supporting information - royal society of chemistry · 2017-07-24 · supporting information...

10
Supporting Information Flexible MXene-graphene electrodes with high volumetric capacitance for integrated co-cathode energy conversion/storage devices Shuaikai Xu, a Guodong Wei, a Junzhi Li, a Wei Han * ac and Yury Gogotsi * ab a Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, Changchun City, 130012, P. R. China. b Department of Materials Science and Engineering, and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, USA. c International Center of Future Science, Jilin University, Changchun City, 130012, P.R. China. Fig. S1 The structure schematic diagram of a thin-film solar cell. Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Upload: others

Post on 02-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Supporting Information - Royal Society of Chemistry · 2017-07-24 · Supporting Information Flexible MXene-graphene electrodes with high volumetric capacitance for integrated co-cathode

Supporting Information

Flexible MXene-graphene electrodes with high volumetric capacitance for integrated co-cathode energy conversion/storage devices

Shuaikai Xu, a Guodong Wei, a Junzhi Li, a Wei Han *ac and Yury Gogotsi *ab

a Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin

University, Changchun City, 130012, P. R. China.

b Department of Materials Science and Engineering, and A. J. Drexel Nanomaterials Institute,

Drexel University, Philadelphia, Pennsylvania 19104, USA.

c International Center of Future Science, Jilin University, Changchun City, 130012, P.R. China.

Fig. S1 The structure schematic diagram of a thin-film solar cell.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.This journal is © The Royal Society of Chemistry 2017

Page 2: Supporting Information - Royal Society of Chemistry · 2017-07-24 · Supporting Information Flexible MXene-graphene electrodes with high volumetric capacitance for integrated co-cathode

Fig. S2. The schematic illustration of the fabrication process of ECSD-I.

Fig. S3 XRD patterns of as-prepared and HF-etched Ti3AlC2 for different times at 60 ˚C.

Page 3: Supporting Information - Royal Society of Chemistry · 2017-07-24 · Supporting Information Flexible MXene-graphene electrodes with high volumetric capacitance for integrated co-cathode

Fig. S4 XRD patterns of GO/Ti3C2Tx and rGO/Ti3C2Tx films with certain weight ratios.

Fig. S5 (a) SEM image of Ti3AlC2 MAX. (b) Cross-sectional TEM image of Ti3C2Tx

nanosheets. (c) Cross-sectional TEM image of Ti3C2Tx nanosheets. (d) Typical

HRTEM image of Ti3C2Tx nanosheets.

Page 4: Supporting Information - Royal Society of Chemistry · 2017-07-24 · Supporting Information Flexible MXene-graphene electrodes with high volumetric capacitance for integrated co-cathode

Fig. S6 Nitrogen adsorption/desorption isotherms of as-prepared GO/Ti3C2Tx and

rGO/Ti3C2Tx films.

Fig. S7 The thickness measurement of RGM-3 using optical microscope.

Fig. S8 CV curves of rGO/Ti3C2Tx films with different weight ratios.

Page 5: Supporting Information - Royal Society of Chemistry · 2017-07-24 · Supporting Information Flexible MXene-graphene electrodes with high volumetric capacitance for integrated co-cathode

Fig. S9 GCD curves of rGO/Ti3C2Tx films with different weight ratios.

Fig. S10 SEM image of Ti3C2Tx powder after ultrasonic treatment for 1h, indicating that the Ti3C2Tx powders can be partially delaminated to obtain nanometer-sized few-layers Ti3C2Tx nanosheets.

Page 6: Supporting Information - Royal Society of Chemistry · 2017-07-24 · Supporting Information Flexible MXene-graphene electrodes with high volumetric capacitance for integrated co-cathode

Fig. S11 FT-IR spectra of Ti3C2 before and after thermal treatment.

Fig. S12 The operating voltage (a) and maximal operating current (b) of the thin film

solar cell under solar light irradiation before/after fabrication of ECSD.

Page 7: Supporting Information - Royal Society of Chemistry · 2017-07-24 · Supporting Information Flexible MXene-graphene electrodes with high volumetric capacitance for integrated co-cathode

Fig. S13 Capacitance retention of ECSD during cyclic bending at a bend angle of 90°,

indicating a good mechanical stability of ECSD device.

Fig. S14 The curve of capacitance retention of the ECSD-I versus the solar light

irradiation time.

Page 8: Supporting Information - Royal Society of Chemistry · 2017-07-24 · Supporting Information Flexible MXene-graphene electrodes with high volumetric capacitance for integrated co-cathode

Table S1. Comparison of CGravimetric and CVolumetric of the rGO/Ti3C2Tx based device with the reported graphene based and Ti3C2Tx based device.

Electrode material Electrolyte Test conditionCvol.

(F cm-3)Cgravim.

(F g-1)Ref.

