supplementary information to the manuscript …genesdev.cshlp.org › content › suppl › 2014 ›...

21
SUPPLEMENTARY INFORMATION TO THE MANUSCRIPT ENTITLED: A hierarchical model for assembly of eukaryotic 60S ribosomal subunit domains Michael Gamalinda 1,6 , Uli Ohmayer 2,6 , Jelena Jakovljevic 1 , Beril Kumcuoglu 1 , Joshua Woolford 1,3 , Bertrade Mbom 1,4 , Lawrence Lin 1,5 , and John L. Woolford, Jr. 1,7 1 Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA 2 Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany 3 Present address: Department of Epidemiology, Tulane University, New Orleans, LA, USA 4 Present address: Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA 5 Present address: Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA 6 These authors contributed equally to this manuscript 7 Corresponding author

Upload: others

Post on 07-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • SUPPLEMENTARY INFORMATION TO THE MANUSCRIPT ENTITLED:!

    !

    !

    A hierarchical model for assembly of eukaryotic 60S ribosomal subunit domains!

    !

    !

    Michael Gamalinda1,6, Uli Ohmayer2,6, Jelena Jakovljevic1, Beril Kumcuoglu1, Joshua

    Woolford1,3, Bertrade Mbom1,4, Lawrence Lin1,5, and John L. Woolford, Jr.1,7

    1 Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA

    2 Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany

    3 Present address: Department of Epidemiology, Tulane University, New Orleans, LA,

    USA

    4 Present address: Department of Molecular and Cellular Physiology, Stanford

    University, Stanford, CA, USA

    5 Present address: Department of Bioengineering and Therapeutic Sciences, University

    of California, San Francisco, San Francisco, CA, USA

    6 These authors contributed equally to this manuscript

    7 Corresponding author

    !

    !

    !

  • + +

    A0 A1 A2

    A3 B1L

    B1s

    C2 C2

    C1 C1

    5 ETS 3 ETS ITS1 ITS2

    35S

    27SA2 20S

    27SA3

    27SBS 27SBL

    7SS 25.5S 7SL 25.5S

    18S 5.8SS 25S 5.8SL 25S

    E E

    85-90% 10-15%

    6SS 25S 6SL 25S D 20S

    6SS 25S 6SL 25S D 20S

    EA

    RLY

    M

    IDD

    LE

    LATE

    Gamalinda_SuppFig1

  • Gamalinda_SuppFig2 A. B.

    C.

  • GAL-RPL16 NOP7-TAP

    GAL-RPL33 NOP7-TAP

    GAL-RPL4 RPF2-TAP

    GAL-RPL6 RPF2-TAP

    GAL-RPL7 RPF2-TAP

    GAL-RPL8 RPF2-TAP

    GAL-RPL20 RPF2-TAP

    GAL-RPL32 RPF2-TAP

    GAL-RPL13 RPF2-TAP

    GAL-RPL17 NOP7-TAP

    GAL-RPL19 NOP7-TAP

    GAL-RPL25 NOP7-TAP

    GAL-RPL26 NOP7-TAP

    GAL-RPL27 NOP7-TAP

    GAL-RPL31 NOP7-TAP

    GAL-RPL35 NOP7-TAP

    GAL-RPL37 NOP7-TAP

    GAL-RPL2 NOP7-TAP

    GAL-RPL11 NOP7-TAP

    GAL-RPL21 NOP7-TAP

    GAL-RPL43 NOP7-TAP

    Gal Glu Gal Glu Gal Glu Gal Glu Gal Glu Gal Glu Gal Glu Gal Glu Gal Glu

    Gal Glu Gal Glu Gal Glu Gal Glu Gal Glu Gal Glu Gal Glu Gal Glu

    Gal Glu Gal Glu Gal Glu Gal Glu

    Gamalinda_SuppFig3

    Gal Glu

    GAL-RPL28 NOP7-TAP

  • Nop4!

    Nop7!

    Ebp2!

    Cic1!

    Has1!

    Tif6!

    Nog1!

    Nip7!

    Rlp24!

    Nsa2!

    Nog2!

    L3!

    L4!

    L11!

    L17!

    L25!

    GAL-L20!RPF2-TAP!

    GAL-L27!NOP7-TAP!

    GAL-L32!RPF2-TAP!

    GAL-L25!NOP7-TAP!

    Gal! Glu! Gal! Glu! Gal! Glu! Gal! Glu!

    L5!

