supplementary material for the paper entitled “a ...physlab.phys.uoa.gr/org/pdf/d93-sm1.pdf ·...

12
EPL, Volume 124, Number 2, 29001, Pages 1–2, Supplementary Material for the paper entitled “A remarkable change of the entropy of seismicity in natural time under time reversal before the super-giant M9 Tohoku earthquake on 11 March 2011” N. V. Sarlis 1,2 , E. S. Skordas 1,2 ,P. A. Varotsos 1,2 Contents of this file 1. Figures S1 to S21 Introduction This supplementary material is focused on the investigation concern- ing the robustness of the results of the main text in respect to the maximum depth of 1 Section of Solid State Physics, Physics Department, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos 157 84, Athens, Greece 2 Solid Earth Physics Institute, Physics Department, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos 157 84, Athens, Greece DRAFT November 19, 2018, 10:15am DRAFT

Upload: others

Post on 25-Sep-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Supplementary Material for the paper entitled “A ...physlab.phys.uoa.gr/org/pdf/d93-sm1.pdf · SARLISETAL.: SUPPLEMENTARYMATERIAL 5-0.16-0.14-0.12-0.1-0.08-0.06-0.04-0.02 0 0.02

EPL, Volume 124, Number 2, 29001, Pages 1–2,

Supplementary Material for the paper entitled

“A remarkable change of the entropy of

seismicity in natural time under time reversal

before the super-giant M9 Tohoku earthquake

on 11 March 2011”

N. V. Sarlis1,2, E. S. Skordas

1,2,P. A. Varotsos

1,2

Contents of this file

1. Figures S1 to S21

Introduction This supplementary material is focused on the investigation concern-

ing the robustness of the results of the main text in respect to the maximum depth of

1Section of Solid State Physics, Physics

Department, National and Kapodistrian

University of Athens, Panepistimiopolis,

Zografos 157 84, Athens, Greece

2Solid Earth Physics Institute, Physics

Department, National and Kapodistrian

University of Athens, Panepistimiopolis,

Zografos 157 84, Athens, Greece

D R A F T November 19, 2018, 10:15am D R A F T

Page 2: Supplementary Material for the paper entitled “A ...physlab.phys.uoa.gr/org/pdf/d93-sm1.pdf · SARLISETAL.: SUPPLEMENTARYMATERIAL 5-0.16-0.14-0.12-0.1-0.08-0.06-0.04-0.02 0 0.02

2 SARLIS ET AL.: SUPPLEMENTARY MATERIAL

the EQs considered (Figs S1 to S4), the magnitude threshold Mthres (Figs S5 to S8),

and the size of the studied area (Figs S9 to S21). Concerning the size of the studied

area, Figs S9-S12 refer to 20o × 20o areas, and Figs S13-S21 to 19o × 19o areas.

D R A F T November 19, 2018, 10:15am D R A F T

Page 3: Supplementary Material for the paper entitled “A ...physlab.phys.uoa.gr/org/pdf/d93-sm1.pdf · SARLISETAL.: SUPPLEMENTARYMATERIAL 5-0.16-0.14-0.12-0.1-0.08-0.06-0.04-0.02 0 0.02

SARLIS ET AL.: SUPPLEMENTARY MATERIAL 3

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=1000

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=2000

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=3000

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=3500

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=4000

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=5000

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=7000

(a)

(b)

(c)

(d)

(e)

(f)

(g)

-0.04-0.02

0 0.02 0.04 0.06 0.08 0.1

0.12

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=1000

-0.12-0.1

-0.08-0.06-0.04-0.02

0 0.02 0.04

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=2000

-0.14-0.12

-0.1-0.08-0.06-0.04-0.02

0 0.02 0.04 0.06

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=3000

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=3500

-0.16-0.14-0.12

-0.1-0.08-0.06-0.04-0.02

0 0.02 0.04

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=4000

-0.16-0.14-0.12

-0.1-0.08-0.06-0.04-0.02

0 0.02 0.04

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=5000

-0.16-0.14-0.12

-0.1-0.08-0.06-0.04-0.02

0 0.02 0.04 0.06

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=7000

(h)

