supplementary materials for€¦ · 11/3/2015  · sn2+/sn -0.1375 sno 2 /sn -0.945 in3+/in -0.3382...

24
advances.sciencemag.org/cgi/content/full/1/10/e1500714/DC1 Supplementary Materials for A new generation of alloyed/multimetal chalcogenide nanowires by chemical transformation Yuan Yang, Kai Wang, Hai-Wei Liang, Guo-Qiang Liu, Mei Feng, Liang Xu, Jian-Wei Liu, Jin-Long Wang, Shu-Hong Yu Published 6 November 2015, Sci. Adv. 1, e1500714 (2015) DOI: 10.1126/sciadv.1500714 The PDF file includes: Fig. S1. TEM image of Te nanowires. Fig. S2. XPS spectra of TexSey@Se nanowires ([Te]:[Se] = 1:4). Fig. S3. Morphologic changes in TexSey@Se core-shell nanowires ([Te]:[Se] = 1:4) upon exposure to an electron beam. Fig. S4. Characterization of TexSey alloy nanowires ([Te]:[Se] = 4:1). Fig. S5. Characterization of as-synthesized TeSe4 alloy nanorods. Fig. S6. TEM images of TexSey@Se nanowires with different Te/Se precursor ratios. Fig. S7. XRD patterns of TexSey@Se nanowires with different Te/Se precursor ratios. Fig. S8. EDS spectra of TexSey@Se nanowires with different Te/Se precursor ratios. Fig. S9. Photographs of as-prepared MSeTe nanowires. Fig. S10. XRD patterns of MSeTe nanowires. Fig. S11. EDS spectra of MSeTe nanowires. Fig. S12. HRTEM images and corresponding fast Fourier transform patterns of MSeTe nanowires. Fig. S13. TEM images and XRD patterns of CdSeTe and BiSeTe nanowires synthesized by the CT of TexSey@Se nanowires with different Te/Se ratios. Fig. S14. TEM images and XRD patterns of samples FeSeTe and AgSeTe (prepared without NH4SCN). Fig. S15. TEM images and XRD patterns of CoSeTe and NiSeTe nanowires ([Te]:[Se] = 1:4) prepared with different amounts of hydrazine. Fig. S16. XRD patterns and EDS spectra of obtained AgCuSeTe, Cu/Pb, and Ni@Cd nanowires.

Upload: others

Post on 23-Sep-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Supplementary Materials for€¦ · 11/3/2015  · Sn2+/Sn -0.1375 SnO 2 /Sn -0.945 In3+/In -0.3382 In(OH) 3 /In -0.99 Zn2+/Zn -0.7618 Zn(OH) 4 2-/Zn -1.199 Table S3. Detailed reaction

advances.sciencemag.org/cgi/content/full/1/10/e1500714/DC1

Supplementary Materials for

A new generation of alloyed/multimetal chalcogenide nanowires by

chemical transformation

Yuan Yang, Kai Wang, Hai-Wei Liang, Guo-Qiang Liu, Mei Feng, Liang Xu, Jian-Wei Liu,

Jin-Long Wang, Shu-Hong Yu

Published 6 November 2015, Sci. Adv. 1, e1500714 (2015)

DOI: 10.1126/sciadv.1500714

The PDF file includes:

Fig. S1. TEM image of Te nanowires.

Fig. S2. XPS spectra of TexSey@Se nanowires ([Te]:[Se] = 1:4).

Fig. S3. Morphologic changes in TexSey@Se core-shell nanowires ([Te]:[Se] =

1:4) upon exposure to an electron beam.

Fig. S4. Characterization of TexSey alloy nanowires ([Te]:[Se] = 4:1).

Fig. S5. Characterization of as-synthesized TeSe4 alloy nanorods.

Fig. S6. TEM images of TexSey@Se nanowires with different Te/Se precursor

ratios.

Fig. S7. XRD patterns of TexSey@Se nanowires with different Te/Se precursor

ratios.

Fig. S8. EDS spectra of TexSey@Se nanowires with different Te/Se precursor

ratios.

Fig. S9. Photographs of as-prepared MSeTe nanowires.

Fig. S10. XRD patterns of MSeTe nanowires.

Fig. S11. EDS spectra of MSeTe nanowires.

Fig. S12. HRTEM images and corresponding fast Fourier transform patterns of

MSeTe nanowires.

Fig. S13. TEM images and XRD patterns of CdSeTe and BiSeTe nanowires

synthesized by the CT of TexSey@Se nanowires with different Te/Se ratios.

