supplementary materials for - science...2020/10/02  · non-reflective metal mask with an aperture...

40
science.sciencemag.org/content/370/6512/eabb8985/suppl/DC1 Supplementary Materials for Vapor-assisted deposition of highly efficient, stable black-phase FAPbI 3 perovskite solar cells Haizhou Lu, Yuhang Liu, Paramvir Ahlawat, Aditya Mishra, Wolfgang R. Tress, Felix T. Eickemeyer, Yingguo Yang, Fan Fu, Zaiwei Wang, Claudia E. Avalos, Brian I. Carlsen, Anand Agarwalla, Xin Zhang, Xiaoguo Li, Yiqiang Zhan*, Shaik M. Zakeeruddin, Lyndon Emsley, Ursula Rothlisberger, Lirong Zheng*, Anders Hagfeldt*, Michael Grätzel* *Corresponding author. Email: [email protected] (Y.Z.); [email protected] L.Z.); [email protected] (A.H.); [email protected] (M.G.) Published 2 October 2020, Science 370, eabb8985 (2020) DOI: 10.1126/science.abb8985 This PDF file includes: Materials and Methods Supplementary Text Figs. S1 to S27 Captions for Movies S1 to S7 References Other Supplementary Material for this manuscript includes the following: (available at science.sciencemag.org/content/370/6512/eabb8985/suppl/DC1) Movies S1 to S7

Upload: others

Post on 02-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • science.sciencemag.org/content/370/6512/eabb8985/suppl/DC1

    Supplementary Materials for

    Vapor-assisted deposition of highly efficient, stable black-phase

    FAPbI3 perovskite solar cells

    Haizhou Lu, Yuhang Liu, Paramvir Ahlawat, Aditya Mishra, Wolfgang R. Tress, Felix T.

    Eickemeyer, Yingguo Yang, Fan Fu, Zaiwei Wang, Claudia E. Avalos, Brian I. Carlsen, Anand

    Agarwalla, Xin Zhang, Xiaoguo Li, Yiqiang Zhan*, Shaik M. Zakeeruddin, Lyndon Emsley,

    Ursula Rothlisberger, Lirong Zheng*, Anders Hagfeldt*, Michael Grätzel*

    *Corresponding author. Email: [email protected] (Y.Z.); [email protected] L.Z.); [email protected]

    (A.H.); [email protected] (M.G.)

    Published 2 October 2020, Science 370, eabb8985 (2020)

    DOI: 10.1126/science.abb8985

    This PDF file includes:

    Materials and Methods

    Supplementary Text

    Figs. S1 to S27

    Captions for Movies S1 to S7

    References

    Other Supplementary Material for this manuscript includes the following:

    (available at science.sciencemag.org/content/370/6512/eabb8985/suppl/DC1)

    Movies S1 to S7

  • 2

    Materials and Methods

    Materials

    Formamidinium iodide (FAI) and formamidinium thiocyanate (FASCN) were purchased

    from Great Solar Australia Pty Ltd. Lead iodide (PbI2) and tin oxide (SnO2) colloid precursor were

    purchased from Alfa Aesar. Bis(trifluoromethane)sulfonimide lithium salt (Li-TFSI) and 4-tert-

    butyl-pyridine (tbp) were purchased from Sigma-Aldrich. Spiro-OMeTAD was purchased from

    Xi’an Polymer Light Technology Corp. Methylamine thiocyanate (MASCN) was purchased from

    Tokyo Chemical Industry Co., LTD. N, N-dimethylformamide (DMF), N-Methyl-2-Pyrrolidone

    (NMP), chlorobenzene (CB), isopropanol (IPA), and acetonitrile (ACN) were purchased from

    Acros Organics. All materials were used as received without further modifications.

    Solar cell fabrication

    SnO2 layer was spin-coated onto the cleaned ITO substrates from a diluted SnO2 nanoparticle

    solution (2.67 wt%) at a spin speed of 4000 rpm for 30 s with additional post annealing at 150 ℃

    for 30 mins (5). As fabricated SnO2 layer was treated with UV-ozone for 15 mins just before the

    FAPbI3 perovskite layer deposition. The perovskite precursor solution was prepared by mixing

    172 mg FAI and 461 mg PbI2 with 600 µL DMF and 100 µL NMP. The perovskite layer was

    fabricated by spin coating 30 µL perovskite precursor solution on top of the SnO2 layer at a speed

    of 5000 rpm for 30 s inside a dry air glovebox (relative humidity < 5%). At the time of 15 s to the

    end, 200 µL CB was quickly dropped as an antisolvent. For the reference FAPbI3 perovskite, the

    as fabricated film was annealed at 100 ℃ for 1 min and then at 150 ℃ for 20 mins. For the vapor-

    treated perovskite, the as fabricated FAPbI3 perovskite film was firstly annealed at 100 ℃ for 1

    min. Then, the perovskite film was put into MASCN/FASCN environment for 5 s until it turns to

    black. Finally, the perovskite film was further annealed at 150 ℃ for 20 mins. MASCN/FASCN

    solution (3 mg/mL in IPA) was dipped onto a metal sheet and annealed at 100 ℃ for 1 min to

    generate the vapor environment. After cooling down the perovskite film on the bench, choline

    chloride solution (1mg/mL in IPA) was used to passivate the surface. Then, doped Spiro-OMeTAD

    solution (72.3 mg/mL in chlorobenzene) was spin-coated on top of the perovskite layer at a speed

    of 3000 rpm for 30 s. For 1 mL Spiro-OMeTAD solution, 17.5 µL Li-TFSI (520 mg/mL in

    acetonitrile), 29 µL tbp and 2.5 mg ADAHI (detailed synthesis can be found in reference (39))

    were added as dopants. Finally, an 80-nm gold layer was evaporated under high vacuum at a rate

    of 0.01 nm/s.

    Photovoltaic device testing

    Photocurrent density-voltage (J-V) curves were measured using a Keithley 2400 source meter

    together with a Xenon arc lamp based solar simulator. The solar simulator was calibrated to AM

    1.5G illumination (100 mW/cm2) using a calibrated reference silicon solar cell. All J-V

    measurements were performed under a constant scan speed of 10 mV/s inside a box purged with

    cool dry air. The photovoltaic data were collected without any device preconditioning. A black,

    non-reflective metal mask with an aperture area of 0.16 cm2 was used to cover the active area (~

    0.27 cm2) of the device to avoid the artefacts produced by scattered light.

    Incident photon-to-electron conversion efficiency (IPCE) measurement

    IPCE was measured with a commercial apparatus (Arkeo-Ariadne, Cicci Research s.r.l) based

    on a 300 W Xenon lamp. It was recorded as a function of wavelength under a constant white light

    bias of approximately 5 mW/cm2 supplied by an array of white light emitting diodes. For all

  • 3

    measurements, a non-reflective metal mask with an aperture area of 0.16 cm2 was used to cover

    the active area of the device to avoid light scattering through the sides.

    External quantum efficiency of the electroluminescence (EQEEL) measurement

    To measure the EQEEL, the emitted photon flux was recorded using a calibrated, large area

    (1cm2) Si photodiode (Hamamatsu S1227-1010BQ) by applying different bias voltage or current

    to the FAPbI3 PSC device with a Bio-logic SP300 potentiostat. All measurements were performed

    in the ambient environment (relative humidity is ~30% and environmental temperature is ~23 ℃).