Reduced GO 1 M KOH 0.5 A g-1 - 25 1

rGO/CoAl-LDH 1 M KOH 0.5 A g-1 - 122 1

Reduced graphene oxide hydrogels

1 M KOH 1 A g-1 176.5 161.1 2

ɛ-MnO2/Ti3C2Tx 30 wt. % KOH 1 A g-1 - 210 3

Ti3C2Tx/CNT films 1 M MgSO4 2 mV s-1 390 150 4

Clay-like Ti3C2Tx 1 M H2SO4 2 mV s-1 900 245 5

d-Ti3C2Tx paper 1 M KOH 2 mV s-1 320 129 6

Ti3C2Tx/ZnO 1 M KOH 2 mV s-1 - 120 7

Ti3C2Tx/PVA-KOH 1 M KOH 2 mV s-1 - 168 8

Ti3C2Tx/rGO composite

1 M KOH 2 A g-1 - 154.3 9

Porous rGO/Ti3C2Tx film

6 M KOHPVA-KOH

1 A g-1

0.18 A cm-3

369.7135.7

404.5148.5

This work

Page 9: Supporting Information - Royal Society of Chemistry · 2017-07-24 · Supporting Information Flexible MXene-graphene electrodes with high volumetric capacitance for integrated co-cathode

Table S2. Comparison of CVolumetric, energy density and power density of the rGO/Ti3C2Tx film based device with state-of-the-art graphene based device performance.

Electrode material

ElectrolyteTest condition

Cvol.

(F cm-3)E (mWh cm-3)

P (W cm-3) Ref.

3D Graphene Hydrogel

PVA-H2SO4 1 A g-1 30 2.25 0.1 10

Graphene/MnO2 Networks

0.5 M Na2SO4

2 mV s-1 27.5 0.95 0.0625 11

PEDOT-cellulose paper

PVA-H2SO4 0.5 A cm-3 145 28 1.52 12

Transparent carbon film

PVA-H3PO4 0.2 A g-1 0.33 0.147 0.019 13

H–TiO2@MnO2 5 M LiCl 10 mV s-1 0.71 0.3 0.23 14

NPG–PPy PVA-HClO4 2 mV s-1 147 2.8 56.7 15

Porous rGO/Ti3C2Tx films

6 M KOHPVA-KOH 0.18 A cm-3 148.5

62.930.1

0.062.78

This work

Page 10: Supporting Information - Royal Society of Chemistry · 2017-07-24 · Supporting Information Flexible MXene-graphene electrodes with high volumetric capacitance for integrated co-cathode

Notes and references1 R. Zhang, H. An, Z. Li, M. Shao, J. Han and M. Wei, Chem. Eng. J., 2016, 289, 85-

92.

2 V. H. Pham and J. H. Dickerson, J. Phys. Chem. C, 2016, 120(10), 5353-5360.

3 R. B. Rakhi, B. Ahmed, D. Anjum and H. N. Alshareef, ACS Appl. Mater. Interfaces,

2016, 8(29), 18806-18814.

4 M.-Q. Zhao, C. E. Ren, Z. Ling, M. R. Lukatskaya, C. Zhang, K. L. Van Aken, M.

W. Barsoum and Y. Gogotsi, Adv. Mater., 2015, 27(2), 339-345.

5 M. Ghidiu, M. R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi and M. W. Barsoum, Nature,

2014, 516, 78-81.

6 M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dall'Agnese, P. Rozier, P. L. Taberna,

M. Naguib, P. Simon, M. W. Barsoum and Y. Gogotsi, Science, 2013, 341, 1502-1505.

7 F. Wang, M. Cao, Y. Qin, J. Zhu, L. Wang and Y. Tang, RSC Adv., 2016, 6, 88934-

88942.

8 Z. Ling, C. E. Ren, M.-Q. Zhao, J. Yang, J. M. Giammarco, J. Qiu, M. W. Barsoum

and Y. Gogotsi, Proc. Natl. Acad. Sci. USA, 2014, 111(47), 16676-16681.

9 C. Zhao, Q. Wang, H. Zhang, S. Passerini and X. Qian, ACS Appl. Mater. Interfaces,

2016, 8(24), 15661-15667.

10 Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang and X. Duan, ACS Nano, 2013, 7(5),

4042-4049.

11 Y. He, W. Chen, X. Li, Z. Zhang, J. Fu, C. Zhao and E. Xie, ACS Nano, 2013, 7(1),

174-182.

12 B. Anothumakkool, R. Soni, S. N. Bhange and S. Kurungot, Energy Environ. Sci.,

2015, 8, 1339-1347.

13 H. Y. Jung, M. B. Karimi, M. G. Hahm, P. M. Ajayan and Y. J. Jung, Sci. Rep.,

2012, 2, 773.

14 X. Lu, M. Yu, G. Wang, T. Zhai, S. Xie, Y. Ling, Y. Tong and Y. Li, Adv. Mater.,

2013, 25, 267-272.

15 F. Meng and Y. Ding, Adv. Mater., 2011, 23, 4098-4102.