Fig. S14. TEM images and XRD patterns of samples FeSeTe and AgSeTe

(prepared without NH4SCN).

Fig. S15. TEM images and XRD patterns of CoSeTe and NiSeTe nanowires

([Te]:[Se] = 1:4) prepared with different amounts of hydrazine.

Fig. S16. XRD patterns and EDS spectra of obtained AgCuSeTe, Cu/Pb, and

Ni@Cd nanowires.

Page 2: Supplementary Materials for€¦ · 11/3/2015  · Sn2+/Sn -0.1375 SnO 2 /Sn -0.945 In3+/In -0.3382 In(OH) 3 /In -0.99 Zn2+/Zn -0.7618 Zn(OH) 4 2-/Zn -1.199 Table S3. Detailed reaction

Fig. S17. XRD patterns of obtained BMC alloy nanowires (I).

Fig. S18. XRD patterns of obtained BMC hybrid nanowires (II).

Fig. S19. XRD patterns of obtained BMC hybrid nanowires (III).

Fig. S20. XRD patterns of obtained BMC hybrid nanowires (IV).

Fig. S21. TEM images, elemental maps, and XRD patterns of the two types of

MMC hybrid nanowires obtained.

Fig. S22. TEM images and XRD patterns of Cu/Pb and BiPb nanowires prepared

through the CT of TexSey@Se nanowires ([Te]:[Se] = 1:4).

Fig. S23. Characterization of PbSeTe samples obtained from different synthesis

stages.

Table S1. Composition of CdSeTe and BiSeTe nanowires synthesized by the CT

of TexSey@Se nanowires with different Te/Se ratios.

Table S2. Standard reduction potentials excerpted from the CRC Handbook of

Chemistry and Physics, 90th Edition (CRC Press, 2010).

Table S3. Detailed reaction parameters for the synthesis of MSeTe (Pb, Cd, Co,

Ni, Bi, and Sb) nanowires.

Table S4. Detailed reaction conditions for the synthesis of BMC nanowires.

Page 3: Supplementary Materials for€¦ · 11/3/2015  · Sn2+/Sn -0.1375 SnO 2 /Sn -0.945 In3+/In -0.3382 In(OH) 3 /In -0.99 Zn2+/Zn -0.7618 Zn(OH) 4 2-/Zn -1.199 Table S3. Detailed reaction

Supplementary Materials:

Fig. S1-S23 and Table S1-S4

Fig. S1. TEM image of Te nanowires.

Fig. S2. XPS spectra of TexSey@Se nanowires ([Te]:[Se] = 1:4). (A) Survey for the Se 3d

region. (B) Survey for the Te 3d region.

Page 4: Supplementary Materials for€¦ · 11/3/2015  · Sn2+/Sn -0.1375 SnO 2 /Sn -0.945 In3+/In -0.3382 In(OH) 3 /In -0.99 Zn2+/Zn -0.7618 Zn(OH) 4 2-/Zn -1.199 Table S3. Detailed reaction

Fig. S3. The morphologic changes in TexSey@Se core-shell nanowires ([Te]:[Se] = 1:4) upon

exposure to an electron beam. (A) About 20s. (B) About 60s. (C) About 180s.

Page 5: Supplementary Materials for€¦ · 11/3/2015  · Sn2+/Sn -0.1375 SnO 2 /Sn -0.945 In3+/In -0.3382 In(OH) 3 /In -0.99 Zn2+/Zn -0.7618 Zn(OH) 4 2-/Zn -1.199 Table S3. Detailed reaction

Fig. S4. Characterization of TexSey alloy nanowires ([Te]:[Se] = 4:1). (A) TEM image. (B)

XRD pattern. (C) HRTEM image. (D and E) Elemental mappings of Te (green) and Se (red).

Page 6: Supplementary Materials for€¦ · 11/3/2015  · Sn2+/Sn -0.1375 SnO 2 /Sn -0.945 In3+/In -0.3382 In(OH) 3 /In -0.99 Zn2+/Zn -0.7618 Zn(OH) 4 2-/Zn -1.199 Table S3. Detailed reaction

Fig. S5. Characterization of as-synthesized TeSe4 alloy nanorods. (A) SEM image of TeSe4

alloy nanorods. (B) XRD pattern of TeSe4 alloy nanorods.

Fig. S6. TEM images of TexSey@Se nanowires with different Te/Se precursor ratios. (A)

[Te]:[Se] = 1:2. (B) [Te]:[Se] = 1:4. Large scale synthesized sample. (C) [Te]:[Se] = 1:6. (D)

[Te]:[Se] = 1:8.

