supportinginformation - royal society of chemistry › suppdata › c5 › cc › c5cc01018g ›...

18
1 Supporting Information Liquid Crystalline Macrocyclic Azacalix[4]pyridine and Its Complexes with Zinc Ion: Conformational Change from Saddle to Flattened Shape Shi-Xin Fa, a Xiao-Fang Chen, b Shuang Yang, b De-Xian Wang, a Liang Zhao, c Er-Qiang Chen,* b and Mei-Xiang Wang* c a Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China b Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics at the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China c Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China [email protected], [email protected] Table of Contents 1. General Information 1 2. Synthesis 3 3. Phase behaviors of azacalix[4]pyridine derivative 1 5 4. Phase behaviors of coordination complexes of 1 with zinc salts 8 5. References 10 6. Copies of 1 H and 13 C NMR Spectra of 1 and 1·ZnA2 (pg. 11-18) 10 Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Upload: others

Post on 10-Jun-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SupportingInformation - Royal Society of Chemistry › suppdata › c5 › cc › c5cc01018g › c5cc01018g1.pdf2 1.GeneralInformation NMRspectrawererecordedusingaJEOLECX-400at400MHzfor1HNMRandat100MHz

1

Supporting Information

Liquid Crystalline Macrocyclic Azacalix[4]pyridine and Its Complexes

with Zinc Ion: Conformational Change from Saddle to Flattened Shape

Shi-Xin Fa,a Xiao-Fang Chen,b Shuang Yang,b De-Xian Wang,a Liang Zhao,c Er-Qiang

Chen,*b and Mei-Xiang Wang*c

aBeijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular

Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190,

ChinabBeijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and

Physics at the Ministry of Education, College of Chemistry and Molecular Engineering, Peking

University, Beijing 100871, ChinacKey Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of

Education), Tsinghua University, Beijing 100084, China

[email protected], [email protected]

Table of Contents

1. General Information 12. Synthesis 33. Phase behaviors of azacalix[4]pyridine derivative 1 54. Phase behaviors of coordination complexes of 1 with zinc salts 85. References 106. Copies of 1H and 13C NMR Spectra of 1 and 1·ZnA2 (pg. 11-18) 10

Electronic Supplementary Material (ESI) for ChemComm.This journal is © The Royal Society of Chemistry 2015

Page 2: SupportingInformation - Royal Society of Chemistry › suppdata › c5 › cc › c5cc01018g › c5cc01018g1.pdf2 1.GeneralInformation NMRspectrawererecordedusingaJEOLECX-400at400MHzfor1HNMRandat100MHz

2

1. General Information

NMR spectra were recorded using a JEOL ECX-400 at 400 MHz for 1H NMR and at 100 MHz

for 13C NMR in CDCl3 or in 1,1,2,2,-tetrachloroethane for complexes 1·ZnCl2. Chemical shifts of 1H

and 13C NMR signals were quoted to CDCl3 (7.26 ppm for C1HCl3 in CDCl3, 77.2 ppm for 13CDCl3,

respectively). Abbreviations are used in the description of NMR data as follows: chemical shift (δ,

ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad), coupling constant

(J, Hz). High-resolution electrospray ionization (ESI) mass spectra were obtained on a Thermo

Fisher Exactive Mass Spectrometer. Infrared spectra were recorded using a Nicolet-6700 FT-IR

spectrometer with KBr pellets in the 4000-400 cm−1 region. Elemental analysis was recorded on

Thermo Quest CE Instruments flash EA1112 analyser.

Liquid crystal behaviors of the samples were characterized with a polarized optical microscope

(POM) equipped with a Mettler-Toledo FP82 HT hot-stage. Differential scanning calorimetry (DSC)

thermograms were obtained on a TA Instruments Q100. V9.9 (build 303). One-dimensional (1D)

X-ray diffraction (XRD) experiments were carried out on a high-flux small angle X-ray scattering

(SAXS) instrument (SAXSess, Anton Paar) equipped with Kratky block-collimation system and a

PANalytical PW3830 sealed-tube X-ray generator (Cu Kα) with the wavelength λ being 0.1542 nm.

The diffraction patterns were recorded on an imaging-plate with the q range (q = 4πsinθ/λ) covering

from 0.06 to 29 nm-1. The d-spacing is given by 2π/q. In addition, to study the temperature

dependence on the phase evolution, a temperature control unit (Anton Paar TCS300) was utilized in

conjunction with the SAXSess. Two-dimensional (2D) XRD experiments were carried out on a

Bruker D8Discover diffractometer with a GADDS as the 2D detector. In all XRD experiments, the

diffraction peak positions were calibrated with silver behenate and the background scattering was

subtracted from the sample pattern.