    GAL-L2!NOP7-TAP!Gal! Glu!

    L28-MYC!

    L14-HA!

    L33-HA!

    L21-MYC!

    L20-MYC!

    L6-MYC!

    GAL-L18!RPF2-TAP!Gal! Glu!

    A.

    B.

    Gamalinda_SuppFig4 GAL-L28!NOP7-TAP!Gal! Glu!

  • GAL-RPL18!RPF2-TAP!

    GAL-RPL17!NOP7-TAP!

    GAL-RPL11!NOP7-TAP!

    Gamalinda_SuppFig5

  • A.

    B.

    Gamalinda_SuppFig6

    C.

    5’-5.8S

    3’-25S 5’-5.8S 3’-25S

  • A. B.

    Gamalinda_SuppFig7

  • L26$ L17$

    L35$

    L4$L16$

    L25$

    L2$

    L3$

    L11$

    L1$

    L5$

    L12$

    L28$

    L10$P0$

    L23$

    L9$

    L7$

    5S$

    23S rRNA

    CP CP

    P-stalk

    L1-stalk

    Subunit Interface

    L1-stalk

    P-stalk

    Solvent Interface

    Gamalinda_SuppFig8

    A.

    B.

    180°

    L5 L11

    (L32) L35

    (L9) (L9)

    L5 L11

    L28

    L4 (L21) (L20)

    L16

    L3 L17 L26

    L9

    L12 (L25)

    L7

    (L27)

    (L35)

    (L33)

    L25 (L17)

    (L33)

    (L27) L10

    (L25)

    L12

    L9

    L2 L23

    (L19)

  • Supplementary Table 1. Summary of contacts of individual RPLs with rRNA sequences within 3.5Å. Phenotypic class Maturation step blocked RPL

    Interaction with rRNA domains (% of nucleotides within 3.5Å)

    5.8S I II III IV V VI 5S

    Early

    Cleavage of 27SA2 pre-rRNA at the A3 site

    L3

    0 4 0 0 9 21 66 0

    Processing of 27SA3 pre-rRNA

    L4 3 22 71 0 0 4 0 0 L6 0 0 66 0 0 0 34 0 L7 0 0 85 0 0 0 0 15 L8 18 29 0 6 0 47 0 0 L13 3 46 46 0 0 5 0 0 L16 0 0 43 0 0 9 48 0 L18 0 5 82 0 0 12 0 0 L20 0 0 55 0 0 0 14 31 L32 0 0 100 0 0 0 0 0 L33 0 0 64 0 0 0 36 0

    Middle Cleavage of 27SB pre-rRNA at the C2 site

    L9 0 0 6 0 0 19 74 0 L17 13 16 16 11 13 7 24 0 L19 0 0 14 51 27 0 8 0 L23 0 0 0 0 39 26 35 0 L25 41 16 0 35 0 8 0 0 L26 43 57 0 0 0 0 0 0 L27 0 0 0 74 0 26 0 0 L31 0 0 0 32 9 0 59 0 L34 0 2 0 91 0 7 0 0 L35 50 50 0 0 0 0 0 0 L37 36 25 25 11 4 0 0 0

    Late

    Processing of 7S pre-rRNA

    L2 0 0 15 8 47 29 0 0 L43 0 0 45 24 28 3 0 0

    Processing of 6S pre-rRNA and/or cytoplasmic release of export factors

    L5 47 0 0 53 0 0 0 0 L10 0 0 46 0 0 43 0 11 L11 0 0 0 0 0 52 0 48 L21 0 0 34 0 0 57 0 9 L28 0 19 66 0 0 15 0 0 L40 0 0 20 0 0 40 40 0

  • Supplementary,Table,2.,Effect,of,depleting,individual,RPLs,to,pre=ribosomal,levels,of,assembly,factors