Page 7: Supplementary Materials for€¦ · 11/3/2015  · Sn2+/Sn -0.1375 SnO 2 /Sn -0.945 In3+/In -0.3382 In(OH) 3 /In -0.99 Zn2+/Zn -0.7618 Zn(OH) 4 2-/Zn -1.199 Table S3. Detailed reaction

Fig. S7. XRD patterns of TexSey@Se nanowires with different Te/Se precursor ratios.

Page 8: Supplementary Materials for€¦ · 11/3/2015  · Sn2+/Sn -0.1375 SnO 2 /Sn -0.945 In3+/In -0.3382 In(OH) 3 /In -0.99 Zn2+/Zn -0.7618 Zn(OH) 4 2-/Zn -1.199 Table S3. Detailed reaction

Fig. S8. EDS spectra of TexSey@Se nanowires with different Te/Se precursor ratios. (A)

[Te]:[Se] = 1:2. (B) [Te]:[Se] = 1:4. (C) [Te]:[Se] = 1:6. (D) [Te]:[Se] = 1:8.

Page 9: Supplementary Materials for€¦ · 11/3/2015  · Sn2+/Sn -0.1375 SnO 2 /Sn -0.945 In3+/In -0.3382 In(OH) 3 /In -0.99 Zn2+/Zn -0.7618 Zn(OH) 4 2-/Zn -1.199 Table S3. Detailed reaction

Fig. S9. Photographs of as-prepared MSeTe nanowires.

Page 10: Supplementary Materials for€¦ · 11/3/2015  · Sn2+/Sn -0.1375 SnO 2 /Sn -0.945 In3+/In -0.3382 In(OH) 3 /In -0.99 Zn2+/Zn -0.7618 Zn(OH) 4 2-/Zn -1.199 Table S3. Detailed reaction

Fig. S10. XRD patterns of MSeTe nanowires. (A) AgSeTe. (B) HgSeTe. (C) CuSeTe. (D)

BiSeTe. (E) PbSeTe. (F) CdSeTe. (G) SbSeTe. (H) NiSeTe. (I) CoSeTe.

Page 11: Supplementary Materials for€¦ · 11/3/2015  · Sn2+/Sn -0.1375 SnO 2 /Sn -0.945 In3+/In -0.3382 In(OH) 3 /In -0.99 Zn2+/Zn -0.7618 Zn(OH) 4 2-/Zn -1.199 Table S3. Detailed reaction

Fig. S11. EDS spectra of MSeTe nanowires. (A) AgSeTe. (B) HgSeTe. (C) CuSeTe. (D) BiSeTe.

(E) PbSeTe. (F) CdSeTe. (G) SbSeTe. (H) NiSeTe. (I) CoSeTe.

Page 12: Supplementary Materials for€¦ · 11/3/2015  · Sn2+/Sn -0.1375 SnO 2 /Sn -0.945 In3+/In -0.3382 In(OH) 3 /In -0.99 Zn2+/Zn -0.7618 Zn(OH) 4 2-/Zn -1.199 Table S3. Detailed reaction

Fig. S12. HRTEM images and corresponding fast Fourier transformed patterns of MSeTe

nanowires. (A) HgSeTe. (B) CuSeTe. (C) BiSeTe. (D) PbSeTe. (E) CdSeTe. (F) SbSeTe. (G)

NiSeTe. (H) CoSeTe.

Fig. S13. TEM images and XRD patterns of CdSeTe nanowires and BiSeTe nanowires

synthesized by the CT of TexSey@Se nanowires with different Te/Se ratios. (A) CdSeTe,

[Te]:[Se] = 1:2. (B) CdSeTe, [Te]:[Se] = 1:8. (C) XRD patterns of CdSeTe. (D) BiSeTe, [Te]:[Se]

= 1:2. (E) BiSeTe, [Te]:[Se] = 1:8. (F) XRD patterns of BiSeTe.

Page 13: Supplementary Materials for€¦ · 11/3/2015  · Sn2+/Sn -0.1375 SnO 2 /Sn -0.945 In3+/In -0.3382 In(OH) 3 /In -0.99 Zn2+/Zn -0.7618 Zn(OH) 4 2-/Zn -1.199 Table S3. Detailed reaction

Fig. S14. TEM images and XRD patterns of samples FeSeTe and AgSeTe (prepared without

NH4SCN). (A and B) FeSeTe ([Te]:[Se] = 1:4). (C and D) AgSeTe ([Te]:[Se] = 1:4).

