suplementary information obtaining information about ... · suplementary information selective...

30
SUPLEMENTARY INFORMATION Selective Deuteration of Phosphorus Ligands using Ruthenium Nanoparticles. A Procedure for Obtaining Information about Ligand Coordination to the Nanoparticle Surface Emma Bresó-Femenia, a,b Cyril Godard, c Carmen Claver, c Bruno Chaudret, b* Sergio Castillón. a* a. Departament de Química Analítica i Orgànica; Universitat Rovira I Virgili; C/ Marcel.lí Domingo s/n, 43007 Tarragona, Spain; E-mail: [email protected] b. Laboratoire de Physique et Chimie des Nano Objets, LPCNO, UMR5215 INSA-UPS-CNRS, Université de Toulouse; Institut National des Sciences Appliquées, 135 avenue de Rangueil, 31077 Toulouse, France E-mail: [email protected] c. Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/ Marcel.lí Domingo s/n, 43007, Tarragona, Spain. Table of contents: S1. Reagents and General Procedures 2 S2. H/D exchange quantification 2 S3. General Procedure for H/D exchanges 2 S4. Synthesis and Characterization 2 S5. References 30 1 Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Upload: others

Post on 20-Jan-2020

16 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SUPLEMENTARY INFORMATION Obtaining Information about ... · SUPLEMENTARY INFORMATION Selective Deuteration of Phosphorus Ligands using Ruthenium Nanoparticles. A Procedure for Obtaining

SUPLEMENTARY INFORMATION

Selective Deuteration of Phosphorus Ligands using Ruthenium Nanoparticles. A Procedure for Obtaining Information about Ligand Coordination to the Nanoparticle Surface

Emma Bresó-Femenia,a,b Cyril Godard,c Carmen Claver,c Bruno Chaudret,b* Sergio Castillón.a*

a. Departament de Química Analítica i Orgànica; Universitat Rovira I Virgili; C/ Marcel.lí Domingo s/n, 43007 Tarragona, Spain; E-mail: [email protected]

b. Laboratoire de Physique et Chimie des Nano Objets, LPCNO, UMR5215 INSA-UPS-CNRS, Université de Toulouse; Institut National des Sciences Appliquées, 135 avenue de Rangueil, 31077 Toulouse, France E-mail:

[email protected]. Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/ Marcel.lí Domingo s/n, 43007,

Tarragona, Spain.

Table of contents:

S1. Reagents and General Procedures 2

S2. H/D exchange quantification 2

S3. General Procedure for H/D exchanges 2

S4. Synthesis and Characterization 2

S5. References 30

1

Electronic Supplementary Material (ESI) for ChemComm.This journal is © The Royal Society of Chemistry 2015

Page 2: SUPLEMENTARY INFORMATION Obtaining Information about ... · SUPLEMENTARY INFORMATION Selective Deuteration of Phosphorus Ligands using Ruthenium Nanoparticles. A Procedure for Obtaining

S1. Reagents and General ProceduresRu@PVP nanoparticles were synthesized following a reported method [1] and stored in a glove box under argon atmosphere. The synthesis of the nanoparticles and the catalysis was carried out in a Fischer-Porter glassware under argon. The chemicals were purchased from Aldrich Chemical and used without further purification. The precursor [Ru(COD)(COT)] was purchased from Nanomeps. THF was dried over sodium and benzophenone, distilled and then thoroughly degassed before use. 1H, 13C and 31P spectra were recorded on a Varian® Mercury VX 400 (400 MHz, 100.6 MHz, 162 MHz respectively). Chemical shift values for 1H and 13C were referred to internal SiMe4 (0.0 ppm) and for 31P was referred to H3PO4 (85% solution in D2O, 0 ppm). Chemical shifts are reported in parts per million (ppm) and coupling constants are reported in Hertz (Hz). Mass spectra was recorded on a Finnigan MAT 900S (EB-Trap-Geometry) Syringes pump Model 22.The isotopic labelling was quantified by 31P spectroscopy.. S3. General Procedure for H/D exchanges [2]: A 100 ml Fischer-porter glassware was charged in a dry-box with RuNPs@PVP (8mg, 3.3%) and a magnetic stirrer. The Fischer-Porter was left under vacuum for 5 minutes and then it was pressurized under 3 bar of D2 gas during 2 hours. Next a solution of the substrate (0.15 mmol) in degassed THF (1 ml) was added under argon. The reaction was stirred under 2 bar of D2 under the required temperatures and time. Then the solution was cooled down to room temperature, filtered on a small neutral alumina pad and evaporated to dryness.