    GAL$RPL3(RPF2$TAP

    GAL$L18(RPF2$TAP

    GAL$RPL9(NOP7$TAP

    GAL$RPL23(NOP7$TAP

    GAL$RPL17(NOP7$TAP

    GAL$RPL28(NOG1$TAP

    GAL$RPL11(NOP7$TAP

    GAL$RPL10(NOG1$TAP

    Nop6 Noc1 Jip5 Nop13 Jip5Noc13 Nop12 Nop12 Nop13Rrp5 Nop4

    Nop6Rrp5

    Arx1 Arx1 Noc2 Arx1 Afg2 Bud20 Rpf2 Cic1Brx1 Cic1 Noc3 Dbp10 Arx1 Ipi1 Rrs1 Erb1Cic1 Dbp10 Nog2 Noc2 Dbp10 Nsa1 Has1Dbp10 Drs1 Nop53 Noc3 Dbp9 Ssf1 Nop15Drs1 Noc3 Nsa2 Nog1 Mrt4 Nop16Ebp2 Nog2 Nug1 Nog2 Noc1 Nop53Erb1 Nop15 Spb1 Nop53 Noc2 Nop7Has1 Nop53 Nsa2 Noc3 Nsa1Mak16 Nop7 Nug1 Nog2 Rlp7Mrt4 Nsa1 Rlp24 Nop12 Rrp1Nip7 Nsa2 Rsa4 Nop4Noc2 Nug1 Spb1 Nop53Noc3 Rlp7 Spb4 Nsa2Nog1 Rrp1 Tif6 Nug1Nog2 Rsa4 Rrp15Nop15 Spb4 Rrp17Nop16 Rrp5Nop2 Rsa4Nop53 Spb1Nop7 Spb4Nsa1 Ssf1Nsa2Nug1Rea1Rlp24Rlp7Rpf1Rrp1Rrp14Rsa4Spb1Spb4Ssf1Tif6Ytm1

    Assembly,factors

    Early$acting Middle$acting Late$acting

    Enriched

    Diminished

  • Supplementary,Table,3.,Effect,of,depleting,individual,RPLs,to,pre=ribosomal,levels,of,other,RPLs

    GAL$RPL3(RPF2$TAP

    GAL$L18(RPF2$TAP

    GAL$RPL9(NOP7$TAP

    GAL$RPL23(NOP7$TAP

    GAL$RPL17(NOP7$TAP

    GAL$RPL28(NOG1$TAP

    GAL$RPL11(NOP7$TAP

    GAL$RPL10(NOG1$TAP

    L10 L10 P0 P2 P2 L12 P2 P1L24 L24 P2 P1 P0 P0 P0 P0P0 P0 L12 P2 P2P2 P2L13 L13 L19 L32 L17 L28 L5 L10L16 L16 L23 L33 L19 L11L18 L18 L25 L17 L23L20 L20 L26 L19 L31L3 L32 L27 L23 L10L32 L33 L31 L25 L2L33 L6 L34 L27 L28L4 L17 L35 L31 L24L6 L19 L37 L35 L38L7 L23 L9 L9 L39L8 L26 L2 L10L17 L31 L28 L2L19 L35 L40 L21L23 L37 L36 L28L25 L9 L39 L43L26 L2 L1L27 L21 L30L31 L28 L39L34 L14L35 L39L37L9L2L21L28L1L14L15L30L36L39

    Colors,correspond,to,the,known,phenotypic,class,of,the,diminished,RPL;,those,in,black,are,untested.The,enrichment,of,RPLs,that,associate,with,pre=60S,complexes,in,the,cytoplasm,might,be,due,to,the,their,ability,to,alternatively,assemble,in,the,nucleus,(Francisco=Velilla,et,al.,2013).,Another,explanation,relates,to,the,nature,of,the,experiment.Background levels of contaminating ribosomal proteins might be present when we purify pre-ribosomes under wild-type conditions. This,value,(iTRAQ,ratio),is,magnified,when,normalized,to,the,to,the,median,value,of,all,RPL,ratios,in,mutant,pre=ribosomes

    RPLs

    Early$acting Middle$acting Late$acting

    Enriched

    Diminished

  • Supplementary Table 4. Strain List Strain No. Genotype

    Source

    BY4741 MATa his3∆1 leu2∆0 ura3∆0 met15∆0

    Euroscarf

    JWY6147 MATa ura3-52 trp1-1 lys2-801 his3-∆200 leu2-∆1

    E. Jones

    JWY7758 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl3a:: KANMX4 pGAL-RPL3A LEU2

    (Poll et al. 2009)

    JWY8402 MATa ura3-52 trp1-1 lys2-801 his3-∆200 leu2-∆1 rpl4b::KANMX6 rpl4a::GAL-HA3-RPL4A TRP1

    (Poll et al. 2009)

    JWY10661 MATa ura3-52 trp1-1 lys2-801 his3-∆200 leu2-∆1 rpl6b::KANMX6 rpl6a::GAL-HA3-RPL6A TRP1

