  (eV)      ≤  150        30-­‐80  Be  (Gauss)    ≤  1200  Sep.  Radius  (cm)  

     35-­‐45  

Neutral  Beam  Power  

 ≤  4  MW  

5 L. Schmitz Norman Rostoker

Memorial Symposium

FRC Radial and Parallel Transport� Scrape-off layer (SOL):

Radial and parallel Transport (along z)

τ⊥−1 = 1

r∂∂r

rDr1n∂n∂r

⎛⎝⎜

⎞⎠⎟

Radial transport:        

τ−1 = (τii lnRM )

−1

τ−1 = (τii lnRM )

−1

Radial Gradient scale length : If depends on , parallel and perpendicular transport are coupled

-10 -5 0 5 10

0.6

0.4

0.2

z (m)

r (

m)

From continuity (particle conservation:)     ∇(nv i ) = −∇⊥ (nv i ) τ = τ⊥

Ln⊥

Ln⊥ = D⊥τ ii lnRM

D⊥

D⊥

Separatrix

6 L. Schmitz Norman Rostoker

Memorial Symposium

Schematic and Principle of Doppler Backscattering Diagnostic (DBS)

ts=ti-kevExBks=ki-ke

b

c

ke

kIkS

tI,kI

ee .Be,ez

ñ/n: local density fluctuation level ñ(r)/n(r) vs. kθ - here kθ~ 0.5-12 cm-1 (kθρs~1-40)

ExB velocity from Doppler shift of back-scattered signal: ωDoppler = vturb kθ ~ vExBkθ

è vExB ~ ωDoppler / 2ki

7 L. Schmitz Norman Rostoker

Memorial Symposium

Radial Density Profile and DBS Probing Radii

§  DBS: 6 remote-tunable channels (co-linear beams), probing the FRC core (outside field null) and the SOL

§  Beam path calculated via GENRAY ray/beam tracing, based on reconstructed (CO2) density profiles

ts=ti-kevExBks=ki-ke

b

c

ke

kIkS

tI,kI

ee .Be,ez

60

40

20

0

-20

-40

-60

-60 -40 -20 0 20 40 60

x (cm)

y (c

m)

750+s

MW Launch

8 L. Schmitz Norman Rostoker

Memorial Symposium

Density Fluctuations Peak Outside Separatrix Very Low Fluctuations in FRC Core

n  Fluctuation levels peak outside the separatrix n  Very low fluctuation levels in the FRC core

-20 -10 0 10 20rFIR < r6\(cm)

0.0

0.1

0.2

0.3

0.4

0.5

bn

/n

Doppler Backscattering FIR Scattering

2 <kρs < 8   kρs < 4  

rr  rFIR –Rs (cm)

9 L. Schmitz Norman Rostoker

Memorial Symposium

FRC Core Plasma: Unique Inverted Wavenumber Spectrum�

§  FRC Core: Decreased Fluctuations; Inverted Spectrum at low kρs

§  Spectrum extends to kρe > 0.3: Only unstable electron modes!

§  SOL: Ion and electron-scale modes

§  Broad exponential spectrum: (ñ/n)2 ~ exp (-0.32 kθρs)

10 L. Schmitz Norman Rostoker

Memorial Symposium

Outline § Introduction

§ Experimental fluctuation/turbulence studies in the C-2 FRC

§ Gyrokinetic Modeling: FRC core and boundary fluctuations

§ Critical gradients, core/SOL transition and barrier effects

§ Summary

11 L. Schmitz Norman Rostoker

Memorial Symposium

GTC (Gyrokinetic Toroidal Code) Simulations

First-principles, integrated microturbulence simulations; adapted for FRC geometry (Boozer coordinates): Useful for predictive modeling and reduced transport models Input: Experimental (measured) or calculated FRC equilibria Gyrokinetic or kinetic ions, kinetic electrons Local/global simulations, electromagnetic effects Fokker-Planck-collisions Presented here: Results from linear, electrostatic flux-tube simulations, separate calculations for the FRC core and SOL Future work: Coupled SOL/core, kinetic ions, nonlinear runs

12 L. Schmitz Norman Rostoker

Memorial Symposium

Simulation Geometry, Parameters

Core and SOL local simulation: Realistic C-2 Equilibrium Periodic boundary conditions in z and θ Gyrokinetic ions (D) and electrons, νe,i*=ν/νtransit <<1

13 L. Schmitz Norman Rostoker

Memorial Symposium

FRC-Core: Ion Modes Suppressed via FLR Effects, only Electron Modes Unstable

Calculated Linear Growth Rate from GTC

Measured Saturated Spectrum

•  Spectrum extends to kθρe > 0.3: matches linearly unstable k-range Dominant electron modes; ion modes weak/absent due to FLR* effects:

*Rosenbluth, Krall and Rostoker, NF Suppl. pt1, 143 (1962)

kѡ��ѩe

0.8

0.4

�������

aR/c

s 0.24 0.28 �������

d=1

Core

R/LTe=5.25

no collisions

14 L. Schmitz Norman Rostoker

Memorial Symposium

Ballooning Structure with/without Collisions

collisionless (ballooning)                with collisions (ballooning, virtually no change in mode structure) θ

ζ  

ζ  

ζ  

15 L. Schmitz Norman Rostoker

Memorial Symposium

Local Gyrokinetic SOL Simulations

i-­‐i   e-­‐i   e-­‐e  0.0058   0.172   0.082  

 𝜈*  

Gyrokinetic D Ions Drift-kinetic electrons Ti = 5Te, Zeff =1.5 Fokker-Planck Collisions  Flux-tube, local �simulation at r/Rs=1.2; periodic boundary in z  