    Stability measurement

    Stability measurements were performed with a Biologic MPG2 potentiostat under a LED lamp

    which was adjusted to the AM 1.5G illumination (100 mW/cm2). The devices (unencapsulated)

    were masked (0.16 cm2) and put inside a homemade sample holder purged with nitrogen during

    the whole measurements. The devices were measured with a maximum power point (MPP)

    tracking routine under continuous one sun illumination. The MPP measurement was updated every

    60 s by a standard perturb and observe method. The temperature of the device was controlled at

    25 ℃ by a Peltier element in direct contact with the devices. The temperature was measured with

    a surface thermometer located between the Peltier element and the device. Both reverse and

    forward scanned J-V curves were recorded every 30 mins.

    Characterization

    Scanning electron microscopy (SEM) images were taken using a high-resolution scanning

    microscope (ZEISS Merlin). The X-ray diffraction patterns were performed using Cu Kα radiation

    as the X-ray source. Ultraviolet-visible (UV-vis) spectra were measured with a Varian Cary 5.

    Photoluminescence (PL) spectra were recorded using Fluorolog 322 (Horiba Jobin Ybon Ltd) with

    an excitation wavelength at 460 nm. Time-resolved PL (TRPL) measurement was performed

    using Fluorolog 322 spectrofluorometer (Horiba Jobin Yvon, Ltd). A NanoLED-637L (Horiba)

    laser diode (637 nm) was used for excitation. The samples were mounted at 60° and the emission

    collected at 90° from the incident beam path. The detection monochromator was set to 650 nm and

    the PL was recorded using a picosecond photodetection module (TBX-04, Horiba Scientific).

    Surface roughness measurements were taken with a Cypher S atomic force microscope (AFM)

    from Asylum Research under ambient conditions. An Olympus AC240-TS tip was employed, and

    the system was operated under tapping mode.

    Solid-state NMR measurement

    Room-temperature 1H (900 MHz) and 14N (65.04 MHz) NMR spectra were recorded on a

    Bruker Avance Neo 21.1 T spectrometer equipped with a 3.2 mm low-temperature CPMAS probe. 133Cs shifts were referenced to 1 M aqueous solution of CsCl, using solid CsI (δ=271.05 ppm) as

    a secondary reference. 1H chemical shifts were referenced to solid adamantane (δH=1.91 ppm). 14N

    chemical shifts were referenced to solid adamantane (δH= 0 ppm). Quantitative echo-detected 1H

    spectra used a recycle delay of 2 to 50 s. Peak widths were fitted in Topspin 3.2 and the

    uncertainties were given at one standard deviation.

    Computational method

    We constructed a large super-cell of δ-phase FAPbI3 with 28800 atoms (2400 stoichiometric

    units of FAPbI3). To perform molecular dynamics (MD) simulations of FAPbI3, we followed a

  • 4

    similar procedure as used in our previous work (50). Polytypes play an important role in

    crystallization of FAPbI3. Therefore, we also upgraded the previously used force field to be able

    to simulate all the experimentally known polytypes (2H, 4H, 6H and 3C) of FAPbI3. At first, we

    equilibrated this super-cell by performing 10 ns variable-cell isothermal-isobaric simulations at

    370 K. Next, we exposed this super-cell to MA+ and SCN- ions (fig. S6). With this set-up, we

    again performed an equilibrium run for 2 ns in isothermal-isobaric ensemble at 370 K with a force

    field for SCN- ions available from literature (51). Interaction parameters between different

    heterogeneous species were calculated with mixing rules. All production runs were performed in

    isothermal-isobaric ensemble ranging from 20-100 ns. All simulations were performed with the

    Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code (31 Mar 2017)

    (52). We used a 1.0 nm cutoff for nonbonded interactions, SHAKE (53) for constraints and

    particle-particle-particle-mesh Ewald for electrostatic interactions. We used a velocity rescaling

    thermostat (54) with a relaxation time of 0.1 ps and a Parrinello-Rahman barostat (55) to keep the

    pressure at atmospheric pressure with a relaxation time of 10 ps.

    DFT calculations of 4H and 2H polytype with SCN-

    First, we replaced up to 50% I- with SCN- ions in the 2H (δ-phase) and 4H-FAPbI3 crystal

    structures (56). Then, we performed variable cell first-principles density functional theory (DFT)

    calculations of these structures with Generalized Gradient Approximation (GGA) in the Perdew-

    Burke-Ernzerhof formulation revised for solids (PBEsol) (57). We used Quantum Espresso (58)

    with ultra-soft pseudo-potentials for valence-core electron interactions with a plane wave basis set

    of 60 Ry kinetic energy cutoff and 420 Ry density cutoff. The Brillouin zone was sampled by a

    2x2x2 k-points grid for 192 atoms supercell of 4H-FAPbI3 and equivalent of 2H structures. The

    optimized structures are shown in the supplementary materials.

    Details of the DFT calculations for the energy barrier

    We first identified a possible phase transition pathway between δ and α-phases of FAPbI3. In

    order to generate initial transition structures, we explored the phase space between δ and α-phases

    of FAPbI3 with classical MD simulations at different temperatures and interpolated the coordinates

    (Pb2+ and I-) along a path from face-sharing to edge-sharing to corner-sharing structures. We would

    like to note that here we depicted only one possible transformation pathway (fig. S13), bur that the

    system can also go through many different phase transition pathways. To calculate the potential

    energy, landscape of this transition pathway we performed variable-cell enthalpic optimization for

    each structure with first-principles DFT calculations. For DFT calculations, we used Quantum

    Espresso (58) with ultra-soft pseudo-potentials for valence-core electron interactions with a plane

    wave basis set of 60 Ry kinetic energy cut-off and 420 Ry density cut-off. All DFT calculations

    for the energy barrier used Generalized Gradient Approximation (GGA) and Perdew-Burke-

    Ernzerhof (PBE) (59) functional with D3-vdW (60) dispersion corrections. The Brillouin zone was

    sampled by a 3×3×3 k-points grid for 96 atoms (2×2×2 supercell) supercell of α-FAPbI3 and

    equivalent for other structures. The eanergetic profile along the hypothetical pathway (fig. S13)

    provided a first rough estimate of the possible height of the energy barrier involved in the transition

    between the two phses, however, the real physical transition might occur along a different path

    and the calculations along the sequence of structures (fig. S13) did not include the transition states

    involved in going from one intermediate to the next one that might involve even higher energy

    points.

  • 5

    Ab-initio MD of SCN- vapor on δ-phase

    An initial configuration, as depicted in fig. S8 was created by putting 14 SCN- ions in a box

    with a 192 atoms supercell of δ-phase FAPbI3. Constant temperature and constant volume (NVT)

    Born-Oppenheimer MD (BOMD) simulations were performed with the CP2K package (61, 62).

    We used a time step of 1fs and a Nose-Hoover chain (63) for temperature control. We performed

    BOMD simulations at two different temperatures: 300 and 400 K. All simulations used DFT at the

    PBE+D3 (59, 60) level with double-zeta basis sets (DZVP-MOLOPT for Pb, I, S, C, N, H) (64)

    and Goedecker-Teter-Hutter (GTH) pseudopotentials (65) with 560 Ry density cut-off.

    Ab-initio MD of homogeneous mixture of ions

    We performed constant temperature and constant pressure (NPT) simulations of a

    homogeneous mixture of ions: 4 Pb2+, 9 I-, 9 SCN-, 5FA+ and 5MA+ as depicted in fig. S9. We

    used a similar quantum-mechanical set-up for the BOMD as described in the section above. A

    Nose-Hoover chain (63) was used for controlling temperature and the barostat by Martyna et al.