    This study

    JWY8423 MATa ura3-52 trp1-1 lys2-801 his3-∆200 leu2-∆1rpl7b::KANMX6 rpl7a::GAL-HA3-RPL7A TRP1

    (Jakovljevic et al. 2012)

    JWY7791 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl8a::HIS3MX6 rpl8b::KANMX4 pGAL-RPL8B LEU2

    (Poll et al. 2009)

    JWY7759 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl13a::HIS3MX6 rpl13b::KANMX4 pGAL-RPL13A LEU2

    (Poll et al. 2009)

    JWY7754 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl16a::HIS3MX6 rpl16b::KANMX4 pGAL-RPL16B LEU2

    (Poll et al. 2009)

    JWY8425 MATa ura3-52 trp1-1 lys2-801 his3-∆200 leu2-∆1 rpl18b::KANMX6 rpl18a::GAL-HA3-RPL18A TRP1

    (Poll et al. 2009)

    JWY7755 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl20a::HIS3MX6 rpl20b::KANMX4 pGAL-RPL20B LEU2

    (Poll et al. 2009)

    JWY7796 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl32::KANMX4 pGAL-RPL32 LEU2

    (Poll et al. 2009)

    JWY7790 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl33a::HIS3MX6 rpl33b::KANMX4 pGAL-RPL33A LEU2

    (Poll et al. 2009)

    JWY7792 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl9a::HIS3MX6 (Poll et al. 2009)

  • rpl9b::KANMX4 pGAL-RPL9A LEU2

    JWY9734 MATa ura3-52 trp1-1 lys2-801 his3-∆200 leu2-∆1 rpl17b::KANMX6 rpl17a::GAL-HA3-RPL17A TRP1

    (Gamalinda et al. 2013)

    JWY7793 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl19a::HIS3MX6 rpl19b::KANMX4 pGAL-RPL19B LEU2

    (Poll et al. 2009)

    JWY7751 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl23a::HIS3MX6 rpl23b::KANMX4 pGAL-RPL23B LEU2

    (Poll et al. 2009)

    JWY7783 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl25::KANMX4 pGAL-RPL25 LEU2

    (Poll et al. 2009)

    JWY9626 MATa ura3-52 trp1-1 lys2-801 his3-∆200 leu2-∆1 rpl26b::KANMX6 rpl26a::GAL-HA3-RPL26A TRP1

    (Babiano et al. 2012)

    JWY7785 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl27a::HIS3MX6 rpl27b::KANMX4 pGAL-RPL27A LEU2

    (Poll et al. 2009)

    JWY8401 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl31a::HIS3MX6 rpl31b::KANMX4 pGAL-RPL31A LEU2

    This study

    JWY9735 MATa ura3-52 trp1-1 lys2-801 his3-∆200 leu2-∆1 rpl35b::KANMX6 rpl35a::GAL-HA3-RPL35A TRP1

    (Gamalinda et al. 2013)

    JWY7784 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl37a::HIS3MX6 rpl37b::KANMX4 pGAL-RPL37A LEU2

    (Gamalinda et al. 2013)

    JWY7757 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl2a::HIS3MX6 rpl2b::KANMX4 pGAL-RPL2B LEU2

    (Poll et al. 2009)

    JWY7786 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl5::KANMX4 pGAL-RPL5 LEU2

    (Poll et al. 2009)

    JWY7750 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl10::KANMX4 pGAL-RPL10 LEU2

    (Poll et al. 2009)

    JWY7794 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl21a::HIS3MX6 rpl21b::KANMX4 pGAL-RPL21B LEU2

    (Poll et al. 2009)

  • JWY7787 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl28::KANMX4

    pGAL-RPL28 LEU2

    (Poll et al. 2009)

    JWY7795 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl40a::HIS3MX6 rpl40b::KANMX4 pGAL-RPL40A LEU2

    (Poll et al. 2009)

    JWY8491 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl3a:: KANMX4 pGAL-RPL3A LEU2 rpf2::RPF2-TAP URA3

    This study

    JWY8491 MATa ura3-52 trp1-1 lys2-801 his3-∆200 leu2-∆1 rpl4b::KANMX6 rpl4a::GAL-HA3-RPL4A TRP1 rpf2::RPF2-TAP URA3

    This study

    JWY10663 MATa ura3-52 trp1-1 lys2-801 his3-∆200 leu2-∆1 rpl6b::KANMX6 rpl6a::GAL-HA3-RPL6A TRP1 rpf2::RPF2-TAP URA3