S4. Synthesis and CharacterizationSynthesis of hexadeuterated tri-phenylphosphine P(C6H3D2)3 (2f). Following the general procedure triphenylphosphine was heated for 48h at 80ºC for providing the hexadeuterated phosphine (2f).

P 1 23

4

2 bar D2, 80ºC

48 h, PVP@Ru NPsP

DD

D

D

D

D

1H NMR (400 MHz, CDCl3, δ in ppm): 7.26 (bs). 13C NMR (100.6 MHz, CDCl3, δ in ppm): 137.3 (d, C1, J= 12.0 Hz), 133.8 (dt, C2, J= 19.0, 24.0 Hz), 129.0 (s, C4), 128.7 (d, C3, J= 7.0 Hz). 31P NMR (162 MHz, CDCl3, δ in ppm): -6.2. 2H NMR (400 MHz, CDCl3, δ in ppm): 7.58 (bs).

2

Page 3: SUPLEMENTARY INFORMATION Obtaining Information about ... · SUPLEMENTARY INFORMATION Selective Deuteration of Phosphorus Ligands using Ruthenium Nanoparticles. A Procedure for Obtaining

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5f1 (ppm)

7.26

7.26

Figure 1. 1H-NMR of hexadeuterated PPh3 (2f).

-100102030405060708090100110120130140150160170180190200210220230f1 (ppm)

25.9

6

68.3

2

128.

6712

8.74

128.

7712

8.79

128.

8612

9.03

133.

3813

3.57

133.

6213

3.81

133.

8613

3.95

134.

0513

4.14

137.

2213

7.32

Figure 2. 13C-NMR of hexadeuterated PPh3 (2f).*The signals at 68 and 26 ppm correspond to residual THF.

3

* *

Page 4: SUPLEMENTARY INFORMATION Obtaining Information about ... · SUPLEMENTARY INFORMATION Selective Deuteration of Phosphorus Ligands using Ruthenium Nanoparticles. A Procedure for Obtaining

128.5129.0129.5130.0130.5131.0131.5132.0132.5133.0133.5134.0134.5135.0135.5136.0136.5137.0137.5f1 (ppm)

128.

6712

8.74

128.

7712

8.79

128.

8612

9.03

133.

3813

3.57

133.

6213

3.81

133.

8613

3.95

134.

0513

4.14

137.

2213

7.32

Figure 3. 13C-NMR of hexadeuterated PPh3 (2f).

-40-30-20-100102030405060708090100110120130140150160170180190f1 (ppm)

1.00

0.08

-6.2

4-6

.12

Figure 4. 31P-NMR of hexadeuterated PPh3 (2f).

4

-6.46-6.42-6.38-6.34-6.30-6.26-6.22-6.18-6.14-6.10-6.06-6.02-5.98-5.94f1 (ppm)

1.00

0.08

-6.2

4

-6.1

2

C1C2

C4

C3

Page 5: SUPLEMENTARY INFORMATION Obtaining Information about ... · SUPLEMENTARY INFORMATION Selective Deuteration of Phosphorus Ligands using Ruthenium Nanoparticles. A Procedure for Obtaining

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.012.5f1 (ppm)

7.58

Figure 5. 2H-NMR of hexadeuterated PPh3 (2f) at 2 bar of D2 and 80°C for 48 hours.