(i)

(j)

(k)

(l)

(m)

(n)

Figure S1. (color online) ∆Si values versus the conventional time for the larger area as

Fig 2 of the main text a to g but only for the shallow EQs of depth h ≤ 70km (see https:

//earthquake.usgs.gov/learn/topics/determining_depth.php). Their corresponding

∼ 51

2month excerps from 1 October 2010 until the M9 Tohoku EQ occurrence on 11 March

2011 are shown (as in Fig 3) in h to n, respectively.D R A F T November 19, 2018, 10:15am D R A F T

Page 4: Supplementary Material for the paper entitled “A ...physlab.phys.uoa.gr/org/pdf/d93-sm1.pdf · SARLISETAL.: SUPPLEMENTARYMATERIAL 5-0.16-0.14-0.12-0.1-0.08-0.06-0.04-0.02 0 0.02

4 SARLIS ET AL.: SUPPLEMENTARY MATERIAL

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=1000

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=2000

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=3000

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=3500

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=4000

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=5000

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=7000

(a)

(b)

(c)

(d)

(e)

(f)

(g)

-0.06-0.04-0.02

0 0.02 0.04 0.06 0.08

0.1 0.12

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=1000

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=2000

-0.15

-0.1

-0.05

0

0.05

0.1

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=3000

-0.16-0.14-0.12-0.1

-0.08-0.06-0.04-0.02

0 0.02 0.04

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=3500

-0.16-0.14-0.12-0.1

-0.08-0.06-0.04-0.02

0 0.02

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=4000

-0.16-0.14-0.12-0.1

-0.08-0.06-0.04-0.02

0 0.02

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=5000

-0.16-0.14-0.12-0.1

-0.08-0.06-0.04-0.02

0 0.02 0.04

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=7000

(h)

(i)

(j)

(k)

(l)

(m)

(n)

Figure S2. (color online) ∆Si values versus the conventional time for the smaller area as

Fig 4 of the main text a to g but only for the shallow EQs of depth h ≤ 70km (see https:

//earthquake.usgs.gov/learn/topics/determining_depth.php). Their corresponding

∼ 51

2month excerps from 1 October 2010 until the M9 Tohoku EQ occurrence on 11 March

2011 are shown (as in Fig 5) in h to n, respectively.D R A F T November 19, 2018, 10:15am D R A F T

Page 5: Supplementary Material for the paper entitled “A ...physlab.phys.uoa.gr/org/pdf/d93-sm1.pdf · SARLISETAL.: SUPPLEMENTARYMATERIAL 5-0.16-0.14-0.12-0.1-0.08-0.06-0.04-0.02 0 0.02

SARLIS ET AL.: SUPPLEMENTARY MATERIAL 5

-0.16-0.14-0.12-0.1

-0.08-0.06-0.04-0.02

0 0.02

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=5000

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=1000

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=2000

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=3000

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=3500

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=4000

(a)

(b)

(c)

(d)

(e)

(f)

-0.08-0.06-0.04-0.02

0 0.02 0.04 0.06 0.08 0.1

0.12 0.14

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=1000

-0.12-0.1

-0.08-0.06-0.04-0.02

0 0.02 0.04

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=2000

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=3000

-0.14-0.12-0.1

-0.08-0.06-0.04-0.02

0 0.02 0.04 0.06 0.08

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=3500

-0.15

-0.1

-0.05

0

0.05

0.1

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=4000

(h)

(i)

(j)

(k)

(l)

(m)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=7000(g)

-0.16-0.14-0.12-0.1

-0.08-0.06-0.04-0.02

0 0.02

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=7000(n)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=5000

Figure S3. (color online) ∆Si values versus the conventional time for the larger area

as Fig 2 of the main text a to g but only for both shallow and intermediate depth EQs

with depth h ≤ 300km (see https://earthquake.usgs.gov/learn/topics/determining_

depth.php). Their corresponding ∼ 51

2month excerps from 1 October 2010 until the M9

Tohoku EQ occurrence on 11 March 2011 are shown (as in Fig 3) in h to n, respectively.D R A F T November 19, 2018, 10:15am D R A F T