⇒  𝜈*e-­‐e=𝜈e-­‐e/(vth-­‐e/L)  (moderate  electron    collisionality  )      

       

SOL  

16 L. Schmitz Norman Rostoker

Memorial Symposium

SOL: Exponential Wavenumber Spectrum;Unstable Ion Modes

#29587-29610, #29750-29802

ρs=[(kTe+kTi)/mi]1/2/ωci  

Measured Saturated Spectrum Calculated Linear Growth Rate from GTC (w/collisions)  

17 L. Schmitz Norman Rostoker

Memorial Symposium

Driving Gradients Differ in FRC Core and SOL aR

/cs

3.0

2.0

1.0

00.75 0.8 0.85 0.9 0.95 1.0

de

Core di=1

R/LTi=R/Ln= 6

no collisions

kѡ� ѩe=0.3

∇Te ∇n

No instability below ηe <0.75

Electron drift/Interchange Core modes driven by and curvature

Instability to 1/ηi =0

Density gradient-driven SOL ion drift modes

aR/c

s

0.3

0.2

0.1

00 0.2 0.4 0.6 0.8 1.0

� di

R/LTe= R/LTi

= 6

SOL�de=1

kels= 0.85

w/collisions

SOL Modes are Driven by Core Modes are Driven by

∇Te

18 L. Schmitz Norman Rostoker

Memorial Symposium

Outline § Introduction

§ Experimental fluctuation/turbulence studies in the C-2 FRC

§ Gyrokinetic Modeling: FRC core and boundary fluctuations

§ Critical gradients, core/SOL transition and barrier effects

§ Summary

19 L. Schmitz Norman Rostoker

Memorial Symposium

E×B Shear Increases the SOL Critical Gradient

§  Radial density gradient increases after ~0.5 ms (SOL is depleted) §  SOL fluctuation increase once critical density gradient is exceeded §  Fluctuation decrease once ExB shearing rate increases exceeds the turbulence decorrelation rate: ωΕ×Β>ΔωD (Biglari, Diamond, Terry, Phys. Fluids B1,1989) §  The radial correlation length decreases with increasing ExB shear

Density profile time history

6

4

2

0

R/L n

0.14

0.07

0

0 0.5 1.0 1.5 2.0 2.5

1.0

0.5

0

-0.5

Time (ms)

t E�B

, tD (

106 ra

d/s)

ñ/n (a

u)1.5

1.0

0.5

0

h r (c

m)

R/Ln crit

0.6

0.4

0.2

0

0.2

0.4

0.6

r (m

)

2.3

1.9

1.5

1.1

0.7

0.4

0

ne (1019 m-3)

r/Rs=1.1

r/Rs=1.1

r/Rs=0.9

r/Rs=0.9

20 L. Schmitz Norman Rostoker

Memorial Symposium

Measured Critical Gradient and Calculated Core Linear Threshold from GTC

a R/

c s

2.0

1.5

1.0

0.5

0

R/LTe, R/Ln4.8 5.2 5.6

r/Rs=0.97 Corekele = 0.27kele = 0.30

de= di= 1

2 3 4R/Ln

0.16

0.08

0

ñ/n

(au)

r/Rs ~ 1.15r/Rs = 0.95r/Rs ~ 0.85

kele ~ 0.07-0.28

R/Ln critR/Ln crit

(SOL)(Core)

Measured R/ Ln crit (FRC core/SOL)

FRC core growth rate vs. R/LTe from linear GTC simulation

21 L. Schmitz Norman Rostoker

Memorial Symposium

2 3 4R/Ln

0.16

0.08

0

ñ/n

(au)

r/Rs ~ 1.15r/Rs = 0.95r/Rs ~ 0.85

kele ~ 0.07-0.28

R/Ln critR/Ln crit

(SOL)(Core)

R/Ln

kels = 0.85kels = 1.70

3 4 5 6

0.4

0.3

0.2

0.1

0a R

/cs

R/Ln

r/Rs=1.2 SOL

kels = 0.85kels = 1.70

3 4 5 6

Measured SOL Critical Density Gradient Similar to Predicted Linear Instability Threshold

Measured R/ Ln crit (FRC core/SOL)

FRC core growth rate vs. R/Ln from linear GTC simulation

22 L. Schmitz Norman Rostoker

Memorial Symposium

Core-SOL Coupling: Evidence �for Radial Transport Barrier

§  Radial turbulence correlation

length λr ≤ ρi §  No evidence of sustained extended radial structures or streamers λr reduced just outside Rs: Evidence of radial transport barrier. §  Shear decorrelation just outside the separatrix: ωΕ×Β>ΔωD (Biglari, Diamond, Terry,

Phys. Fluids B1,1989)

-10 0 10

tE

xB, 6

tD

(1

05 r

ad/s

)

r-Rs (cm)

6

4

2

0

>

23 L. Schmitz Norman Rostoker

Memorial Symposium

Summary •  C-2 FRC core: Ion modes stable due to FLR effect; only

electron modes unstable (driven by electron temperature gradient and curvature)

•  Moderate, larger-scale ion-mode SOL turbulence observed/predicted; driven by the radial density gradient.

•  Strong evidence of radial transport barrier in the SOL. No experimental evidence of sustained large-scale radial structures/streamers (radial correlation length λr < ρi)

•  Observed critical SOL density gradient compares well

with predicted linear instability threshold; compatible with required reactor SOL width

Thank you for your attention!