Figure 6. Mas spectrum (electronic impact) of hexadeuterated PPh3 (2f).

5

Page 6: SUPLEMENTARY INFORMATION Obtaining Information about ... · SUPLEMENTARY INFORMATION Selective Deuteration of Phosphorus Ligands using Ruthenium Nanoparticles. A Procedure for Obtaining

Synthesis of hexadeuterated tri-p-tolylphosphine P(C7H6D2)3 (7).Following the general procedure tri(para-tolyl)phosphine was heated for 88h at 80ºC for providing hexadeuterated tri(p-tolyl)phosphine (7).

P 1 23

4

2 bar D2, 80ºC

88 h, PVP@Ru NPsP

DD

D

D

D

D

1H NMR (400 MHz, CDCl3, δ in ppm): 7.06 (s), 2.26 (s, CH3). 13C NMR (100.6 MHz, CDCl3, δ in ppm): 138.8 (s, C4), 134.2 (d, C1, J= 9.0 Hz), 133.4 (dt, C2, J= 19.0, 26.0 Hz), 129.1 (d, C3, J= 8.0 Hz), 21.7 (s, CH3). 31P NMR (162 MHz, CDCl3, δ in ppm): -8.8. 2H NMR (400 MHz, CDCl3, δ in ppm): 7.45 (bs).

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0f1 (ppm)

1.00

0.42

2.26

7.06

Figure 7. 1H-NMR of hexadeuterated tri-p-tolylphosphine (7).

6

Page 7: SUPLEMENTARY INFORMATION Obtaining Information about ... · SUPLEMENTARY INFORMATION Selective Deuteration of Phosphorus Ligands using Ruthenium Nanoparticles. A Procedure for Obtaining

5101520253035404550556065707580859095100105110115120125130135140145150f1 (ppm)

21.6

7

77.0

477

.36

77.6

8

129.

4412

9.51

129.

5512

9.62

133.

2813

3.52

133.

7213

3.86

133.

9613

4.22

134.

3213

8.84

Figure 8. 13C-NMR of hexadeuterated tri-p-tolylphosphine (7).

129.0129.5130.0130.5131.0131.5132.0132.5133.0133.5134.0134.5135.0135.5136.0136.5137.0137.5138.0138.5139.0139.5f1 (ppm)

129.

4412

9.51

129.

5512

9.62

133.

2813

3.52

133.

7213

3.86

133.

9613

4.22

134.

32

138.

84

Figure 9. 13C-NMR of hexadeuterated tri-p-tolylphosphine (7), aromatic zone.

7

C2

C4C3

C1

Page 8: SUPLEMENTARY INFORMATION Obtaining Information about ... · SUPLEMENTARY INFORMATION Selective Deuteration of Phosphorus Ligands using Ruthenium Nanoparticles. A Procedure for Obtaining

-40-30-20-100102030405060708090100110120130140150160170180190f1 (ppm)

-8.7

7-8

.65

Figure 10. 31P-NMR of hexadeuterated tri-p-tolylphosphine (7).

1.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0f1 (ppm)

7.45

Figure 11. 2H-NMR of hexadeuterated tri-p-tolylphosphine (7).

8

-9.30-9.25-9.20-9.15-9.10-9.05-9.00-8.95-8.90-8.85-8.80-8.75-8.70-8.65-8.60-8.55-8.50-8.45-8.40f1 (ppm)

-8.7

7

-8.6

5

Page 9: SUPLEMENTARY INFORMATION Obtaining Information about ... · SUPLEMENTARY INFORMATION Selective Deuteration of Phosphorus Ligands using Ruthenium Nanoparticles. A Procedure for Obtaining

Figure 12. Mas spectrum (electronic impact) of P(C7H6D2)3 (7).

Synthesis of hexadeuterated tris(4-methoxyphenyl)phosphine P(C7H5OD2)3 (8).Following the general procedure tris(4-methoxyphenyl)phosphine was heated for 88h at 80ºC for providing the hexadeuterated phosphine (8).