    This study

    JWY8492 MATa ura3-52 trp1-1 lys2-801 his3-∆200 leu2-∆1rpl7b::KANMX6 rpl7a::GAL-HA3-RPL7A TRP1 rpf2::RPF2-TAP URA3

    (Jakovljevic et al. 2012)

    JWY8591 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl8a::HIS3MX6 rpl8b::KANMX4 pGAL-RPL8B LEU2 rpf2::RPF2-TAP URA3

    (Jakovljevic et al. 2012)

    JWY8532 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl13a::HIS3MX6 rpl13b::KANMX4 pGAL-RPL13A LEU2 rpf2::RPF2-TAP URA3

    This study

    JWY8533 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl16a::HIS3MX6 rpl16b::KANMX4 pGAL-RPL16B LEU2 nop7::NOP7-TAP URA3

    This study

    JWY8534 MATa ura3-52 trp1-1 lys2-801 his3-∆200 leu2-∆1 rpl18b::KANMX6 rpl18a::GAL-HA3-RPL18A TRP1 rpf2::RPF2-TAP URA3

    This study

    JWY9904 MATa ura3-52 trp1-1 lys2-801 his3-∆200 leu2-∆1 rpl18b::KANMX6 rpl18a::GAL-HA3-RPL18A TRP1 rpf2::RPF2-TAP URA3 rpl14::RPL14-3HA HIS3

    This study

    JWY9908 MATa ura3-52 trp1-1 lys2-801 his3-∆200 leu2-∆1 rpl18b::KANMX6 rpl18a::GAL-HA3-RPL18A TRP1 rpf2::RPF2-TAP URA3 rpl33::RPL33-3HA HIS3

    This study

  • JWY9916 MATa ura3-52 trp1-1 lys2-801 his3-∆200 leu2-∆1

    rpl18b::KANMX6 rpl18a::GAL-HA3-RPL18A TRP1 rpf2::RPF2-TAP URA3 rpl28::RPL28-13MYC HIS3

    This study

    JWY10650 MATa ura3-52 trp1-1 lys2-801 his3-∆200 leu2-∆1 rpl18b::KANMX6 rpl18a::GAL-HA3-RPL18A TRP1 rpf2::RPF2-TAP URA3 rpl6::RPL6-13MYC HIS3

    This study

    JWY10652 MATa ura3-52 trp1-1 lys2-801 his3-∆200 leu2-∆1 rpl18b::KANMX6 rpl18a::GAL-HA3-RPL18A TRP1 rpf2::RPF2-TAP URA3 rpl20::RPL20-13MYC HIS3

    This study

    JWY10654 MATa ura3-52 trp1-1 lys2-801 his3-∆200 leu2-∆1 rpl18b::KANMX6 rpl18a::GAL-HA3-RPL18A TRP1 rpf2::RPF2-TAP URA3 rpl21::RPL21-13MYC HIS3

    This study

    JWY8330 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl20a::HIS3MX6 rpl20b::KANMX4 pGAL-RPL20B LEU2 rpf2::RPF2-TAP URA3

    This study

    JWY8494 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl32::KANMX4 pGAL-RPL32 LEU2 rpf2::RPF2-TAP URA3

    This study

    JWY7959 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl33a::HIS3MX6 rpl33b::KANMX4 pGAL-RPL33A LEU2 nop7::NOP7-TAP URA3

    This study

    JWY8436 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl9a::HIS3MX6 rpl9b::KANMX4 pGAL-RPL9A LEU2 nop7::NOP7-TAP URA3

    This study

    JWY9622 MATa ura3-52 trp1-1 lys2-801 his3-∆200 leu2-∆1 rpl17b::KANMX6 rpl17a::GAL-HA3-RPL17A TRP1 nop7::NOP7-TAP URA3

    (Gamalinda et al. 2013)

    JWY8437 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl19a::HIS3MX6 rpl19b::KANMX4 pGAL-RPL19B LEU2 nop7::NOP7-TAP URA3

    This study

    JWY8328 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl23a::HIS3MX6 rpl23b::KANMX4 pGAL-RPL23B LEU2 nop7::NOP7-TAP URA3

    This study

    JWY8412 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl25::KANMX4 pGAL-RPL25 LEU2 nop7::NOP7-TAP URA3