    (66) was used for pressure control. We performed simulations at two different temperatures: 350

    and 400 K at a pressure of 1atm.

    Two-dimensional grazing-incidence XRD (2D-GIXRD) measurement

    The 2D-GIXRD measurements were performed at the BL14B1 beamline of the Shanghai

    Synchrotron Radiation Facility (SSRF) using X-ray with a wavelength of 0.6887 Å. 2D-GIXRD

    patterns were acquired by a MarCCD mounted vertically at a distance of ~632 mm from the sample

    with grazing incidence angles of 0.05°, 0.10° and 0.40°, and the exposure time of 30 s.

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurement

    ToF-SIMS measurements were performed on a ToF-SIMS.5 instrument from IONTOF, Germany,

    operated in spectral mode using a 25 keV Bi3+ primary ion beam with an ion current of 0.57 pA.

    A mass resolving power in the range of 7000-10000 m/Δm was reached. For depth profiling, a 500

    eV Cs+ sputter beam with a current of 25.36 nA was used to remove the material layer-by-layer in

    interlaced mode from a raster area of 300 μm × 300 μm. Both positive and negative ions were

    collected for depth profile analysis. The mass-spectrometry was performed on an area of 100 μm

    × 100 μm in the center of the sputter crater.

    Supplementary Text

    Note 1. Calculations of MA amount

    x = MA integral / # MA[1H]

    y = FA integral / # FA[1H]

    MA amount = x/y * FA amount

    x = 2.0817/6 = 0.34695, y = 97.9183/5 = 19.58366

    MA amount = 0.01771630022 * FA amount

    MA amount = 1.77 % of FA amount

    Note 2. Determination of the Urbach energy 𝐸𝑢, the radiative limit 𝑉oc,rad, the measured Voc and the effect of temperature.

    For the determination of 𝑉oc,rad and 𝐸𝑢 , we follow the work of Tress et al. (41). From the electroluminescence 𝐽em(V) (Fig. 4E) at voltage V = 1.0 V, we calculated the spectral shape of

  • 6

    the absorptance 𝑎(𝐸)~𝐽𝑒𝑚(𝑉)

    𝛷𝐵𝐵(𝐸), where 𝛷𝐵𝐵(𝐸) =

    1

    4𝜋2ℏ3𝑐2𝐸2

    exp (𝐸

    𝑘𝐵𝑇−1)

    is the spectral photon flux of

    the black body radiation and the temperature T is 23 °C (temperature of the EL measurements).

    We recalibrated the absorptance with the above bandgap IPCE at 760 nm (1.63 eV) from Fig. 4C

    (IPCE (1.63 eV) = 87.7%). This yields the absorptance spectrum as shown in fig. S20. The

    exponential fit between 1.4 and 1.5 eV results in the Urbach energy 𝐸𝑢 = 13.9 meV. From 𝑎(𝐸) we calculated the emitted photon flux in thermal equilibrium 𝐽𝑒𝑚,0 = 𝑒 ∫ 𝑎(𝐸)𝛷𝐵𝐵(𝐸)𝑑𝐸 and

    from this the radiative limit open-circuit voltage 𝑉oc,rad = 𝑘𝐵𝑇 𝑒⁄ ln(𝐽𝑝ℎ 𝐽𝑒𝑚,0 + 1⁄ ) = 1.254 V ,

    where 𝐽𝑝ℎ = 25 mA/cm2 is the short circuit current under one sun illumination. For this calculation

    we used the temperature T = 20.1°C, which is the temperature of the device with the highest Voc

    (1.19 V) measured under cooling air flow (Fig. 4D). In fig. S21, A and B, we showed how the

    temperature affected the calculated Urbach energy and 𝑉oc,rad, respectively. The Urbach energy determined from the EL as explained above varies from 13.7 meV at 15 °C to 14.1 meV at 30 °C,

    which demonstrates that it has a very small temperature effect. As for the temperature effect on

    𝑉oc,rad, we calculated 𝑉oc,rad = 1.259 V at 15 °C and 𝑉oc,rad = 1.245 V at 30 °C, i.e. 𝑉oc,rad changes 1 mV/°C. The expected 𝑉oc,exp = 𝑉oc,rad + ∆𝑉oc [ ∆𝑉oc = 𝑘𝑇 𝑞⁄ ln(𝜂𝑒𝑥𝑡) ] has a temperature

    dependence as shown in fig. S21C.

    We did our J-V measurements under two conditions: 20. 1 °C (for air flow cooled samples) and

    25 °C (for non-air flow cooled samples). The measured Voc is 1.19 V at 20.1 °C and 1.18 V at 25

    °C without using a mask, and a relevant 𝑉oc,exp is calculated to be 1.185 V and 1.179 V, and ∆𝑉𝑜𝑐

    is 69.0 mV and 70.2 mV, respectively. We note that the measured EQEEL is underestimated, as a

    considerable number of emitted photons are trapped inside the glass layer. Thus, the difference

    between the measured and predicted values could be due to the inaccuracy of EQEEL

    measurements.

    Lastly, we determined the measured Voc of 1.18 ± 0.005 V for the mask-free conditions at a

    temperature of 25 °C (error is given from a 5 °C temperature range).

  • 7

    Fig. S1. XRD patterns of FAPbI3 perovskite films after MASCN vapor treatment for

    different time from 0 to 100 s.

    5 10 15 20 25 30 35 40 45 50 55 60 65

    100 seconds treatment

    10 seconds treatment

    5 seconds treatment

    2 seconds treatment

    untreated

    Norm

    alis

    ed I

    nte

    nsi

    ty

    2q (o)

    d

    d

  • 8

    Fig. S2. 2D-GIXRD measurements of the FAPbI3 films. 2D-GIXRD patterns collected at X-ray

    incident angles of (a) 0.05°, (b) 0.10° and (c) 0.40° from the reference FAPbI3 perovskite film.

    2D-GIXRD patterns collected at X-ray incident angles of (d) 0.05°, (e) 0.10° and (f) 0.40° from

    the MASCN vapor-treated FAPbI3 perovskite film. GIXRD spectra around the perovskite (001)

    diffraction peaks at incident angles of 0.05°, 0.10° and 0.40° for (g) the MASCN-vapor treated

    FAPbI3 perovskite films and (h) the reference FAPbI3 perovskite films. GIXRD spectra around the

    perovskite (001) diffraction peaks at incident angles of (i) 0.05° and (j) 0.40° for both the MASCN

    vapor-treated and reference FAPbI3 perovskite films.

  • 9

    Fig. S3. Characterization of the FAPbI3 films. Atomic force microscopy (AFM) images of (a)

    reference FAPbI3 film and (b) MASCN vapor-treated FAPbI3 film. Top-view SEM images of δ-

    phase FAPbI3 perovskite films before vapor treatment: (c) scale bar is 200 nm and (d) scale bar is

    1 µm.

  • 10

    Fig. S4. ToF-SIMS depth profiles. (a) MA+ and FA+ contents of the vapor-treated FAPbI3, 1 mol

    % MA+-doped FAPbI3 reference and background signal from pure FAPbI3 reference films. (b)

    PbI2- and SCN- contents of the vapor-treated FAPbI3 film. The sputtering time of 100 s corresponds

    to a distance of ~100 nm.