Reconstruction of relative electron density distribution in real space was carried out based on

the XRD data by using the formula for 2D Fourier transformation:

])(2exp[)(),( 0 hk

kyhxhkFyx

where x and y are the fractional coordinates of a point in the unit cell and ρ0 is the average electron

density. F(hk) is the complex structure factor and carried out by the function )()( hkIhkF

Page 3: SupportingInformation - Royal Society of Chemistry › suppdata › c5 › cc › c5cc01018g › c5cc01018g1.pdf2 1.GeneralInformation NMRspectrawererecordedusingaJEOLECX-400at400MHzfor1HNMRandat100MHz

3

where I(hk) is the diffraction intensities. As a consequence of the 2D lattices in the case of the Cr

phase of 1 being centrosymmetric, the structure factors are real and given by )()( hkFhkF with

corresponding possible phase of 0 (+) or π (–). Then the electron density can be expressed as:

])(2cos[)(),( 0 hk

kyhxhkIyx

Considering the Cr phase of 1, the first six clear peaks on the equator of the 2D XRD pattern

can be indexed as (10), (20), (02), (22), (40), (04). The electron density profiles were calculated

using the suitable phase combinations of “+ – – + + –” for the corresponding reflections.

2. Synthesis

Compounds 2-41 and 52 were synthesized according to literatures.

Scheme S1 Synthesis of N-substituted azacalix[4]pyridine derivative 1 and its zinc complexes.

Synthesis of N-[3,4,5-tris(tetradecyloxy)benzyl]-bridged calix[4]pyridine 1. To a solution of

4 (74 mg, 0.2 mmol) in dry THF (50 mL) at room temperature was added NaH (115 mg, 4.8 mmol)

slowly and the mixture was heated to reflux. After10 h, compound 5 (1.62g, 2 mmol) was added

slowly and the reaction was refluxed for another 12 h. The reaction mixture was then cooled down to

Page 4: SupportingInformation - Royal Society of Chemistry › suppdata › c5 › cc › c5cc01018g › c5cc01018g1.pdf2 1.GeneralInformation NMRspectrawererecordedusingaJEOLECX-400at400MHzfor1HNMRandat100MHz

4

room temperature and water (1 mL) was added slowly. The solvent was removed under reduced

pressure, and the residue was dissolved in DCM (50 mL). The organic solution was washed with

brine (3 × 50 mL) and dried over with anhydrous MgSO4. After removal of solvent, the residue was

chromatographed on a silica gel column (Silicycle® Flash P60) with a mixture of petroleum ether and

ethyl acetate as the mobile phase. Compound 1 was obtained and recrystallized from the mixture of

ethyl ester and methanol at -20 oC to give white amorphous solid (354 mg, 54%): IR (KBr, cm−1) ν

2920, 2851, 1592, 1466, 1436, 1381, 1331, 1220, 1116; 1H NMR (400 MHz, CDCl3, TMS) 7.30 (t,

4H, J = 8.0 Hz), 6.55 (s, 8H), 6.38 (d, 8H, J = 5.2 Hz), 5.10 (d, 4H, J = 16.8 Hz), 4.51 (d, 4H, J =

17.6 Hz), 3.87 (t, 24H, J = 6.2 Hz), 1.76-1.68 (m, 24H), 1.44 - 1.41 (m, 24H), 1.38 - 1.20 (m, 240H),

0.88 (t, 36H, J = 6.8 Hz); 13C NMR (100 MHz, CDCl3, TMS) 159.0, 153.4, 138.9, 137.1, 135.0,

105.2, 73.5, 69.3, 54.2, 32.1, 30.6, 29.95, 29.89, 29.72, 29.69, 29.6, 26.40, 26.36, 22.9, 14.3. HRMS

(FTMS - ESI) calcd. for C216H376N8O12: [M+H]+ 3275.91306; found: 3275.91433; [M+2H]2+

1638.46017; found: 1638.45877. Anal. Calcd. for C216H376N8O12: C, 79.16; H, 11.56; N, 3.42; found:

C, 78.96; H, 11.60; N, 3.51.

General procedure for synthesis of N-[3,4,5-tris(tetradecyloxy)benzyl]-bridged

calix[4]pyridine zinc salts. Compound 1 (98 mg, 0.03 mmol) and zinc salt (0.033 mmol) were

added in mixture of dry DCM (5 mL) and methanol (5 mL) at room temperature and the reaction

mixture was heated to reflux. After 2 h, the solvent was removed under reduced pressure, and the

residue was dissolved in mixture of DCM (5 mL) and acetone (25 mL). After partial removal of

solvent under reduced pressure without heating, white precipitate was filtered and washed with 5 mL

acetone to afford pure 1·ZnA2.