Page 6: Supplementary Material for the paper entitled “A ...physlab.phys.uoa.gr/org/pdf/d93-sm1.pdf · SARLISETAL.: SUPPLEMENTARYMATERIAL 5-0.16-0.14-0.12-0.1-0.08-0.06-0.04-0.02 0 0.02

6 SARLIS ET AL.: SUPPLEMENTARY MATERIAL

-0.16-0.14-0.12

-0.1-0.08-0.06-0.04-0.02

0 0.02

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=5000

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=1000

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=2000

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=3000

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=3500

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=4000

(a)

(b)

(c)

(d)

(e)

(f)

-0.06-0.04-0.02

0 0.02 0.04 0.06 0.08 0.1

0.12 0.14

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=1000

-0.12-0.1

-0.08-0.06-0.04-0.02

0 0.02 0.04

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=2000

-0.12-0.1

-0.08-0.06-0.04-0.02

0 0.02 0.04 0.06 0.08

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=3000

-0.15

-0.1

-0.05

0

0.05

0.1

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=3500

-0.2

-0.15

-0.1

-0.05

0

0.05

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=4000

(h)

(i)

(j)

(k)

(l)

(m)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=7000(g)

-0.16-0.14-0.12

-0.1-0.08-0.06-0.04-0.02

0 0.02 0.04

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=7000(n)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=5000

Figure S4. (color online) ∆Si values versus the conventional time for the smaller area

as Fig 4 of the main text a to g but only for both shallow and intermediate depth EQs

with depth h ≤ 300km (see https://earthquake.usgs.gov/learn/topics/determining_

depth.php). Their corresponding ∼ 51

2month excerps from 1 October 2010 until the M9

Tohoku EQ occurrence on 11 March 2011 are shown (as in Fig 5) in h to n, respectively.D R A F T November 19, 2018, 10:15am D R A F T

Page 7: Supplementary Material for the paper entitled “A ...physlab.phys.uoa.gr/org/pdf/d93-sm1.pdf · SARLISETAL.: SUPPLEMENTARYMATERIAL 5-0.16-0.14-0.12-0.1-0.08-0.06-0.04-0.02 0 0.02

SARLIS ET AL.: SUPPLEMENTARY MATERIAL 7

-0.16-0.14-0.12-0.1

-0.08-0.06-0.04-0.02

0 0.02

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=3750

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=750

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=1500

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=2250

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=2625

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=3000

(a)

(b)

(c)

(d)

(e)

(f)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=750

-0.12-0.1

-0.08-0.06-0.04-0.02

0 0.02 0.04 0.06

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=1500

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=2250

-0.12-0.1

-0.08-0.06-0.04-0.02

0 0.02 0.04 0.06 0.08

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=2625

-0.15

-0.1

-0.05

0

0.05

0.1

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=3000

(h)

(i)

(j)

(k)

(l)

(m)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=5250(g)

-0.16-0.14-0.12-0.1

-0.08-0.06-0.04-0.02

0 0.02

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=5250(n)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=3750

Figure S5. (color online) ∆Si values versus the conventional time for the larger (25o −

460N, 125o − 148oE) area as Figs 2 and 3 of the main text but only for EQs with M≥ 3.7.

Since the number of EQs with M≥ 3.5 is approximately one and a half times larger than

that for M≥ 3.7, the scales i presented here are smaller by a factor of 1.5 compared to Figs

2 and 3, and hence panels a to g (as well as h to n) correspond to the scales i =750, 1500,

2250, 2625, 3000, 3750, and 5250, respectively.