    100

    101

    102

    103

    104

    0 20 40 60 80 100

    100

    101

    102

    103

    104[PbI2]

    -

    Inte

    nsity (

    counts

    )

    13FA+ ([13CH(NH2)2]+) (vapor-treated FAPbI3)

    Perovskite

    background signal from pure FAPbI3 reference

    MA+ ([CH3NH3]+) (vapor-treated FAPbI3)

    MA+ ([CH3NH3]+) (1 mol % MA+ in FAPbI3 reference)

    (vapor-treated FAPbI3)

    (vapor-treated FAPbI3)

    (vapor-treated FAPbI3)[SCN]-

    Inte

    nsity (

    counts

    )

    Sputter time (s)

    [34SCN]-

  • 11

    Fig. S5. 1H-1H spin diffusion measurements at 21.1 T, 20 kHz MAS and 298 K at 1 s of

    mixing time.

  • 12

    Fig. S6. Simulation set-up: δ-FAPbI3 with MA+ and SCN- on top. This image was generated

    with Visual Molecular Dynamics (VMD). Pb-I octahedra are shown with golden color with iodide

    as orange balls at the corners of the octahedra. FA+, MA+, and SCN- ions are shown with ball and

    sticks representation. Nitrogen is dark blue, carbon is light blue, hydrogen is white, and sulfur is

    yellow.

  • 13

    Fig. S7. Top view of the adsorption of SCN- ions on top of δ-FAPbI3. (a) Top view of the

    simulations. (b) A zoomed-in version of a small part of the top view to clearly show the adsorption

    of SCN- ions on top. These images were generated with VMD. The color coding is the same as in

    fig. S6.

  • 14

    Fig. S8. Configuration for the δ-FAPbI3 with SCN- on top. (a) The starting configuration (at

    t=0) and (b) the configuration at t = ~10 ps for the δ-FAPbI3 with SCN- on top. We show the

    dimensions of the supercell to display the empty space used to treat the SCN- ions as vapor between

    periodic slabs. Pb2+ ions and octahedron are shown with golden colour with iodide as pink balls.

    FA+ and SCN- ions are shown with ball and sticks representation. The color coding is the same as

    in Fig. S6.

  • 15

    Fig. S9. The formation of Pb-I-SCN octahedra and the radial distribution. (a) The formation

    of Pb-I-SCN octahedral during ab-initio MD. Pb2+ ions and octahedron are shown with golden

    colour with iodide as orange balls. FA+, MA+, and SCN- ions are shown with ball and sticks

    representation. The color coding is the same as in fig. S6. (a). (b)The radial distribution function

    g(r) between the sulfur atoms of SCN- and Pb2+ over the full ab-initio MD trajectory.

  • 16

    Fig. S10. A zoomed-in view of the final configuration of corner-sharing structures on the

    interface. This image was generated with VMD. The color coding is the same as in fig. S6.

  • 17

    Fig. S11. Illustration of a possible phase transition path induced by SCN- anions. (a) δ-phase

    FAPbI3 structure. The mixtures of δ and α-phases of FAPbI3 with the increasing number of corner-

    sharing structures from (b) to (e). (f) α-phase FAPbI3 structure. SCN- ions are adsorbed on the top

    of the respective structures. Pb2+ octahedra are portrayed with light blue colour with iodide as pink

    balls on corners. FA+ and SCN- ions are represented with ball and sticks representation. The color

    coding is the same as in fig. S6. All the images were generated with the VESTA software.

  • 18

    Fig. S12. Characterization of the FASCN vapor-treated FAPbI3 films. (a) XRD patterns of

    the reference and FASCN vapor-treated FAPbI3 films annealed at 100 °C (inserted are the

    pictures of corresponding FAPbI3 films after annealing). (b) J-V curve of one FASCN-treated

    FAPbI3-based solar cell device.

  • 19

    Fig. S13. A possible transition pathway and corresponding activation barrier: Illustration of

    a possible phase transition pathway between δ and α-phases FAPbI3. Each point on the energy

    plot represent a different optimized structure along the path. A Gaussian fit of these points is

    included as guide to the eyes. For better visualization of the pathway, we have illustrated some of

    the intermediary phases. Pb-I octahedra are represented with light green colour with iodide on

    corners with pink balls. FA+ cations are shown with ball and sticks representation. The color coding

    is the same as in fig. S6. All images were generated with the VESTA software.

  • 20

    Fig. S14. Cross sectional scanning electron microscopy (SEM) image of a complete solar

    cell device using glass/ITO/SnO2/FAPbI3/Spiro-OMeTAD/Au structure. The thicknesses of

    SnO2, FAPbI3, Spiro-OMeTAD are about 20 nm, 480 nm and 200 nm, respectively.

  • 21

    Fig. S15. Statistic distributions of PV metrics, including (a) Jsc, (b) Voc, (c) FF and (d) PCE

    for the MASCN vapor-treated FAPbI3 based PSCs.

  • 22

    Fig. S16. PV performance of the vapor-treated FAPbI3 PSCs. J-V curves measured for one

    stressed FAPbI3-based PSC (a) in IMT and (b) in our lab. Measurements under MPP tracking

    conditions for one stressed FAPbI3-based PSC (c) in IMT and (d) in our lab.

  • 23

    Fig. S17. J-V curves of one reference FAPbI3-based PSC under both forward and reverse

    scan directions.

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    0

    5

    10

    15

    20

    25

    PCE = 16.31%

    Forward scan

    Reverse scan

    Cu

    rren

    t d

    ensi

    ty (

    mA

    /cm

    2)

    Voltage (V)

    PCE = 17.95%

  • 24

    Fig. S18. Steady state power output for one of the MASCN-treated FAPbI3-based PSCs at

    MPP condition under one sun condition for 60 s.

    0 10 20 30 40 50 60

    0

    5

    10

    15

    20

    25

    PC

    E (

    %)

    Time (s)

    MPP tracking

  • 25

    Fig. S19. Voc as a function of time for 350 s for one of the MASCN-treated FAPbI3-based

    PSCs under 0.9 sun illumination at room temperature.

    0 50 100 150 200 250 300 350

    1.00

    1.04

    1.08

    1.12

    1.16

    VOC

    Vo

    lta

    ge

    (V

    )

    Time (s)

  • 26

    Fig. S20. Absorptance and exponential fit to determine the Urbach energy. For comparison

    the EL spectrum from Fig. 4E and the spectral photon flux of the black body radiation at 23 °C

    are shown.

  • 27

    Fig. S21. Theoretical calculations. (a) Urbach energy Eu , (b) radiative limit Voc , and (c) expected

    Voc as a function of temperature calculated from the EL curve shown in fig. S20. The stars in (c)

    indicate the Voc of measured devices.

  • 28

    Fig. S22. Tauc plot resulting in a 1.52 eV bandgap for the MASCN-treated FAPbI3 films.

    1.46 1.48 1.50 1.52 1.54 1.56 1.58 1.60 1.62 1.64

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    (ahn)2

    Energy (hn)

  • 29

    Fig. S23. TRPL measurements of the reference and the MASCN vapor-treated FAPbI3

    films.

    0 1000 2000 3000

    10-3

    10-2

    10-1

    100

    Re

    lative

    in

    ten

    sity (

    a.u

    .)

    Time (ns)

    Treated FAPbI3 tavg=299.3 ns

    Reference FAPbI3 tavg=79.8 ns

  • 30

    Fig. S24. Wall-plug efficiency of the MASCN-treated FAPbI3-based PSC devices as a

    function of bias voltage from 0 to 2V.

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

    0

    2

    4

    6

    8

    Wal

    l-plu

    g e

    ffic

    iency

    (%

    )

    Voltage (V)

  • 31

    Fig. S25. EQEEL of the MASCN-treated FAPbI3-based PSC devices as a function of the

    current density from 0 to 300 mA/cm2.