    This study

  • JWY9634 MATa ura3-52 trp1-1 lys2-801 his3-∆200 leu2-∆1

    rpl26b::KANMX6 rpl26a::GAL-HA3-RPL26A TRP1 nop7::NOP7-TAP URA3

    (Babiano et al. 2012)

    JWY8694 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl27a::HIS3MX6 rpl27b::KANMX4 pGAL-RPL27A LEU2 nop7::NOP7-TAP URA3

    This study

    JWY9714 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl31a::HIS3MX6 rpl31b::KANMX4 pGAL-RPL31A LEU2 nop7::NOP7-TAP URA3

    This study

    JWY9624 MATa ura3-52 trp1-1 lys2-801 his3-∆200 leu2-∆1 rpl35b::KANMX6 rpl35a::GAL-HA3-RPL35A TRP1 nop7::NOP7-TAP URA3

    (Gamalinda et al. 2013)

    JWY8450 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl37a::HIS3MX6 rpl37b::KANMX4 pGAL-RPL37A nop7::NOP7-TAP URA3

    (Gamalinda et al. 2013)

    JWY8657 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl2a::HIS3MX6 rpl2b::KANMX4 pGAL-RPL2B LEU2 nop7::NOP7-TAP URA3

    This study

    JWY8108 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl5::KANMX4 pGAL-RPL5 LEU2 nop7::NOP7-TAP URA3

    (Zhang et al. 2007)

    JWY8615 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl10::KANMX4 pGAL-RPL10 LEU2 nop7::NOP7-TAP URA3

    This study

    JWY8112 MATa ura3-52 trp1-1 lys2-801 his3-∆200 leu2-∆1 rpl11b::KANMX6 rpl11a::GAL-HA3-RPL11 TRP1 nop7::NOP7-TAP URA3

    (Zhang et al. 2007)

    JWY8457 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl21a::HIS3MX6 rpl21b::KANMX4 pGAL-RPL21B LEU2 nop7::NOP7-TAP URA3

    This study

    JWY8419 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl28::KANMX4 pGAL-RPL28 LEU2 nop7::NOP7-TAP URA3

    This study

    JWY8505 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 rpl40a::HIS3MX6 rpl40b::KANMX4 pGAL-RPL40A LEU2 nop7::NOP7-TAP URA3

    This study

  • SUPPLEMENTARY REFERENCES: Babiano, R., Gamalinda, M., Woolford, J.L., Jr., and de la Cruz, J. 2012.

    Saccharomyces cerevisiae ribosomal protein L26 is not essential for ribosome assembly and function. Mol Cell Biol. 32(16):3228-3241.

    Gamalinda, M., Jakovljevic, J., Babiano, R., Talkish, J., de la Cruz, J., and Woolford,

    J.L., Jr. 2013. Yeast polypeptide exit tunnel ribosomal proteins L17, L35 and L37 are necessary to recruit late-assembling factors required for 27SB pre-rRNA processing. Nucleic Acids Res 41(3): 1965-1983.

    Jakovljevic, J., Ohmayer, U., Gamalinda, M., Talkish, J., Alexander, L., Linnemann, J.,

    Milkereit, P., and Woolford, J.L., Jr. 2012. Ribosomal proteins L7 and L8 function in concert with six A3 assembly factors to propagate assembly of domains I and II of 25S rRNA in yeast 60S ribosomal subunits. RNA 18(10): 1805-1822.

    Poll, G., Braun, T., Jakovljevic, J., Neueder, A., Jakob, S., Woolford, J.L., Jr.,

    Tschochner, H., and Milkereit, P. 2009. rRNA maturation in yeast cells depleted of large ribosomal subunit proteins. PLoS One 4(12): e8249.

    Zhang, J., Harnpicharnchai, P., Jakovljevic, J., Tang, L., Guo, Y., Oeffinger, M., Rout,

    M.P., Hiley, S.L., Hughes, T., and Woolford, J.L., Jr. 2007. Assembly factors Rpf2 and Rrs1 recruit 5S rRNA and ribosomal proteins rpL5 and rpL11 into nascent ribosomes. Genes Dev 21(20): 2580-2592.

  • LEGENDS TO SUPPLEMENTARY FIGURES!

    Supplementary Figure 1. Yeast pre-rRNA processing pathway from the nucleolus

    to the cytoplasm. Endo- and exonucleolytic processing sites are indicated. Early,

    middle, and late steps in processing of 27S pre-rRNAs to form mature large ribosomal

    subunit rRNAs are marked.