D R A F T November 19, 2018, 10:15am D R A F T

Page 8: Supplementary Material for the paper entitled “A ...physlab.phys.uoa.gr/org/pdf/d93-sm1.pdf · SARLISETAL.: SUPPLEMENTARYMATERIAL 5-0.16-0.14-0.12-0.1-0.08-0.06-0.04-0.02 0 0.02

8 SARLIS ET AL.: SUPPLEMENTARY MATERIAL

-0.16-0.14-0.12

-0.1-0.08-0.06-0.04-0.02

0 0.02 0.04

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=2000

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=400

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=800

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=1200

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=1400

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=1600

(a)

(b)

(c)

(d)

(e)

(f)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=400

-0.12-0.1

-0.08-0.06-0.04-0.02

0 0.02 0.04 0.06

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=800

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=1200

-0.12-0.1

-0.08-0.06-0.04-0.02

0 0.02 0.04 0.06

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=1400

-0.15

-0.1

-0.05

0

0.05

0.1

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=1600

(h)

(i)

(j)

(k)

(l)

(m)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=2800(g)

-0.16-0.14-0.12

-0.1-0.08-0.06-0.04-0.02

0 0.02

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=2800(n)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=2000

Figure S6. (color online) ∆Si values versus the conventional time for the larger (25o −

460N, 125o − 148oE) area as Figs 2 and 3 of the main text but only for EQs with M≥ 4.0.

Since the number of EQs with M≥ 3.5 is approximately two and a half times larger than

that for M≥ 4.0, the scales i presented here are smaller by a factor of 2.5 compared to Figs

2 and 3, and hence panels a to g (as well as h to n) correspond to the scales i =400, 800,

1200, 1400, 1600, 2000, and 2800, respectively.

D R A F T November 19, 2018, 10:15am D R A F T

Page 9: Supplementary Material for the paper entitled “A ...physlab.phys.uoa.gr/org/pdf/d93-sm1.pdf · SARLISETAL.: SUPPLEMENTARYMATERIAL 5-0.16-0.14-0.12-0.1-0.08-0.06-0.04-0.02 0 0.02

SARLIS ET AL.: SUPPLEMENTARY MATERIAL 9

-0.16-0.14-0.12-0.1

-0.08-0.06-0.04-0.02

0 0.02

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=3750

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=750

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=1500

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=2250

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=2625

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=3000

(a)

(b)

(c)

(d)

(e)

(f)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=750

-0.12-0.1

-0.08-0.06-0.04-0.02

0 0.02 0.04

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=1500

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=2250

-0.14-0.12-0.1

-0.08-0.06-0.04-0.02

0 0.02 0.04 0.06 0.08

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=2625

-0.15

-0.1

-0.05

0

0.05

0.1

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=3000

(h)

(i)

(j)

(k)

(l)

(m)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=5250(g)

-0.16-0.14-0.12-0.1

-0.08-0.06-0.04-0.02

0

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=5250(n)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=3750

Figure S7. (color online) ∆Si values versus the conventional time for the smaller (25o −

460N, 125o − 146oE) area as Figs 4 and 5 of the main text but only for EQs with M≥ 3.7.

Since the number of EQs with M≥ 3.5 is approximately one and a half times larger than

that for M≥ 3.7, the scales i presented here are smaller by a factor of 1.5 compared to Figs

4 and 5, and hence panels a to g (as well as h to n) correspond to the scales i =750, 1500,

2250, 2625, 3000, 3750, and 5250, respectively.

D R A F T November 19, 2018, 10:15am D R A F T

Page 10: Supplementary Material for the paper entitled “A ...physlab.phys.uoa.gr/org/pdf/d93-sm1.pdf · SARLISETAL.: SUPPLEMENTARYMATERIAL 5-0.16-0.14-0.12-0.1-0.08-0.06-0.04-0.02 0 0.02

10 SARLIS ET AL.: SUPPLEMENTARY MATERIAL

-0.16-0.14-0.12

-0.1-0.08-0.06-0.04-0.02

0 0.02

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=2000

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=400

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=800

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=1200

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=1400

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=1600

(a)

(b)

(c)

(d)

(e)

(f)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=400

-0.12-0.1

-0.08-0.06-0.04-0.02

0 0.02 0.04 0.06

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=800

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=1200

-0.14-0.12

-0.1-0.08-0.06-0.04-0.02

0 0.02 0.04 0.06

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=1400

-0.15

-0.1

-0.05

0

0.05

0.1

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=1600

(h)

(i)

(j)

(k)

(l)

(m)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=2800(g)

-0.16-0.14-0.12

-0.1-0.08-0.06-0.04-0.02

0

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=2800(n)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=2000

Figure S8. (color online) ∆Si values versus the conventional time for the smaller (25o −

460N, 125o − 146oE) area as Figs 4 and 5 of the main text but only for EQs with M≥ 4.0.