N-[3,4,5-tris(tetradecyloxy)benzyl]-bridged calix[4]pyridine zinc triflate (1·Zn(OTf)2):

white solid (77 mg, yield: 71%); IR (KBr, cm−1) ν 2923, 2852, 1592, 1468, 1439, 1332, 1223, 1115,

1030; 1H NMR (400 MHz, CDCl3, TMS) 7.60 (t, 4H, J = 8.2 Hz), 6.86 (d, 8H, J = 8.4Hz), 6.44 (s,

8H), 5.04 (s, 8H), 3.89 (t, 8H, J = 6.6 Hz), 3.74 (t, 16H, J = 5.4 Hz), 1.78 - 1.60 (m, 24H), 1.52 - 1.20

(m, 264H), 0.88 (t, 36H, J = 6.4 Hz); 13C NMR (100 MHz, CDCl3, TMS) 155.4, 153.6, 142.0,

137.2, 130.5, 120.2 (q, J = 320 Hz), 111.0, 105.4, 73.5, 69.1, 58.2, 32.1, 30.6, 29.9, 29.8, 29.6, 26.43,

26.35, 22.9, 14.3. HRMS (FTMS - ESI) calcd. for C218H376F6N8O18S2Zn: [M-2OTf]2+ 1669.41691;

Page 5: SupportingInformation - Royal Society of Chemistry › suppdata › c5 › cc › c5cc01018g › c5cc01018g1.pdf2 1.GeneralInformation NMRspectrawererecordedusingaJEOLECX-400at400MHzfor1HNMRandat100MHz

5

found: 1669.41370. Anal. Calcd. for C218H376F6N8O18S2Zn: C, 71.92; H, 10.41; N, 3.08; found: C,

72.07; H, 10.46; N, 3.05.

N-[3,4,5-tris(tetradecyloxy)benzyl]-bridged calix[4]pyridine zinc tetrafluroborate

(1·Zn(BF4)2): white solid (84 mg, yield: 79%); IR (KBr, cm−1) ν 2921, 2852, 1592, 1467, 1437, 1331,

1222, 1116; 1H NMR (400 MHz, CDCl3, TMS) 7.64 (t, 4H, J = 8.0 Hz), 6.91 (d, 8H, J = 8.0 Hz),

6.49 (s, 8H), 5.02 (s, 8H), 3.89 (t, 8H, J = 6.2 Hz), 3.74 (t, 16H, J = 5.4 Hz), 1.75 - 1.60 (m, 24H),

1.52 - 1.17 (m, 264H), 0.88 (t, 36H, J = 6.8 Hz); 13C NMR (100 MHz, CDCl3, TMS) 155.4, 153.6,

142.2, 137.3, 130.6, 111.4, 105.7, 73.5, 69.1, 58.0, 32.1, 30.6, 29.95, 29.89, 29.8, 29.6, 26.43, 26.35,

22.9, 14.3. HRMS (FTMS - ESI) calcd. for C216H376B2F8N8O12Zn: [M-2BF4]2+1669.41691; found:

1669.41553. Anal. Calcd. for C216H376B2F8N8O12Zn: C, 73.78; H, 10.78; N, 3.19; found: C, 74.16; H,

10.83; N, 3.26.

N-[3,4,5-tris(tetradecyloxy)benzyl]-bridged calix[4]pyridine zinc chloride (1·ZnCl2): white

solid (99 mg, yield: 97%); IR (KBr, cm−1) ν 2922, 2852, 1592, 1467, 1439, 1380, 1332, 1222, 1115;

1H NMR(400 MHz, CDCl2CDCl2, 140 ºC) 7.77 (t, 4H, J = 7.8Hz), 6.98 (d, 8H, J = 8.0Hz), 6.59

(br, 8H), 4.99 (s, 8H), 4.93 (t, 8H, J = 6.4 Hz), 3.80 (s, 16H), 1.79 - 1.63 (m, 24H), 1.52 - 1.27 (m,

264H), 0.94 (m, 36H); 13C NMR (100 MHz, CDCl2CDCl2, 140 oC) 155.9, 153.8, 142.8, 139.2,

129.8, 111.8, 108.0, 73.6, 70.1, 57.7, , 31.9, 30.6, 29.8, 29.72, 29.66, 29.6, 29.3, 26.34, 26.28, 22.6,

14.9. HRMS (FTMS - ESI) calcd. for C216H376Cl2N8O12Zn: [M-2Cl]2+ 1669.41691; found:

1669.41425.

3. Phase behaviors of azacalix[4]pyridine derivative 1

During cooling and subsequently heating at a rate faster than 2 °C/min, two exothermic

processes are detected upon cooling. The first transition takes place at around 42 °C, while the

second one appears at around 23 °C. Upon heating, two endothermic processes observed possess the

onset temperatures very close to that of cooling, implying an enantiotropic phase transition behavior.

However, when as much a slow heating rate as 0.5 °C/min was applied, a distinct exothermic process

was observed right after the endothermic process at around 50 °C. This outcome reflects a

“melt/recrystallization” process in which a new ordered phase with a higher melting temperature at

Page 6: SupportingInformation - Royal Society of Chemistry › suppdata › c5 › cc › c5cc01018g › c5cc01018g1.pdf2 1.GeneralInformation NMRspectrawererecordedusingaJEOLECX-400at400MHzfor1HNMRandat100MHz

6

ca. 70 °C was generated. After the “recrystallized” 1 was cooled to low temperatures, re-heating the

samples only gave the isotropic transition at ca. 70 °C, indicating that the phase structure resulted

from “melt/recrystallization” is the most stable in an entire low temperature region (Fig. S1).