P 1 23

4

2 bar D2, 80ºC

88 h, PVP@Ru NPsP

DD

D

D

D

D

O O

O

O O

O

1H NMR (400 MHz, CDCl3, δ in ppm): 6.79 (bs), 3.71 (s, CH3). 13C NMR (100.6MHz, CDCl3, δ in ppm): 160.4 (s, C4), 134.9 (dt, C2, J= 21.0, 26.0 Hz), 129.0 (d, C1, J= 9.0 Hz), 114.3 (d, C3, J= 8.0 Hz), 55.5 (s, CH3). 31P NMR (162MHz, CDCl3, δ in ppm): -11.1. 2H NMR (400 MHz, CDCl3, δ in ppm): 7.42 (bs).

9

Page 10: SUPLEMENTARY INFORMATION Obtaining Information about ... · SUPLEMENTARY INFORMATION Selective Deuteration of Phosphorus Ligands using Ruthenium Nanoparticles. A Procedure for Obtaining

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0f1 (ppm)

1.00

0.45

3.71

6.79

6.79

Figure 13. 1H-NMR of hexadeuterated tris(4-methoxyphenyl)phosphine (8).

404550556065707580859095100105110115120125130135140145150155160165f1 (ppm)

55.4

8

77.0

477

.36

77.6

8

114.

2611

4.33

129.

0012

9.08

134.

5713

4.81

135.

0113

5.25

160.

35

Figure 14. 13C-NMR of hexadeuterated tris(4-methoxyphenyl)phosphine (8).

10

Page 11: SUPLEMENTARY INFORMATION Obtaining Information about ... · SUPLEMENTARY INFORMATION Selective Deuteration of Phosphorus Ligands using Ruthenium Nanoparticles. A Procedure for Obtaining

112114116118120122124126128130132134136138140142144146148150152154156158160162164f1 (ppm)

114.

2611

4.33

129.

0012

9.08

134.

5713

4.81

135.

0113

5.25

160.

35

Figure 15. 13C-NMR of hexadeuterated tris(4-methoxyphenyl)phosphine (8).

-40-30-20-100102030405060708090100110120130140150160170180190f1 (ppm)

-11.

06-1

0.95

Figure 16. 31P-NMR of hexadeuterated tris(4-methoxyphenyl)phosphine (8).

11

-11.28-11.22-11.16-11.10-11.04-10.98-10.92-10.86-10.80-10.74-10.68f1 (ppm)

-11.

06

-10.

95

C2C1

C4

C3

Page 12: SUPLEMENTARY INFORMATION Obtaining Information about ... · SUPLEMENTARY INFORMATION Selective Deuteration of Phosphorus Ligands using Ruthenium Nanoparticles. A Procedure for Obtaining

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.5f1 (ppm)

7.42

Figure 17. 2H-NMR of hexadeuterated tris(4-methoxyphenyl)phosphine (8).

Figure 18. Mas spectrum (electronic impact) of P(C7H5OD2)3 (8).

12

Page 13: SUPLEMENTARY INFORMATION Obtaining Information about ... · SUPLEMENTARY INFORMATION Selective Deuteration of Phosphorus Ligands using Ruthenium Nanoparticles. A Procedure for Obtaining

Synthesis of deuterated tris(4-(fluorophenyl)phosphine P(C6H2FD2)3 (9).Following the general procedure tris(4-fluorophenyl)phosphine was heated for 88h at 80ºC for providing the deuterated phosphine 9 as major isomer. Labelling 72% .