Page 14: Supplementary Materials for€¦ · 11/3/2015  · Sn2+/Sn -0.1375 SnO 2 /Sn -0.945 In3+/In -0.3382 In(OH) 3 /In -0.99 Zn2+/Zn -0.7618 Zn(OH) 4 2-/Zn -1.199 Table S3. Detailed reaction

Fig. S15. TEM images and XRD patterns of CoSeTe and NiSeTe nanowires ([Te]:[Se] = 1:4)

prepared with different amounts of hydrazine. (A and B) CoSeTe, 10 mL hydrazine. (C and D)

NiSeTe, no hydrazine.

Page 15: Supplementary Materials for€¦ · 11/3/2015  · Sn2+/Sn -0.1375 SnO 2 /Sn -0.945 In3+/In -0.3382 In(OH) 3 /In -0.99 Zn2+/Zn -0.7618 Zn(OH) 4 2-/Zn -1.199 Table S3. Detailed reaction

Fig. S16. XRD patterns and EDS spectra of obtained AgCuSeTe, Cu/Pb and Ni@Cd

nanowires. (A and B) AgCuSeTe alloy nanowires, [Ag]:[Cu] = 1:1. (C and D) Cu/Pb hybrid

nanowires, [Cu]:[Pb] = 2:1. (E and F) Ni@Cd core-shell nanowires, [Cd]:[Ni] = 1:1.

Page 16: Supplementary Materials for€¦ · 11/3/2015  · Sn2+/Sn -0.1375 SnO 2 /Sn -0.945 In3+/In -0.3382 In(OH) 3 /In -0.99 Zn2+/Zn -0.7618 Zn(OH) 4 2-/Zn -1.199 Table S3. Detailed reaction

Fig. S17. XRD patterns of obtained BMC alloy nanowires (I). (A) AgBi, [Ag]:[Bi] = 1:1. (B)

AgSb, [Ag]:[Sb] = 1:1. (C) CuSb, [Cu]:[Sb] = 3:1. (D) BiPb, [Bi]:[Pb] = 2:3. (E) BiSb, [Bi]:[Sb]

= 1:1. (F) NiCo, [Ni]:[Co] = 1:1. (G) HgPb, [Hg]:[Pb] = 1:1. (H) PbCd, [Pb]:[Cd] = 1:1. (I)

HgCd, [Hg]:[Cd] = 1:1.

Page 17: Supplementary Materials for€¦ · 11/3/2015  · Sn2+/Sn -0.1375 SnO 2 /Sn -0.945 In3+/In -0.3382 In(OH) 3 /In -0.99 Zn2+/Zn -0.7618 Zn(OH) 4 2-/Zn -1.199 Table S3. Detailed reaction

Fig. S18. XRD patterns of obtained BMC hybrid nanowires (II). (A) Ag/Hg, [Ag]:[Hg] = 2:1.

(B) Ag/Pb, [Ag]:[Pb] = 2:1. (C) Ag/Cd, [Ag]:[Cd] = 2:1. (D) Ag/Ni, [Ag]:[Ni] = 2:1. (E) Ag/Co,

[Ag]:[Co] = 2:1. (F) Hg/Cu, [Hg]:[Cu] = 1:2. (G) Hg/Bi, [Hg]:[Bi] = 3:2. (H) Hg/Sb, [Hg]:[Sb] =

3:2. (I) Hg/Ni, [Hg]:[Ni] = 1:1.

Page 18: Supplementary Materials for€¦ · 11/3/2015  · Sn2+/Sn -0.1375 SnO 2 /Sn -0.945 In3+/In -0.3382 In(OH) 3 /In -0.99 Zn2+/Zn -0.7618 Zn(OH) 4 2-/Zn -1.199 Table S3. Detailed reaction

Fig. S19. XRD patterns of obtained BMC hybrid nanowires (III). (A) Hg/Co, [Hg]:[Co] = 1:1.

(B) Cu/Bi, [Cu]:[Bi] = 3:1. (C) Cu/Cd, [Cu]:[Cd] = 2:1. (D) Cu/Ni, [Cu]:[Ni] = 2:1. (E) Cu/Co,

[Cu]:[Co] = 2:1. (F) Bi/Cd, [Bi]:[Cd] = 2:3. (G) Bi/Ni, [Bi]:[Ni] = 2:3. (H) Bi/Co, [Bi]:[Co] =

2:3. (I) Pb/Sb, [Pb]:[Sb] = 3:2.