Fig. S1 DSC traces of 1 during heating and cooling cycles with different rates (0.5-20 °C/min).

Table S1 Diffractions of the Colh of 1

hkl 100 110 200 210 001

dexpa/nm 3.09 1.79 1.55 1.17 0.63

dcalb/nm 3.09 1.78 1.55 1.17 0.63

a experimental value observed in Fig. 3c. b calculated value based on a = b = 3.57 nm and c = 0.63 nm.

Page 7: SupportingInformation - Royal Society of Chemistry › suppdata › c5 › cc › c5cc01018g › c5cc01018g1.pdf2 1.GeneralInformation NMRspectrawererecordedusingaJEOLECX-400at400MHzfor1HNMRandat100MHz

7

Table S2 Diffractions of the Cr of 1

hkl 110 003 200 020 004 220 400 040 600

dexpa/nm 4.30 3.55 3.51 2.73 2.68 2.17 1.75 1.36 1.16

dcalb/nm 4.31 3.54 3.51 2.73 2.67 2.16 1.76 1.37 1.17

hkl 350 060 800 080 0018 4018 880 8018

dexpa/nm 1.00 0.89 0.86 0.67 0.59 0.56 0.53 0.49

dcalb/nm 0.99 0.91 0.88 0.68 0.59 0.55 0.54 0.49

a experimental value observed in Fig. 3d. b calculated value based on a = 7.02 nm, b = 5.46 nm and c = 10.62 nm.

Computer simulation

a b

c

Fig. S2 (a) Top view, (b) side view of optimized structure and (c) molecular structure ofN-(3,4,5-tris(methoxy)benzyl)-bridged calix[4]pyridine (at rb3lyp/3-21g* level).

Page 8: SupportingInformation - Royal Society of Chemistry › suppdata › c5 › cc › c5cc01018g › c5cc01018g1.pdf2 1.GeneralInformation NMRspectrawererecordedusingaJEOLECX-400at400MHzfor1HNMRandat100MHz

8

Fig. S3 Top view and side view of optimized structure of 1 (forcefield: COMPASS).

4. Phase behaviors of coordination complexes of 1 with zinc salts

DSC traces

Fig. S4 DSC traces of 1·ZnCl2, 1·Zn(BF4)2,(c) 1·Zn(OTf)2 and 1·ZnCl2 (from bottom to top)measured upon cooling and subsequently heating at a rate of 10 °C/min.

Page 9: SupportingInformation - Royal Society of Chemistry › suppdata › c5 › cc › c5cc01018g › c5cc01018g1.pdf2 1.GeneralInformation NMRspectrawererecordedusingaJEOLECX-400at400MHzfor1HNMRandat100MHz

9

1D XRD experimental results

Fig. S5 1D XRD profiles of 1 and its complexes with zinc salts at room temperature. The samples

were quenched from molten state.

Fig. S6 Set of 1D XRD profiles of 1·Zn(BF4)2 recorded upon heating.

Page 10: SupportingInformation - Royal Society of Chemistry › suppdata › c5 › cc › c5cc01018g › c5cc01018g1.pdf2 1.GeneralInformation NMRspectrawererecordedusingaJEOLECX-400at400MHzfor1HNMRandat100MHz

10

Fig. S7 Set of 1D XRD profiles of 1·Zn(OTf)2 recorded upon heating.

5. References

1. E.-X. Zhang, D.-X. Wang, Z.-T. Huang and M.-X. Wang, J. Org. Chem., 2009, 74, 8595-8603.

2. T. Ichikawa, M. Yoshio, A. Hamasaki, S. Taguchi, F. Liu, X.-B. Zeng, G. Ungar, H. Ohno, and T.

Kato, J. Am. Chem. Soc., 2012, 134, 2634-2643.

6. Copies of 1H and 13C NMR Spectra of 1 and 1·ZnA2 (pg. 11-18)

Page 11: SupportingInformation - Royal Society of Chemistry › suppdata › c5 › cc › c5cc01018g › c5cc01018g1.pdf2 1.GeneralInformation NMRspectrawererecordedusingaJEOLECX-400at400MHzfor1HNMRandat100MHz

11

abun

danc

e0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

X : parts per Million : 1H

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0

7.

316

7.

296

7.

276

7.

260

6.

545

6.

388

6.

375

5.

119

5.

077

4.

527

4.

483

3.

880

3.

865

3.

849

1.

757

1.

741

1.

724

1.

704

1.

687

1.

439

1.

424

1.

405

1.

298

1.

256

0.

896

0.

880

0.

862

0.

073

0.

002

244.