    0 50 100 150 200 250 300

    0

    2

    4

    6

    8

    10

    EQ

    EE

    L (

    %)

    Current density (mA/cm2)

  • 32

    Fig. S26. XRD patterns of the FAPbI3 films. (a) MASCN-treated FAPbI3 films annealed at 85

    ℃ under N2 for 100, 300 and 500 hours. (b) Reference FAPbI3 films annealed at 85 ℃ under N2 for 0 and 500 hours.

  • 33

    Fig. S27. J-V curves of the fresh FAPbI3-based PSCs and the FAPbI3-based PSCs after

    2500 hours storage in a dry box.

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    0

    5

    10

    15

    20

    25

    Cu

    rren

    t d

    ensi

    ty (

    mA

    /cm

    2)

    Voltage (V)

    Reverse scan of the device after 2500 hours

    Forward scan of the device after 2500 hours

    Reverse scan of the initial device

    Forward scan of the initial device

  • 34

    Movie S1. The behavior of SCN- ions after addition of MASCN on top of δ-FAPbI3. We show

    SCN- ions in balls and sticks representation: sulfur as yellow, carbon as light and nitrogen as blue

    colored balls. MA+ ions are omitted for the sake for clarity. The Pb-I octahedra of δ-FAPbI3 are

    shown with light-grey color with iodide as pink colored balls. FA+ ions are not shown for better

    visualization.

    Movie S2. A top view of the simulation showing that many SCN- ions get adsorbed on the

    interface by replacing the iodide ions.

    Movie S3. A full simulation of adding MASCN on top of δ-FAPbI3. Pb-I octahedra in δ-FAPbI3

    are shown with golden color with iodide on corners as pink balls. FA+ ions shown with light blue

    color, can be seen around face-sharing Pb-I octahedra. MA+ and SCN- ions are shown with balls

    and sticks representation: sulfur with yellow color, carbon with light blue color, nitrogen with blue

    color and hydrogen with white color.

    Movie S4. Behavior of MA+ ions after addition of MASCN on top of δ-FAPbI3. We show MA+

    ions in green color, SCN- ions are omitted for the sake of clarity. The Pb-I octahedra of δ-FAPbI3

    are shown with light-grey color with iodide as pink colored balls. FA+ ions are not shown to better

    visualize the diffusion of MA+ ions.

    Movie S5. The transformation of face-sharing octahedra to corner-sharing octahedra on the

    top surface layer of δ-FAPbI3. Here we show a part of the simulation box, mainly to clearly

    visualize the transformation by the strongly coordinated SCN- ions on the top surface layer. Pb-I

    octahedra are represented in golden color with iodide in corners as pink balls. SCN- ions are shown

    with balls and sticks configuration: sulfur with yellow color, carbon with light blue color, and

    nitrogen atoms with blue balls. SCN- coordinating octahedra are shown with red color for better

    view.

    Movie S6. The formation of different kinds of corner-sharing structures on top of δ-FAPbI3

    after loading the MASCN.

    Movie S7. The formation of polytypes through the interaction with SCN- ions.

  • 35

    References and Notes

    1. W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M.

    Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, A. D. Mohite, Solar cells. High-

    efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science

    347, 522–525 (2015). doi:10.1126/science.aaa0472 Medline

    2. M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P.

    Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Incorporation of rubidium

    cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–

    209 (2016). doi:10.1126/science.aah5557 Medline

    3. W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K.

    Kim, J. H. Noh, S. I. Seok, Iodide management in formamidinium-lead-halide-based

    perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).

    doi:10.1126/science.aan2301 Medline

    4. S. H. Turren-Cruz, A. Hagfeldt, M. Saliba, Methylammonium-free, high-performance, and

    stable perovskite solar cells on a planar architecture. Science 362, 449–453 (2018).

    doi:10.1126/science.aat3583 Medline

    5. Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Surface

    passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466

    (2019). doi:10.1038/s41566-019-0398-2

    6. E. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T.-Y. Yang, J. H. Noh, J. Seo,

    Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature

    567, 511–515 (2019). doi:10.1038/s41586-019-1036-3 Medline

    7. S. Bai, P. Da, C. Li, Z. Wang, Z. Yuan, F. Fu, M. Kawecki, X. Liu, N. Sakai, J. T.-W. Wang,

    S. Huettner, S. Buecheler, M. Fahlman, F. Gao, H. J. Snaith, Planar perovskite solar cells

    with long-term stability using ionic liquid additives. Nature 571, 245–250 (2019).

    doi:10.1038/s41586-019-1357-2 Medline

    8. S. Yang, S. Chen, E. Mosconi, Y. Fang, X. Xiao, C. Wang, Y. Zhou, Z. Yu, J. Zhao, Y. Gao,

    F. De Angelis, J. Huang, Stabilizing halide perovskite surfaces for solar cell operation

    with wide-bandgap lead oxysalts. Science 365, 473–478 (2019).

    doi:10.1126/science.aax3294 Medline

    9. Y. Wang, T. Wu, J. Barbaud, W. Kong, D. Cui, H. Chen, X. Yang, L. Han, Stabilizing

    heterostructures of soft perovskite semiconductors. Science 365, 687–691 (2019).

    doi:10.1126/science.aax8018 Medline

    10. J. Tong, Z. Song, D. H. Kim, X. Chen, C. Chen, A. F. Palmstrom, P. F. Ndione, M. O. Reese,

    S. P. Dunfield, O. G. Reid, J. Liu, F. Zhang, S. P. Harvey, Z. Li, S. T. Christensen, G.

    Teeter, D. Zhao, M. M. Al-Jassim, M. F. A. M. van Hest, M. C. Beard, S. E. Shaheen, J.

    J. Berry, Y. Yan, K. Zhu, Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient

    all-perovskite tandem solar cells. Science 364, 475–479 (2019).

    doi:10.1126/science.aav7911 Medline

    11. K. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang,

    C. Yan, W. Li, X. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. Xiong, Z. Wei, Perovskite

    http://dx.doi.org/10.1126/science.aaa0472http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25635093&dopt=Abstracthttp://dx.doi.org/10.1126/science.aah5557http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27708053&dopt=Abstracthttp://dx.doi.org/10.1126/science.aan2301http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28663498&dopt=Abstracthttp://dx.doi.org/10.1126/science.aat3583http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30309904&dopt=Abstracthttp://dx.doi.org/10.1038/s41566-019-0398-2http://dx.doi.org/10.1038/s41586-019-1036-3http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30918371&dopt=Abstracthttp://dx.doi.org/10.1038/s41586-019-1357-2http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31292555&dopt=Abstracthttp://dx.doi.org/10.1126/science.aax3294http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31371610&dopt=Abstracthttp://dx.doi.org/10.1126/science.aax8018http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31416961&dopt=Abstracthttp://dx.doi.org/10.1126/science.aav7911http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31000592&dopt=Abstract

  • 36

    light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature

    562, 245–248 (2018). doi:10.1038/s41586-018-0575-3 Medline

    12. Y. Cao, N. Wang, H. Tian, J. Guo, Y. Wei, H. Chen, Y. Miao, W. Zou, K. Pan, Y. He, H.

    Cao, Y. Ke, M. Xu, Y. Wang, M. Yang, K. Du, Z. Fu, D. Kong, D. Dai, Y. Jin, G. Li, H.