P 1 23

4

2 bar D2, 80ºC

88 h, PVP@Ru NPsP

DD

D

D

D

D

F F

F

F F

F

1H NMR (400 MHz, CDCl3, δ in ppm):7.72-7.57 (m), 7.27-7.22 (m), 7.21-7.15 (m), 7.08-7.03 (m). 13C NMR (100.6MHz, CDCl3, δ in ppm): 165.0, 162.5, 134.7-135.8 (m), 132.5-132.6 (dd, J= 11.0, 4.0 Hz), 116.6-116.0 (m). 31P NMR (162MHz, CDCl3, δ in ppm): - 9.92. 19F NMR (376 MHz,CDCl3, δ in ppm): 2H NMR (400 MHz, CDCl3, δ in ppm): 7.46 (td, 7.2, 3.8 Hz).

7.007.057.107.157.207.257.307.357.407.457.507.557.607.657.707.75f1 (ppm)

1.00

0.09

0.15

0.03

0.10

Figure 19. 1H-NMR of partially deuterated tris(4-fluoromethylphenyl)phosphine.

13

Page 14: SUPLEMENTARY INFORMATION Obtaining Information about ... · SUPLEMENTARY INFORMATION Selective Deuteration of Phosphorus Ligands using Ruthenium Nanoparticles. A Procedure for Obtaining

112114116118120122124126128130132134136138140142144146148150152154156158160162164166168f1 (ppm)

116.

0011

6.08

116.

1111

6.19

116.

2111

6.29

116.

3211

6.40

116.

4411

6.52

116.

65

132.

4913

2.53

132.

6013

2.64

134.

7213

4.81

134.

8313

4.92

135.

0613

5.15

135.

3113

5.39

135.

5213

5.62

135.

7113

5.84

135.

92

162.

53

165.

02

Figure 20. 13C-NMR of partially deuterated tris(4-fluorophenyl)phosphine.

115116117118119120121122123124125126127128129130131132133134135136f1 (ppm)

116.

0011

6.08

116.

1111

6.19

116.

2111

6.29

116.

3211

6.40

116.

4411

6.52

116.

65

132.

4913

2.53

132.

6013

2.64

134.

7213

4.81

134.

8313

4.92

135.

3113

5.39

135.

5213

5.62

135.

7113

5.84

Figure 21. 13C-NMR of partially deuterated tris(4-fluorophenyl)phosphine, enlargement.

14

Page 15: SUPLEMENTARY INFORMATION Obtaining Information about ... · SUPLEMENTARY INFORMATION Selective Deuteration of Phosphorus Ligands using Ruthenium Nanoparticles. A Procedure for Obtaining

-40-30-20-100102030405060708090100110120130140150160170180190f1 (ppm)

1.00

0.04

-9.9

4-9

.92

-9.8

3-9

.80

26.8

826

.90

Figure 22. 31P-NMR of partially deuterated tris(4-fluorophenyl)phosphine.*The signal at 26.90 ppm corresponds to the 4% of oxide.

-112.35-112.30-112.25-112.20-112.15-112.10-112.05-112.00-111.95-111.90-111.85-111.80-111.75-111.70-111.65-111.60f1 (ppm)

-111

.99

-111

.98

-111

.97

-111

.96

-111

.95

-111

.93

Figure 23. 19F-NMR of partially deuterated tris(4-fluorophenyl)phosphine.

15

-11.5-11.3-11.1-10.9-10.7-10.5-10.3-10.1-9.9-9.7-9.5-9.3-9.1-8.9-8.7-8.5-8.3f1 (ppm)

1.00

-9.9

4-9

.92

-9.8

3-9

.80

*

Page 16: SUPLEMENTARY INFORMATION Obtaining Information about ... · SUPLEMENTARY INFORMATION Selective Deuteration of Phosphorus Ligands using Ruthenium Nanoparticles. A Procedure for Obtaining

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.5f1 (ppm)

7.46

Figure 24. 2H-NMR of partially deuterated tris(4-fluorophenyl)phosphine.

Figure 25. Mas spectrum of P(C6H2FD2)3 (9).