94

36.0

0

23.9

2

23.5

3

22.6

8

7.50

7.64

3.91

3.81

4.06

Filename = F:\far\NMR\LC\far (1)\far\Author = deltaExperiment = single_pulse.ex2Sample_Id = S#309924Solvent = CHLOROFORM-DCreation_Time = 18-JUL-2013 08:02:25Revision_Time = 3-JAN-2014 00:02:59Current_Time = 3-JAN-2014 00:03:44Comment = single_pulseData_Format = 1D COMPLEXDim_Size = 13107Dim_Title = 1HDim_Units = [ppm]Dimensions = XSite = ECX 400Spectrometer = JNM-ECX400Field_Strength = 9.389766[T] (400[MHz])X_Acq_Duration = 2.18365952[s]X_Domain = 1HX_Freq = 399.78219838[MHz]X_Offset = 5[ppm]X_Points = 16384X_Prescans = 1X_Resolution = 0.45794685[Hz]X_Sweep = 7.5030012[kHz]Irr_Domain = 1HIrr_Freq = 399.78219838[MHz]Irr_Offset = 5[ppm]Tri_Domain = 1HTri_Freq = 399.78219838[MHz]Tri_Offset = 5[ppm]Clipped = FALSEScans = 8Total_Scans = 8Relaxation_Delay = 5[s]Recvr_Gain = 28Temp_Get = 16.8[dC]X_90_Width = 10.75[us]X_Acq_Time = 2.18365952[s]X_Angle = 45[deg]X_Atn = 3.4[dB]X_Pulse = 5.375[us]Irr_Mode = OffTri_Mode = OffDante_Presat = FALSEInitial_Wait = 1[s]Repetition_Time = 7.18365952[s]

---- PROCESSING PARAMETERS ----dc_balance : 0 : FALSEsexp : 0.2[Hz] : 0.0[s]trapezoid3 : 0[%] : 80[%] : 100[%]zerofill : 1fft : 1 : TRUE : TRUEmachinephaseppm

Page 12: SupportingInformation - Royal Society of Chemistry › suppdata › c5 › cc › c5cc01018g › c5cc01018g1.pdf2 1.GeneralInformation NMRspectrawererecordedusingaJEOLECX-400at400MHzfor1HNMRandat100MHz

12

abun

danc

e0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

X : parts per Million : 13C

170.0160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

158

.969

153

.391

138

.889

137

.125

135

.027

105

.203

77.

515

77.

200

76.

885

73.

548

69.

267

54.

193

32.

130

29.

947

29.

889

29.

718

29.

689

29.

584

22.

891

14.

300

0.

180

Filename = F:\far\NMR\LC\FAR-4-4Bn14-Author = deltaExperiment = single_pulse_decSample_Id = S#35616Solvent = CHLOROFORM-DCreation_Time = 21-APR-2011 08:54:31Revision_Time = 2-JAN-2014 23:49:56Current_Time = 2-JAN-2014 23:50:57Comment = single pulse decoupled gatData_Format = 1D COMPLEXDim_Size = 26214Dim_Title = 13CDim_Units = [ppm]Dimensions = XSite = ECX 400Spectrometer = JNM-ECX400Field_Strength = 9.389766[T] (400[MHz])X_Acq_Duration = 1.04333312[s]X_Domain = 13CX_Freq = 100.52530333[MHz]X_Offset = 100[ppm]X_Points = 32768X_Prescans = 4X_Resolution = 0.95846665[Hz]X_Sweep = 31.40703518[kHz]Irr_Domain = 1HIrr_Freq = 399.78219838[MHz]Irr_Offset = 5[ppm]Clipped = FALSEScans = 9565Total_Scans = 9565Relaxation_Delay = 2[s]Recvr_Gain = 50Temp_Get = 25[dC]X_90_Width = 8.75[us]X_Acq_Time = 1.04333312[s]X_Angle = 30[deg]X_Atn = 7.8[dB]X_Pulse = 2.91666667[us]Irr_Atn_Dec = 23.98[dB]Irr_Atn_Noe = 23.98[dB]Irr_Noise = WALTZDecoupling = TRUEInitial_Wait = 1[s]Noe = TRUENoe_Time = 2[s]Repetition_Time = 3.04333312[s]

---- PROCESSING PARAMETERS ----dc_balance( 0, FALSE )sexp( 2.0[Hz], 0.0[s] )trapezoid3( 0[%], 80[%], 100[%] )zerofill( 1 )fft( 1, TRUE, TRUE )machinephaseppm

Page 13: SupportingInformation - Royal Society of Chemistry › suppdata › c5 › cc › c5cc01018g › c5cc01018g1.pdf2 1.GeneralInformation NMRspectrawererecordedusingaJEOLECX-400at400MHzfor1HNMRandat100MHz

13

abun

danc

e0

1.0

2.0

3.0

4.0

5.0

6.0

X : parts per Million : 1H

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0

7.

623

7.

603

7.

582

7.

260

6.

873

6.

852

6.

443

5.

039

3.

903

3.

886

3.

870

3.

750

3.

736

3.

723

1.

738

1.

719

1.

700

1.

681

1.

663

1.

645

1.

424

1.

408

1.

258

0.

896

0.

881

0.

864

0.

002

265.

06

36.0

0

23.8

8

15.9

98.