    Li, Q. Peng, J. Wang, W. Huang, Perovskite light-emitting diodes based on

    spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).

    doi:10.1038/s41586-018-0576-2 Medline

    13. W. Xu, Q. Hu, S. Bai, C. Bao, Y. Miao, Z. Yuan, T. Borzda, A. J. Barker, E. Tyukalova, Z.

    Hu, M. Kawecki, H. Wang, Z. Yan, X. Liu, X. Shi, K. Uvdal, M. Fahlman, W. Zhang, M.

    Duchamp, J.-M. Liu, A. Petrozza, J. Wang, L.-M. Liu, W. Huang, F. Gao, Rational

    molecular passivation for high-performance perovskite light-emitting diodes. Nat.

    Photonics 13, 418–424 (2019). doi:10.1038/s41566-019-0390-x

    14. B. Zhao, S. Bai, V. Kim, R. Lamboll, R. Shivanna, F. Auras, J. M. Richter, L. Yang, L. Dai,

    M. Alsari, X.-J. She, L. Liang, J. Zhang, S. Lilliu, P. Gao, H. J. Snaith, J. Wang, N. C.

    Greenham, R. H. Friend, D. Di, High-efficiency perovskite–polymer bulk heterostructure

    light-emitting diodes. Nat. Photonics 12, 783–789 (2018). doi:10.1038/s41566-018-0283-

    4

    15. T. Matsushima, F. Bencheikh, T. Komino, M. R. Leyden, A. S. D. Sandanayaka, C. Qin, C.

    Adachi, High performance from extraordinarily thick organic light-emitting diodes.

    Nature 572, 502–506 (2019). doi:10.1038/s41586-019-1435-5 Medline

    16. G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, T.

    C. Sum, Low-temperature solution-processed wavelength-tunable perovskites for lasing.

    Nat. Mater. 13, 476–480 (2014). doi:10.1038/nmat3911 Medline

    17. Y. C. Kim, K. H. Kim, D.-Y. Son, D.-N. Jeong, J.-Y. Seo, Y. S. Choi, I. T. Han, S. Y. Lee,

    N.-G. Park, Printable organometallic perovskite enables large-area, low-dose X-ray

    imaging. Nature 550, 87–91 (2017). doi:10.1038/nature24032 Medline

    18. W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W.-J. Yin, G. Niu, L. Zhu, L.

    Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, J. Tang, Cs2AgBiBr6 single-crystal X-ray detectors

    with a low detection limit. Nat. Photonics 11, 726–732 (2017). doi:10.1038/s41566-017-

    0012-4

    19. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-

    light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    doi:10.1021/ja809598r Medline

    20. National Renewable Energy Laboratory, “Best research-cell efficiency chart” (2020);

    www.nrel.gov/pv/cell-efficiency.html.

    21. D. J. Kubicki, D. Prochowicz, A. Hofstetter, P. Péchy, S. M. Zakeeruddin, M. Grätzel, L.

    Emsley, Cation dynamics in mixed-cation (MA)x(FA)1-xPbI3 hybrid perovskites from

    solid-state NMR. J. Am. Chem. Soc. 139, 10055–10061 (2017). doi:10.1021/jacs.7b04930

    Medline

    22. D. J. Kubicki, D. Prochowicz, A. Hofstetter, M. Saski, P. Yadav, D. Bi, N. Pellet, J.

    Lewiński, S. M. Zakeeruddin, M. Grätzel, L. Emsley, Formation of stable mixed

    guanidinium-methylammonium phases with exceptionally long carrier lifetimes for high-

    http://dx.doi.org/10.1038/s41586-018-0575-3http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30305741&dopt=Abstracthttp://dx.doi.org/10.1038/s41586-018-0576-2http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30305742&dopt=Abstracthttp://dx.doi.org/10.1038/s41566-019-0390-xhttp://dx.doi.org/10.1038/s41566-018-0283-4http://dx.doi.org/10.1038/s41566-018-0283-4http://dx.doi.org/10.1038/s41586-019-1435-5http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31358964&dopt=Abstracthttp://dx.doi.org/10.1038/nmat3911http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24633346&dopt=Abstracthttp://dx.doi.org/10.1038/nature24032http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28980632&dopt=Abstracthttp://dx.doi.org/10.1038/s41566-017-0012-4http://dx.doi.org/10.1038/s41566-017-0012-4http://dx.doi.org/10.1021/ja809598rhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19366264&dopt=Abstracthttp://www.nrel.gov/pv/cell-efficiency.htmlhttp://dx.doi.org/10.1021/jacs.7b04930http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28641413&dopt=Abstract

  • 37

    efficiency lead iodide-based perovskite photovoltaics. J. Am. Chem. Soc. 140, 3345–3351

    (2018). doi:10.1021/jacs.7b12860 Medline

    23. Z. Wang, Q. Lin, B. Wenger, M. G. Christoforo, Y.-H. Lin, M. T. Klug, M. B. Johnston, L.

    M. Herz, H. J. Snaith, High irradiance performance of metal halide perovskites for

    concentrator photovoltaics. Nat. Energy 3, 855–861 (2018). doi:10.1038/s41560-018-

    0220-2

    24. S. Draguta, O. Sharia, S. J. Yoon, M. C. Brennan, Y. V. Morozov, J. S. Manser, P. V. Kamat,

    W. F. Schneider, M. Kuno, Rationalizing the light-induced phase separation of mixed

    halide organic-inorganic perovskites. Nat. Commun. 8, 200 (2017). doi:10.1038/s41467-

    017-00284-2 Medline

    25. J. W. Lee, Z. Dai, T.-H. Han, C. Choi, S.-Y. Chang, S.-J. Lee, N. De Marco, H. Zhao, P. Sun,

    Y. Huang, Y. Yang, 2D perovskite stabilized phase-pure formamidinium perovskite solar

    cells. Nat. Commun. 9, 3021 (2018). doi:10.1038/s41467-018-05454-4 Medline

    26. A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A.

    Christians, T. Chakrabarti, J. M. Luther, Quantum dot-induced phase stabilization of α-

    CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).

    doi:10.1126/science.aag2700 Medline

    27. Y. Fu, T. Wu, J. Wang, J. Zhai, M. J. Shearer, Y. Zhao, R. J. Hamers, E. Kan, K. Deng, X.-

    Y. Zhu, S. Jin, Stabilization of the Metastable Lead Iodide Perovskite Phase via Surface

    Functionalization. Nano Lett. 17, 4405–4414 (2017). doi:10.1021/acs.nanolett.7b01500

    Medline

    28. J. Wang, S. Luo, Y. Lin, Y. Chen, Y. Deng, Z. Li, K. Meng, G. Chen, T. Huang, S. Xiao, H.

    Huang, C. Zhou, L. Ding, J. He, J. Huang, Y. Yuan, Templated growth of oriented

    layered hybrid perovskites on 3D-like perovskites. Nat. Commun. 11, 582 (2020).

    doi:10.1038/s41467-019-13856-1 Medline

    29. Y. Chen, Y. Lei, Y. Li, Y. Yu, J. Cai, M.-H. Chiu, R. Rao, Y. Gu, C. Wang, W. Choi, H. Hu,

    C. Wang, Y. Li, J. Song, J. Zhang, B. Qi, M. Lin, Z. Zhang, A. E. Islam, B. Maruyama,

    S. Dayeh, L.-J. Li, K. Yang, Y.-H. Lo, S. Xu, Strain engineering and epitaxial

    stabilization of halide perovskites. Nature 577, 209–215 (2020). doi:10.1038/s41586-

    019-1868-x Medline

    30. I. Turkevych, S. Kazaoui, N. A. Belich, A. Y. Grishko, S. A. Fateev, A. A. Petrov, T. Urano,

    S. Aramaki, S. Kosar, M. Kondo, E. A. Goodilin, M. Graetzel, A. B. Tarasov, Strategic

    advantages of reactive polyiodide melts for scalable perovskite photovoltaics. Nat.