Page 19: Supplementary Materials for€¦ · 11/3/2015  · Sn2+/Sn -0.1375 SnO 2 /Sn -0.945 In3+/In -0.3382 In(OH) 3 /In -0.99 Zn2+/Zn -0.7618 Zn(OH) 4 2-/Zn -1.199 Table S3. Detailed reaction

Fig. S20. XRD patterns of obtained BMC hybrid nanowires (IV). (A) Pb/Ni, [Pb]:[Ni] = 1:1.

(B) Pb/Co, [Pb]:[Co] = 3:1. (C) Sb/Ni, [Sb]:[Ni] = 2:3. (D) Sb/Co, [Sb]:[Co] = 2:3. (E) Sb@Cd,

[Cd]:[Sb] = 3:2. (F) Co@Cd, [Cd]:[Ni] = 1:1.

Fig. S21. TEM images, elemental maps and XRD patterns of the two types of MMC hybrid

nanowires obtained. (A to C) Cu/Pb/Hg hybrid nanowires. (D to F) Cu/Pb/Hg/Bi hybrid

nanowires.

Page 20: Supplementary Materials for€¦ · 11/3/2015  · Sn2+/Sn -0.1375 SnO 2 /Sn -0.945 In3+/In -0.3382 In(OH) 3 /In -0.99 Zn2+/Zn -0.7618 Zn(OH) 4 2-/Zn -1.199 Table S3. Detailed reaction

Fig. S22. TEM images and XRD patterns of Cu/Pb and BiPb nanowires prepared through

the CT of TexSey@Se nanowires ([Te]:[Se] = 1:4). (A) Cu/Pb nanowires, [Cu]:[Pb] = 8:1. (B)

Cu/Pb nanowires, [Cu]:[Pb] = 1:2. (C) XRD patterns of Cu/Pb nanowires. (D) BiPb nanowires,

[Pb]:[Bi] = 3:8. (E) BiPb nanowires, [Pb]:[Bi] = 6:1. (F) XRD patterns of BiPb nanowires.

Page 21: Supplementary Materials for€¦ · 11/3/2015  · Sn2+/Sn -0.1375 SnO 2 /Sn -0.945 In3+/In -0.3382 In(OH) 3 /In -0.99 Zn2+/Zn -0.7618 Zn(OH) 4 2-/Zn -1.199 Table S3. Detailed reaction

Fig. S23. Characterizations of PbSeTe samples obtained from different synthesis stages. (A

to C) TEM images observed from samples after reacting for 1 hour, 3 hours and 6 hours,

respectively. Inset in image A is a high magnification TEM of the nanowires obtained by reacting

for 1 hour. (D) XRD patterns of samples obtained from different synthesis stages.

Table S1. Composition of CdSeTe and BiSeTe nanowires synthesized by CT of TexSey@Se

Page 22: Supplementary Materials for€¦ · 11/3/2015  · Sn2+/Sn -0.1375 SnO 2 /Sn -0.945 In3+/In -0.3382 In(OH) 3 /In -0.99 Zn2+/Zn -0.7618 Zn(OH) 4 2-/Zn -1.199 Table S3. Detailed reaction

nanowires with different Te/Se ratios. The results were supplied by the ICP-AES analyses.

Samples M/Se/Te molar ratios in

precursors

Compositions of MSeTe nanowires

M/Se/Te (atomic ratio)

CdSeTe (1:2) ~ 0.54:0.40:0.20 42.5:36.6:20.9

CdSeTe (1:4) ~ 0.90:0.80:0.20 41.7:46.3:12.0

CdSeTe (1:8) ~ 1.62:1.60:0.20 42.3:50.7:7.0

BiSeTe (1:2) ~ 0.36:0.40:0.20 39.4:38.7:21.9

BiSeTe (1:4) ~ 0.60:0.80:0.20 41.6:44.9:13.5

BiSeTe (1:8) ~ 1.08:1.60:0.20 40.5:52.5:7.0

Table S2. Standard reduction potentials excerpted from the CRC Handbook of Chemistry

and Physics, 90th Edition (CRC Press, 2010).