26

7.93

7.89

7.86

3.97

Filename = F:\far\NMR\LC\far (1)\far\Author = deltaExperiment = single_pulse.ex2Sample_Id = S#12640Solvent = CHLOROFORM-DCreation_Time = 30-NOV-2013 23:43:21Revision_Time = 1-DEC-2013 00:38:54Current_Time = 3-JAN-2014 01:06:04Comment = single_pulseData_Format = 1D COMPLEXDim_Size = 13107Dim_Title = 1HDim_Units = [ppm]Dimensions = XSite = ECX 400Spectrometer = JNM-ECX400Field_Strength = 9.389766[T] (400[MHz])X_Acq_Duration = 2.18365952[s]X_Domain = 1HX_Freq = 399.78219838[MHz]X_Offset = 5[ppm]X_Points = 16384X_Prescans = 1X_Resolution = 0.45794685[Hz]X_Sweep = 7.5030012[kHz]Irr_Domain = 1HIrr_Freq = 399.78219838[MHz]Irr_Offset = 5[ppm]Tri_Domain = 1HTri_Freq = 399.78219838[MHz]Tri_Offset = 5[ppm]Clipped = FALSEScans = 8Total_Scans = 8Relaxation_Delay = 5[s]Recvr_Gain = 50Temp_Get = 23.2[dC]X_90_Width = 10.75[us]X_Acq_Time = 2.18365952[s]X_Angle = 45[deg]X_Atn = 3.4[dB]X_Pulse = 5.375[us]Irr_Mode = OffTri_Mode = OffDante_Presat = FALSEInitial_Wait = 1[s]Repetition_Time = 7.18365952[s]

---- PROCESSING PARAMETERS ----dc_balance : 0 : FALSEsexp : 0.2[Hz] : 0.0[s]trapezoid3 : 0[%] : 80[%] : 100[%]zerofill : 1fft : 1 : TRUE : TRUEmachinephaseppm

Page 14: SupportingInformation - Royal Society of Chemistry › suppdata › c5 › cc › c5cc01018g › c5cc01018g1.pdf2 1.GeneralInformation NMRspectrawererecordedusingaJEOLECX-400at400MHzfor1HNMRandat100MHz

14

abun

danc

e0

0.1

0.2

0.3

0.4

0.5

0.6

X : parts per Million : 13C

160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

155

.431

153

.553

141

.968

137

.201

130

.508

125

.102

121

.822

118

.628

115

.539

110

.971

105

.413

77.

515

77.

200

76.

885

73.

520

69.

077

58.

217

32.

130

29.

947

29.

889

29.

765

29.

575

26.

428

26.

352

22.

881

14.

291

Filename = F:\far\NMR\LC\far (1)\far\Author = deltaExperiment = single_pulse_decSample_Id = S#408833Solvent = CHLOROFORM-DCreation_Time = 2-DEC-2013 08:15:23Revision_Time = 3-JAN-2014 01:06:58Current_Time = 3-JAN-2014 01:07:29Comment = single pulse decoupled gatData_Format = 1D COMPLEXDim_Size = 26214Dim_Title = 13CDim_Units = [ppm]Dimensions = XSite = ECX 400Spectrometer = JNM-ECX400Field_Strength = 9.389766[T] (400[MHz])X_Acq_Duration = 1.04333312[s]X_Domain = 13CX_Freq = 100.52530333[MHz]X_Offset = 100[ppm]X_Points = 32768X_Prescans = 4X_Resolution = 0.95846665[Hz]X_Sweep = 31.40703518[kHz]Irr_Domain = 1HIrr_Freq = 399.78219838[MHz]Irr_Offset = 5[ppm]Clipped = TRUEScans = 25444Total_Scans = 25444Relaxation_Delay = 2[s]Recvr_Gain = 58Temp_Get = 23.6[dC]X_90_Width = 8.75[us]X_Acq_Time = 1.04333312[s]X_Angle = 30[deg]X_Atn = 7.8[dB]X_Pulse = 2.91666667[us]Irr_Atn_Dec = 23.98[dB]Irr_Atn_Noe = 23.98[dB]Irr_Noise = WALTZDecoupling = TRUEInitial_Wait = 1[s]Noe = TRUENoe_Time = 2[s]Repetition_Time = 3.04333312[s]

---- PROCESSING PARAMETERS ----dc_balance : 0 : FALSEsexp : 2.0[Hz] : 0.0[s]trapezoid3 : 0[%] : 80[%] : 100[%]zerofill : 1fft : 1 : TRUE : TRUEmachinephaseppm

Page 15: SupportingInformation - Royal Society of Chemistry › suppdata › c5 › cc › c5cc01018g › c5cc01018g1.pdf2 1.GeneralInformation NMRspectrawererecordedusingaJEOLECX-400at400MHzfor1HNMRandat100MHz

15

abun

danc

e0

1.0

2.0

3.0

4.0

5.0

6.0

X : parts per Million : 1H

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0

7.

657

7.

638

7.

617

7.

260

6.

940

6.