    Nanotechnol. 14, 57–63 (2019). doi:10.1038/s41565-018-0304-y Medline

    31. B. J. Foley, J. Girard, B. A. Sorenson, A. Z. Chen, J. Scott Niezgoda, M. R. Alpert, A. F.

    Harper, D.-M. Smilgies, P. Clancy, W. A. Saidi, J. J. Choi, Controlling nucleation,

    growth, and orientation of metal halide perovskite thin films with rationally selected

    additives. J. Mater. Chem. 5, 113–123 (2017). doi:10.1039/C6TA07671H

    32. M. Kim, D. Kim, Y. Wen, M. Kim, H. M. Jang, H. Li, L. Gu, B. Kang, High rate li-ion

    batteries with cation-disordered cathodes. Joule 3, 1064–1079 (2019).

    doi:10.1016/j.joule.2019.01.002

    http://dx.doi.org/10.1021/jacs.7b12860http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29429335&dopt=Abstracthttp://dx.doi.org/10.1038/s41560-018-0220-2http://dx.doi.org/10.1038/s41560-018-0220-2http://dx.doi.org/10.1038/s41467-017-00284-2http://dx.doi.org/10.1038/s41467-017-00284-2http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28779144&dopt=Abstracthttp://dx.doi.org/10.1038/s41467-018-05454-4http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30069012&dopt=Abstracthttp://dx.doi.org/10.1126/science.aag2700http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27846497&dopt=Abstracthttp://dx.doi.org/10.1021/acs.nanolett.7b01500http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28595016&dopt=Abstracthttp://dx.doi.org/10.1038/s41467-019-13856-1http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31996680&dopt=Abstracthttp://dx.doi.org/10.1038/s41586-019-1868-xhttp://dx.doi.org/10.1038/s41586-019-1868-xhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31915395&dopt=Abstracthttp://dx.doi.org/10.1038/s41565-018-0304-yhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30478274&dopt=Abstracthttp://dx.doi.org/10.1039/C6TA07671Hhttp://dx.doi.org/10.1016/j.joule.2019.01.002

  • 38

    33. H. Min, M. Kim, S.-U. Lee, H. Kim, G. Kim, K. Choi, J. H. Lee, S. I. Seok, Efficient, stable

    solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science

    366, 749–753 (2019). doi:10.1126/science.aay7044 Medline

    34. W. Xiang, Z. Wang, D. J. Kubicki, W. Tress, J. Luo, D. Prochowicz, S. Akin, L. Emsley, J.

    Zhou, G. Dietler, M. Grätzel, A. Hagfeldt, Europium-doped CsPbI2Br for stable and

    highly efficient inorganic perovskite solar cells. Joule 3, 205–214 (2019).

    doi:10.1016/j.joule.2018.10.008

    35. D. J. Kubicki, D. Prochowicz, A. Hofstetter, S. M. Zakeeruddin, M. Grätzel, L. Emsley,

    Phase Segregation in Cs-, Rb- and K-Doped Mixed-Cation (MA)x(FA)1-xPbI3 Hybrid

    Perovskites from Solid-State NMR. J. Am. Chem. Soc. 139, 14173–14180 (2017).

    doi:10.1021/jacs.7b07223 Medline

    36. D. J. Kubicki, D. Prochowicz, A. Hofstetter, S. M. Zakeeruddin, M. Grätzel, L. Emsley,

    Phase segregation in potassium-doped lead halide perovskites from 39K solid-state NMR

    at 21.1 T. J. Am. Chem. Soc. 140, 7232–7238 (2018). doi:10.1021/jacs.8b03191 Medline

    37. B. A. Rosales, L. Men, S. D. Cady, M. P. Hanrahan, A. J. Rossini, J. Vela, Persistent dopants

    and phase segregation in organolead mixed-halide perovskites. Chem. Mater. 28, 6848–

    6859 (2016). doi:10.1021/acs.chemmater.6b01874

    38. E. A. Alharbi, A. Y. Alyamani, D. J. Kubicki, A. R. Uhl, B. J. Walder, A. Q. Alanazi, J. Luo,

    A. Burgos-Caminal, A. Albadri, H. Albrithen, M. H. Alotaibi, J.-E. Moser, S. M.

    Zakeeruddin, F. Giordano, L. Emsley, M. Grätzel, Atomic-level passivation mechanism

    of ammonium salts enabling highly efficient perovskite solar cells. Nat. Commun. 10,

    3008 (2019). doi:10.1038/s41467-019-10985-5 Medline

    39. M. Tavakoli, W. Tress, J. V. Milić, D. Kubicki, L. Emsley, M. Grätzel, Addition of

    adamantylammonium iodide to hole transport layers enables highly efficient and

    electroluminescent perovskite solar cells. Energy Environ. Sci. 11, 3310–3320 (2018).

    doi:10.1039/C8EE02404A

    40. P. Ahlawat, M. I. Dar, P. Piaggi, M. Grätzel, M. Parrinello, U. Rothlisberger, Atomistic

    mechanism of the nucleation of methylammonium lead iodide perovskite from solution.

    Chem. Mater. 32, 529–536 (2019). doi:10.1021/acs.chemmater.9b04259

    41. W. Tress, N. Marinova, O. Inganäs, M. K. Nazeeruddin, S. M. Zakeeruddin, M. Graetzel,

    Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using

    electroluminescence and photovoltaic quantum efficiency spectra: The role of radiative

    and non-radiative recombination. Adv. Energy Mater. 5, 1400812 (2015).

    doi:10.1002/aenm.201400812

    42. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, H. J. Snaith,

    Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar

    heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014).

    doi:10.1039/c3ee43822h

    43. M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, A. W. Y. Ho-Baillie,

    Solar cell efficiency tables (version 51). Prog. Photovolt. Res. Appl. 26, 3–12 (2018).

    doi:10.1002/pip.2978

    http://dx.doi.org/10.1126/science.aay7044http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31699938&dopt=Abstracthttp://dx.doi.org/10.1016/j.joule.2018.10.008http://dx.doi.org/10.1021/jacs.7b07223http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28892374&dopt=Abstracthttp://dx.doi.org/10.1021/jacs.8b03191http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29779379&dopt=Abstracthttp://dx.doi.org/10.1021/acs.chemmater.6b01874http://dx.doi.org/10.1038/s41467-019-10985-5http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31285432&dopt=Abstracthttp://dx.doi.org/10.1039/C8EE02404Ahttp://dx.doi.org/10.1021/acs.chemmater.9b04259http://dx.doi.org/10.1002/aenm.201400812http://dx.doi.org/10.1039/c3ee43822hhttp://dx.doi.org/10.1002/pip.2978

  • 39

    44. R. T. Ross, Some thermodynamics of photochemical systems. J. Chem. Phys. 46, 4590–4593

    (1967). doi:10.1063/1.1840606

    45. O. D. Miller, E. Yablonovitch, S. R. Kurtz, Strong Internal and External Luminescence as

    Solar Cells Approach the Shockley–Queisser Limit. IEEE Journal of Photovoltaics 2,

    303–311 (2012). doi:10.1109/JPHOTOV.2012.2198434

    46. J. J. Yoo, S. Wieghold, M. C. Sponseller, M. R. Chua, S. N. Bertram, N. T. P. Hartono, J. S.

    Tresback, E. C. Hansen, J.-P. Correa-Baena, V. Bulović, T. Buonassisi, S. S. Shin, M. G.