Since the number of EQs with M≥ 3.5 is approximately two and a half times larger than

that for M≥ 4.0, the scales i presented here are smaller by a factor of 2.5 compared to Figs

2 and 3, and hence panels a to g (as well as h to n) correspond to the scales i =400, 800,

1200, 1400, 1600, 2000, and 2800, respectively.

D R A F T November 19, 2018, 10:15am D R A F T

Page 11: Supplementary Material for the paper entitled “A ...physlab.phys.uoa.gr/org/pdf/d93-sm1.pdf · SARLISETAL.: SUPPLEMENTARYMATERIAL 5-0.16-0.14-0.12-0.1-0.08-0.06-0.04-0.02 0 0.02

SARLIS ET AL.: SUPPLEMENTARY MATERIAL 11

-0.16-0.14-0.12-0.1

-0.08-0.06-0.04-0.02

0 0.02

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=5000

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=1000

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=2000

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=3000

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=3500

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=4000

(a)

(b)

(c)

(d)

(e)

(f)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=1000

-0.12-0.1

-0.08-0.06-0.04-0.02

0 0.02 0.04 0.06

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=2000

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=3000

-0.14-0.12-0.1

-0.08-0.06-0.04-0.02

0 0.02 0.04 0.06 0.08

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9∆S

i

MJM

A

i=3500

-0.15

-0.1

-0.05

0

0.05

0.1

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=4000

(h)

(i)

(j)

(k)

(l)

(m)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=7000(g)

-0.16-0.14-0.12-0.1

-0.08-0.06-0.04-0.02

0

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=7000(n)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=5000

Figure S9. (color online) ∆Si values versus the conventional time for the 20o × 20o area

25o − 45oN, 125o − 145oE.

D R A F T November 19, 2018, 10:15am D R A F T

Page 12: Supplementary Material for the paper entitled “A ...physlab.phys.uoa.gr/org/pdf/d93-sm1.pdf · SARLISETAL.: SUPPLEMENTARYMATERIAL 5-0.16-0.14-0.12-0.1-0.08-0.06-0.04-0.02 0 0.02

12 SARLIS ET AL.: SUPPLEMENTARY MATERIAL

-0.16-0.14-0.12

-0.1-0.08-0.06-0.04-0.02

0 0.02 0.04

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=5000

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=1000

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=2000

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=3000

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=3500

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=4000

(a)

(b)

(c)

(d)

(e)

(f)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=1000

-0.1-0.08-0.06-0.04-0.02

0 0.02 0.04 0.06

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=2000

-0.1-0.08-0.06-0.04-0.02

0 0.02 0.04 0.06 0.08 0.1

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=3000

-0.14-0.12

-0.1-0.08-0.06-0.04-0.02

0 0.02 0.04 0.06 0.08

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=3500

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=4000

(h)

(i)

(j)

(k)

(l)

(m)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=7000(g)

-0.16-0.14-0.12

-0.1-0.08-0.06-0.04-0.02

0 0.02

01 Oct 2010

01 Nov 2010

01 Dec 2010

01 Jan 2011

01 Feb 2011

01 Mar 2011

7

7.5

8

8.5

9

∆Si

MJM

A

i=7000(n)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

01 Jan 1985

01 Jan 1988

01 Jan 1991

01 Jan 1994

01 Jan 1997

01 Jan 2000

01 Jan 2003

01 Jan 2006

01 Jan 2009

∆Si

i=5000

Figure S10. (color online) ∆Si values versus the conventional time for the 20o × 20o area

26o − 46oN, 125o − 145oE.

D R A F T November 19, 2018, 10:15am D R A F T