In acidic solution In alkaline solution

Electrode EƟ/V Electrode EƟ/V

H+/H2 0.0000 H2O/H2 -0.8277

N2/N2H4 -0.23 N2/N2H4 -1.16

Se/H2Se -0.082 Se/Se2- -0.924

Te/H2Te -0.793 Te/Te2- -1.143

Ag+/Ag 0.7996 Ag2O/Ag 0.342

Hg22+/Hg 0.7973 AgSCN/Ag 0.08951

Hg2+/Hg 0.851 HgO/Hg 0.0977

Cu2+/Cu 0.3419 Cu(OH)2/Cu -0.222

Tl+/Tl -0.366 TlOH/Tl -0.34

Bi3+/Bi 0.308 Bi2O3/Bi -0.46

Pb2+/Pb -0.1262 PbO/Pb -0.580

Cd2+/Cd -0.4030 Cd(OH) 42-/Cd -0.658

Sb2O3/Sb 0.152 Sb2O3/Sb -0.677

Ni2+/Ni -0.257 Ni(OH)2/Ni -0.72

Co2+/Co -0.28 Co(OH)2/Co -0.73

Fe2+/Fe -0.447 Fe(OH)2/Fe -0.877

Sn2+/Sn -0.1375 SnO2/Sn -0.945

In3+/In -0.3382 In(OH)3/In -0.99

Zn2+/Zn -0.7618 Zn(OH) 42-/Zn -1.199

Table S3. Detailed reaction parameters for the synthesis of MSeTe (Pb, Cd, Co, Ni, Bi, Sb)

nanowires.

Page 23: Supplementary Materials for€¦ · 11/3/2015  · Sn2+/Sn -0.1375 SnO 2 /Sn -0.945 In3+/In -0.3382 In(OH) 3 /In -0.99 Zn2+/Zn -0.7618 Zn(OH) 4 2-/Zn -1.199 Table S3. Detailed reaction

MSeTe Metal precursor

(mmol)

DIW (mL) Hydrazine

hydrate (mL)

Reacting

temperature (oC)

PbSeTe 0.9 40 0.0 100

CdSeTe 0.9 40 0.0 140

CoSeTe 0.8 0 20.0 160

NiSeTe 0.8 20 10.0 160

BiSeTe 0.6 40 0.0 160

SbSeTe 0.6 40 0.0 160

Table S4. Detailed reaction conditions for the synthesis of BMC nanowires.

BMC Precursors

M1/M2 (mmol/mmol)

DIW

(mL)

N2H4·H2O

(mL)

Reaction

temperature (oC)

Ag/Hg 0.90/0.45 40 0 80

Page 24: Supplementary Materials for€¦ · 11/3/2015  · Sn2+/Sn -0.1375 SnO 2 /Sn -0.945 In3+/In -0.3382 In(OH) 3 /In -0.99 Zn2+/Zn -0.7618 Zn(OH) 4 2-/Zn -1.199 Table S3. Detailed reaction

AgCu 0.90/0.90 40 0 80

AgBi 0.45/0.45 35 5 160

Ag/Pb 0.90/0.45 35 5 100

Ag/Cd 0.90/0.45 35 5 140

AgSb 0.45/0.45 35 5 160

Ag/Ni 0.90/0.45 20 10 160

Ag/Co 0.90/0.45 20 10 160

Hg/Cu 0.45/0.90 40 0 80

Hg/Bi 0.45/0.30 35 5 160

HgPb 0.45/0.45 35 5 160

HgCd 0.45/0.45 35 5 160

Hg/Sb 0.45/0.30 35 5 160

Hg/Ni 0.45/0.45 20 10 160

Hg/Co 0.45/0.45 20 10 160

Cu/Bi 0.90/0.30 35 5 160

Cu/Pb 0.90/0.45 40 0 100

Cu/Cd 0.90/0.45 40 0 160

CuSb 0.90/0.30 35 5 160

Cu/Ni 0.90/0.45 20 10 160

Cu/Co 0.90/0.45 20 10 160

BiPb 0.30/0.45 35 5 160

Bi/Cd 0.30/0.45 40 0 160

BiSb 0.30/0.30 35 5 160

Bi/Ni 0.30/0.45 40 5 160

Bi/Co 0.30/0.45 25 5 160

PbCd 0.45/0.45 40 0 160

PbSb 0.45/0.30 40 0 160

Pb/Ni 0.45/0.45 20 10 160

Pb/Co 0.45/0.45 20 10 160

Sb@Cd 0.45/0.30 35 5 160

Ni@Cd 0.45/0.45 25 5 160

Co@Cd 0.45/0.45 25 5 160

Sb/Ni 0.30/0.45 20 10 160

Sb/Co 0.30/0.45 20 10 160

NiCo 0.45/0.45 10 15 160