920

6.

489

5.

016

3.

901

3.

885

3.

870

3.

758

3.

744

3.

731

1.

733

1.

715

1.

696

1.

679

1.

662

1.

395

1.

255

1.

104

0.

896

0.

880

0.

862

0.

001

264.

83

36.0

0

24.1

1

15.8

8

8.06

7.88

7.58

7.53

4.02

Filename = F:\far\NMR\LC\far (1)\far\Author = deltaExperiment = single_pulse.ex2Sample_Id = S#703616Solvent = CHLOROFORM-DCreation_Time = 30-DEC-2013 18:51:48Revision_Time = 30-DEC-2013 19:49:48Current_Time = 3-JAN-2014 01:00:52Comment = single_pulseData_Format = 1D COMPLEXDim_Size = 13107Dim_Title = 1HDim_Units = [ppm]Dimensions = XSite = ECX 400Spectrometer = JNM-ECX400Field_Strength = 9.389766[T] (400[MHz])X_Acq_Duration = 2.18365952[s]X_Domain = 1HX_Freq = 399.78219838[MHz]X_Offset = 5[ppm]X_Points = 16384X_Prescans = 1X_Resolution = 0.45794685[Hz]X_Sweep = 7.5030012[kHz]Irr_Domain = 1HIrr_Freq = 399.78219838[MHz]Irr_Offset = 5[ppm]Tri_Domain = 1HTri_Freq = 399.78219838[MHz]Tri_Offset = 5[ppm]Clipped = FALSEScans = 8Total_Scans = 8Relaxation_Delay = 5[s]Recvr_Gain = 26Temp_Get = 22.2[dC]X_90_Width = 10.75[us]X_Acq_Time = 2.18365952[s]X_Angle = 45[deg]X_Atn = 3.4[dB]X_Pulse = 5.375[us]Irr_Mode = OffTri_Mode = OffDante_Presat = FALSEInitial_Wait = 1[s]Repetition_Time = 7.18365952[s]

---- PROCESSING PARAMETERS ----dc_balance : 0 : FALSEsexp : 0.2[Hz] : 0.0[s]trapezoid3 : 0[%] : 80[%] : 100[%]zerofill : 1fft : 1 : TRUE : TRUEmachinephaseppm

Page 16: SupportingInformation - Royal Society of Chemistry › suppdata › c5 › cc › c5cc01018g › c5cc01018g1.pdf2 1.GeneralInformation NMRspectrawererecordedusingaJEOLECX-400at400MHzfor1HNMRandat100MHz

16

abun

danc

e0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

X : parts per Million : 13C

160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

155

.431

153

.591

142

.226

137

.287

130

.641

111

.381

105

.699

77.

515

77.

200

76.

876

73.

501

69.

134

58.

026

32.

130

29.

947

29.

889

29.

775

29.

584

26.

428

26.

352

22.

881

14.

300

Filename = F:\far\NMR\LC\far (1)\far\Author = deltaExperiment = single_pulse_decSample_Id = S#715597Solvent = CHLOROFORM-DCreation_Time = 30-DEC-2013 21:30:59Revision_Time = 3-JAN-2014 01:02:41Current_Time = 3-JAN-2014 01:02:51Comment = single pulse decoupled gatData_Format = 1D COMPLEXDim_Size = 26214Dim_Title = 13CDim_Units = [ppm]Dimensions = XSite = ECX 400Spectrometer = JNM-ECX400Field_Strength = 9.389766[T] (400[MHz])X_Acq_Duration = 1.04333312[s]X_Domain = 13CX_Freq = 100.52530333[MHz]X_Offset = 100[ppm]X_Points = 32768X_Prescans = 4X_Resolution = 0.95846665[Hz]X_Sweep = 31.40703518[kHz]Irr_Domain = 1HIrr_Freq = 399.78219838[MHz]Irr_Offset = 5[ppm]Clipped = FALSEScans = 2732Total_Scans = 2732Relaxation_Delay = 2[s]Recvr_Gain = 54Temp_Get = 22.7[dC]X_90_Width = 8.75[us]X_Acq_Time = 1.04333312[s]X_Angle = 30[deg]X_Atn = 7.8[dB]X_Pulse = 2.91666667[us]Irr_Atn_Dec = 23.98[dB]Irr_Atn_Noe = 23.98[dB]Irr_Noise = WALTZDecoupling = TRUEInitial_Wait = 1[s]Noe = TRUENoe_Time = 2[s]Repetition_Time = 3.04333312[s]

---- PROCESSING PARAMETERS ----dc_balance( 0, FALSE )sexp( 2.0[Hz], 0.0[s] )trapezoid3( 0[%], 80[%], 100[%] )zerofill( 1 )fft( 1, TRUE, TRUE )machinephaseppm

Page 17: SupportingInformation - Royal Society of Chemistry › suppdata › c5 › cc › c5cc01018g › c5cc01018g1.pdf2 1.GeneralInformation NMRspectrawererecordedusingaJEOLECX-400at400MHzfor1HNMRandat100MHz

17

abun

danc

e0

1.0

2.0

3.0

4.0

X : parts per Million : 1H

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0

7.