    Bawendi, An interface stabilized perovskite solar cell with high stabilized efficiency and

    low voltage loss. Energy Environ. Sci. 12, 2192–2199 (2019). doi:10.1039/C9EE00751B

    47. D. Yang, R. Yang, K. Wang, C. Wu, X. Zhu, J. Feng, X. Ren, G. Fang, S. Priya, S. F. Liu,

    High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-

    complexed SnO2. Nat. Commun. 9, 3239 (2018). doi:10.1038/s41467-018-05760-x

    Medline

    48. Q. Li, Y. Zhao, R. Fu, W. Zhou, Y. Zhao, X. Liu, D. Yu, Q. Zhao, Efficient perovskite solar

    cells fabricated through CsCl-enhanced PbI2 precursor via sequential deposition. Adv.

    Mater. 30, 1803095 (2018). doi:10.1002/adma.201803095

    49. W. Tress, K. Domanski, B. Carlsen, A. Agarwalla, E. A. Alharbi, M. Graetzel, A. Hagfeldt,

    Performance of perovskite solar cells under simulated temperature-illumination real-

    world operating conditions. Nat. Energy 4, 568–574 (2019). doi:10.1038/s41560-019-

    0400-8

    50. L. Hong, J. V. Milić, P. Ahlawat, M. Mladenović, D. J. Kubicki, F. Jahanabkhshi, D. Ren, M.

    C. Gélvez-Rueda, M. A. Ruiz-Preciado, A. Ummadisingu, Y. Liu, C. Tian, L. Pan, S. M.

    Zakeeruddin, A. Hagfeldt, F. C. Grozema, U. Rothlisberger, L. Emsley, H. Han, M.

    Graetzel, Guanine-stabilized formamidinium lead iodide perovskites. Angew. Chem. Int.

    Ed. 59, 4691–4697 (2020). doi:10.1002/anie.201912051 Medline

    51. G. Tesei, V. Aspelin, M. Lund, Specific cation effects on SCN– in bulk solution and at the

    air-water interface. J. Phys. Chem. B 122, 5094–5105 (2018).

    doi:10.1021/acs.jpcb.8b02303 Medline

    52. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys.

    117, 1–19 (1995). doi:10.1006/jcph.1995.1039

    53. J. Ryckaert, G. Ciccotti, H. J. C. Berendsen, Numerical integration of the cartesian equations

    of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput.

    Phys. 23, 327–341 (1977). doi:10.1016/0021-9991(77)90098-5

    54. G. Bussi, D. Donadio, M. Parrinello, Canonical sampling through velocity rescaling. J.

    Chem. Phys. 126, 014101 (2007). doi:10.1063/1.2408420 Medline

    55. M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: A new molecular

    dynamics method. J. Appl. Phys. 52, 7182–7190 (1981). doi:10.1063/1.328693

    56. P. Gratia, I. Zimmermann, P. Schouwink, J.-H. Yum, J.-N. Audinot, K. Sivula, T. Wirtz, M.

    K. Nazeeruddin, The many faces of mixed ion perovskites: Unraveling and understanding

    the crystallization process. ACS Energy Lett. 2, 2686–2693 (2017).

    doi:10.1021/acsenergylett.7b00981

    http://dx.doi.org/10.1063/1.1840606http://dx.doi.org/10.1109/JPHOTOV.2012.2198434http://dx.doi.org/10.1039/C9EE00751Bhttp://dx.doi.org/10.1038/s41467-018-05760-xhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30104663&dopt=Abstracthttp://dx.doi.org/10.1002/adma.201803095http://dx.doi.org/10.1038/s41560-019-0400-8http://dx.doi.org/10.1038/s41560-019-0400-8http://dx.doi.org/10.1002/anie.201912051http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31846190&dopt=Abstracthttp://dx.doi.org/10.1021/acs.jpcb.8b02303http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29671594&dopt=Abstracthttp://dx.doi.org/10.1006/jcph.1995.1039http://dx.doi.org/10.1016/0021-9991(77)90098-5http://dx.doi.org/10.1063/1.2408420http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17212484&dopt=Abstracthttp://dx.doi.org/10.1063/1.328693http://dx.doi.org/10.1021/acsenergylett.7b00981

  • 40

    57. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin,

    X. Zhou, K. Burke, Restoring the density-gradient expansion for exchange in solids and

    surfaces. Phys. Rev. Lett. 100, 136406 (2008). doi:10.1103/PhysRevLett.100.136406

    Medline

    58. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L.

    Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R.

    Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N.

    Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S.

    Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch,

    QUANTUM ESPRESSO: A modular and open-source software project for quantum

    simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009). doi:10.1088/0953-

    8984/21/39/395502 Medline

    59. J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple.

    Phys. Rev. Lett. 77, 3865–3868 (1996). doi:10.1103/PhysRevLett.77.3865 Medline

    60. S. Grimme, Semiempirical GGA-type density functional constructed with a long-range

    dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006). doi:10.1002/jcc.20495

    Medline

    61. J. Hutter, M. Iannuzzi, F. Schiffmann, J. VandeVondele, CP2K: atomistic simulations of

    condensed matter systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 15–25 (2014).

    doi:10.1002/wcms.1159

    62. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, J. Hutter, Quickstep:

    Fast and accurate density functional calculations using a mixed Gaussian and plane

    waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    doi:10.1016/j.cpc.2004.12.014

    63. G. J. Martyna, M. L. Klein, M. Tuckerman, Nosé-Hoover chains: The canonical ensemble

    via continuous dynamics. J. Chem. Phys. 97, 2635–2643 (1992). doi:10.1063/1.463940

    64. J. VandeVondele, J. Hutter, Gaussian basis sets for accurate calculations on molecular

    systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    doi:10.1063/1.2770708 Medline

    65. S. Goedecker, M. Teter, J. Hutter, Separable dual-space Gaussian pseudopotentials. Phys.

    Rev. B Condens. Matter 54, 1703–1710 (1996). doi:10.1103/PhysRevB.54.1703 Medline

    66. G. J. Martyna, D. J. Tobias, M. L. Klein, Constant pressure molecular dynamics algorithms.

    J. Chem. Phys. 101, 4177–4189 (1994). doi:10.1063/1.467468

    http://dx.doi.org/10.1103/PhysRevLett.100.136406http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18517979&dopt=Abstracthttp://dx.doi.org/10.1088/0953-8984/21/39/395502http://dx.doi.org/10.1088/0953-8984/21/39/395502http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21832390&dopt=Abstracthttp://dx.doi.org/10.1103/PhysRevLett.77.3865http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10062328&dopt=Abstracthttp://dx.doi.org/10.1002/jcc.20495http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16955487&dopt=Abstracthttp://dx.doi.org/10.1002/wcms.1159http://dx.doi.org/10.1016/j.cpc.2004.12.014http://dx.doi.org/10.1063/1.463940http://dx.doi.org/10.1063/1.2770708http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17887826&dopt=Abstracthttp://dx.doi.org/10.1103/PhysRevB.54.1703http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9986014&dopt=Abstracthttp://dx.doi.org/10.1063/1.467468

    abb8985-Lu-SM-FRONTabb8985-Lu-SM-BODYabb8985-Lu-SM-REFS