    Supplementary Figure 2. Steady state levels of pre-rRNAs in RPL depletion

    mutants. (A) Detection of pre-rRNAs by primer extension and northern blotting verifies

    the previously defined roles of representative RPLs in early, middle, or late steps in pre-

    rRNA processing. (B) Assigning the role of previously uncharacterized RPLs (L6 and

    L31) in 27S pre-rRNA processing, as well as re-classifying L13, previously reported to

    function in late assembly steps. (C) Analyses of whole-cell and affinity-purified (pre-

    )rRNAs by northern blotting confirm previously reported roles of RPLs in pre-rRNA

    processing. Equal signal intensities Input and IP fractions correspond to 1% (35S, 27S

    pre-rRNAs and 25S and 18S rRNAs), 10% (7S pre-rRNA, 5.8S, 5S rRNAs and

    glutamyl-tRNA), or 25% (anti-TAP) co-purification efficiency. !

    Supplementary Figure 3. SDS-PAGE and silver staining to assay relative levels of

    proteins in pre-60S particles after depleting each RPL. Proteins associated with the

    TAP-tagged bait assembly factors were purified from cells where the corresponding

    RPL genes are either expressed (Gal) or repressed (Glu). Affinity purified fractions were

    analyzed by SDS-PAGE followed by silver staining.

    Supplementary Figure 4. Western blotting to assay relative levels of proteins in

    pre-60S particles after depleting each RPL. Appropriate available antibodies against

    assembly factors and RPLs were used to detect individual proteins by western blotting.!

  • Supplementary Figure 5. Cartoon illustration of the effects of depleting

    representative early-, middle-, or late-acting RPLs. Spheres represent RPLs in the

    60S ribosomal subunit, viewed from the subunit interface. Early-, middle-, and late-

    acting proteins are colored green, magenta, and orange, respectively. Dashed circles

    indicate depleted protein, faint colored spheres indicate other RPLs not stable

    associated with pre-ribosomes upon depletion of representative RPLs, and bright solid

    spheres indicate RPLs that remain stably associated after depletion of representative

    RPLs.!

    Supplementary Figure 6. The helices where each 25S/5.8S rRNA domain begins

    and ends are oriented close to each other in mature 60S ribosomal subunits. (A)

    Secondary structure of yeast large ribosomal subunit rRNA species. 5.8S rRNA,

    domains I, II, III, IV, V, and VI are colored black, red, orange, yellow, green, blue, and

    purple, respectively. Helices of the start and end of each 25S/5.8S rRNA domain are

    boxed. (B) Spatial orientation of boxed root helices in the tertiary structure of mature

    60S subunits. (C) Location of L3 relative to the 5’-end of 5.8S rRNA and 3’-end of 25S

    rRNA.!

    Supplementary Figure 7. Domain II as a platform for assembly of other rRNA

    domains. Domain II of (a) yeast 25S rRNA and (b) E. coli 23S rRNA, showing

    projections directed toward the subunit interface. 5.S rRNA (grey) is shown for

    reference.!

    Supplementary Figure 8. Similarities and difference between bacterial and yeast

    large ribosomal subunit assembly. (A) Summary of collective results from studying

    the interdependence of RPL assembly in yeast cells. The modified in vivo bacterial large

  • subunit assembly map proposed by Williamson and colleagues(Chen and Williamson

    2013) was simplified to depict only bacterial RPLs with yeast homologs. Yeast

    nomenclature is followed, and colored boxes indicate their role in early (green), middle

    (magenta), and late (orange) steps of pre-rRNA processing. Horizontal lines subdivide

    the in vivo assembly groups previously described. These six assembly groups are

    designated as early (green), middle (magenta), and late (orange) steps of 50S

    assembly. Dashed arrows indicate assembly relationships observed in bacteria but not

    found in eukaryotes. Grey arrows indicate predicted dependencies based on their role in

    early yeast pre-60S assembly events. Bacterial homologs of RPLs without connecting

    arrows depend on primary binding RPLs without eukaryotic homologs. (B) Early

    (green), middle (magenta), and late (orange) assembly groups of bacterial RPLs are

    mapped onto the structure of E. coli 50S subunit (PDB accession number 2AW4).

    Bacterial ribosomal proteins are annotated based on their yeast homologs. Bacterial

    ribosomal proteins enclosed in parentheses do not have yeast homologs.

    !