794

7.

774

7.

755

6.

983

6.

963

6.

588

5.

965

4.

990

3.

950

3.

934

3.

918

3.

797

1.

740

1.

723

1.

699

1.

680

1.

665

1.

479

1.

438

1.

419

1.

338

0.

950

0.

938

0.

921

265.

89

36.0

0

23.4

3

15.5

68.

36

7.76

7.60

7.58

3.93

Filename = F:\far\NMR\LC\far-4-4Bn14-Author = deltaExperiment = single_pulse.ex2Sample_Id = S#337815Solvent = TETRACHLOROETHANCreation_Time = 12-JAN-2014 08:42:52Revision_Time = 12-JAN-2014 09:42:36Current_Time = 12-JAN-2014 18:35:22Comment = single_pulseData_Format = 1D COMPLEXDim_Size = 13107Dim_Title = 1HDim_Units = [ppm]Dimensions = XSite = ECX 400Spectrometer = JNM-ECX400Field_Strength = 9.389766[T] (400[MHz])X_Acq_Duration = 2.18365952[s]X_Domain = 1HX_Freq = 399.78219838[MHz]X_Offset = 5[ppm]X_Points = 16384X_Prescans = 1X_Resolution = 0.45794685[Hz]X_Sweep = 7.5030012[kHz]Irr_Domain = 1HIrr_Freq = 399.78219838[MHz]Irr_Offset = 5[ppm]Tri_Domain = 1HTri_Freq = 399.78219838[MHz]Tri_Offset = 5[ppm]Clipped = FALSEScans = 8Total_Scans = 8Relaxation_Delay = 5[s]Recvr_Gain = 30Temp_Get = 140[dC]X_90_Width = 10.75[us]X_Acq_Time = 2.18365952[s]X_Angle = 45[deg]X_Atn = 3.4[dB]X_Pulse = 5.375[us]Irr_Mode = OffTri_Mode = OffDante_Presat = FALSEInitial_Wait = 1[s]Repetition_Time = 7.18365952[s]

---- PROCESSING PARAMETERS ----dc_balance : 0 : FALSEsexp : 0.2[Hz] : 0.0[s]trapezoid3 : 0[%] : 80[%] : 100[%]zerofill : 1fft : 1 : TRUE : TRUEmachinephaseppm

Page 18: SupportingInformation - Royal Society of Chemistry › suppdata › c5 › cc › c5cc01018g › c5cc01018g1.pdf2 1.GeneralInformation NMRspectrawererecordedusingaJEOLECX-400at400MHzfor1HNMRandat100MHz

18

abun

danc

e0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

X : parts per Million : 13C

160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0

155

.863

153

.832

142

.839

139

.225

129

.786

111

.794

108

.009

74.

409

74.

133

73.

856

73.

608

70.

138

57.

705

31.

933

29.

806

29.

721

29.

663

29.

587

29.

301

26.

336

22.

589

13.

874

Filename = F:\far\NMR\LC\far-4-4Bn14-Author = deltaExperiment = single_pulse_decSample_Id = S#339980Solvent = TETRACHLOROETHANCreation_Time = 12-JAN-2014 11:25:29Revision_Time = 12-JAN-2014 19:20:12Current_Time = 12-JAN-2014 19:20:32Comment = single pulse decoupled gatData_Format = 1D COMPLEXDim_Size = 26214Dim_Title = 13CDim_Units = [ppm]Dimensions = XSite = ECX 400Spectrometer = JNM-ECX400Field_Strength = 9.389766[T] (400[MHz])X_Acq_Duration = 1.04333312[s]X_Domain = 13CX_Freq = 100.52530333[MHz]X_Offset = 100[ppm]X_Points = 32768X_Prescans = 4X_Resolution = 0.95846665[Hz]X_Sweep = 31.40703518[kHz]Irr_Domain = 1HIrr_Freq = 399.78219838[MHz]Irr_Offset = 5[ppm]Clipped = FALSEIncomplete_Copy = TRUEScans = 3142Total_Scans = 3142Relaxation_Delay = 2[s]Recvr_Gain = 50Temp_Get = 140[dC]X_90_Width = 8.75[us]X_Acq_Time = 1.04333312[s]X_Angle = 30[deg]X_Atn = 7.8[dB]X_Pulse = 2.91666667[us]Irr_Atn_Dec = 23.98[dB]Irr_Atn_Noe = 23.98[dB]Irr_Noise = WALTZDecoupling = TRUEInitial_Wait = 1[s]Noe = TRUENoe_Time = 2[s]Repetition_Time = 3.04333312[s]

---- PROCESSING PARAMETERS ----dc_balance : 0 : FALSEsexp : 2.0[Hz] : 0.0[s]trapezoid3 : 0[%] : 80[%] : 100[%]zerofill : 1fft : 1 : TRUE : TRUEmachinephaseppm