16

Page 17: SUPLEMENTARY INFORMATION Obtaining Information about ... · SUPLEMENTARY INFORMATION Selective Deuteration of Phosphorus Ligands using Ruthenium Nanoparticles. A Procedure for Obtaining

Synthesis of hexadeuterated tris(4-(trifluoromethyl)phenyl)phosphine P(C7H2F3D2)3 (10).Following the general procedure tris(4-(trifluoromethyl)phenyl)phosphine was heated for 88h at 80ºC for providing the hexadeuterated phosphine (10).

P 1 23

4

2 bar D2, 80ºC

88 h, PVP@Ru NPsP

DD

D

D

D

D

F

FF

F

FF

FFF

F

FF

FFF

F

FF

1H NMR (400 MHz, CDCl3, δ in ppm): 7.56 (bs). 13C NMR (100.6MHz, CDCl3, δ in ppm): 140.3 (d, C1, J= 14 Hz), 133.9 (td, C2, J= 19, 25 Hz), 131.7 (q, C4, J= 31, 63 Hz), 125.9 (m, C3), 124.2 (q, CF3, J= 269,0 Hz). 31P NMR (162MHz, CDCl3, δ in ppm): - 6.93. 19F NMR (376 MHz,CDCl3, δ in ppm): -62.98. 2H NMR (400 MHz, CDCl3, δ in ppm): 7.61.

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f1 (ppm)

1.00

7.56

Figure 26. 1H-NMR of hexadeuterated tris(4-(trifluoromethyl)phenyl)phosphine (10).

17

Page 18: SUPLEMENTARY INFORMATION Obtaining Information about ... · SUPLEMENTARY INFORMATION Selective Deuteration of Phosphorus Ligands using Ruthenium Nanoparticles. A Procedure for Obtaining

119120121122123124125126127128129130131132133134135136137138139140141f1 (ppm)

120.

11

122.

81

125.

5212

5.78

125.

8212

5.86

125.

8912

5.93

125.

96

128.

22

131.

3813

1.71

132.

0313

2.36

133.

6313

3.83

133.

8713

4.07

134.

1213

4.32

140.

3214

0.46

Figure 27. 13C-NMR of hexadeuterated tris(4-(trifluoromethyl)phenyl)phosphine (10).

-40-30-20-100102030405060708090100110120130140150160170180190f1 (ppm)

-6.9

3

Figure 28. 31P-NMR of hexadeuterated tris(4-(trifluoromethyl)phenyl)phosphine (10).

18

-7.30-7.25-7.20-7.15-7.10-7.05-7.00-6.95-6.90-6.85-6.80-6.75-6.70-6.65-6.60-6.55f1 (ppm)

1.00

0.07

-6.9

3

-6.8

1

C1 C2 C4

C3

CF3

Page 19: SUPLEMENTARY INFORMATION Obtaining Information about ... · SUPLEMENTARY INFORMATION Selective Deuteration of Phosphorus Ligands using Ruthenium Nanoparticles. A Procedure for Obtaining

-200-190-180-170-160-150-140-130-120-110-100-90-80-70-60-50-40-30-20-100102030f1 (ppm)

-62.

97

Figure 29. 19F-NMR of hexadeuterated tris(4-(trifluoromethyl)phenyl)phosphine (10).

1.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.5f1 (ppm)

7.61

Figure 30. 2H-NMR of hexadeuterated tris(4-(trifluoromethyl)phenyl)phosphine (11)

19

Page 20: SUPLEMENTARY INFORMATION Obtaining Information about ... · SUPLEMENTARY INFORMATION Selective Deuteration of Phosphorus Ligands using Ruthenium Nanoparticles. A Procedure for Obtaining

Figure 31. Mas spectrum of P(C7H2F3D2)3 (10)

Synthesis of tetradeuterated methyldiphenylphosphine PC13H9D4 (12).Following the general procedure methyldiphenylphosphine was heated for 88h at 80ºC for providing the hexadeuterated phosphine (12).

1 23

42 bar D2, 80ºC

88 h, PVP@Ru NPs PD

DD

DP

1H NMR (400 MHz, CDCl3, δ in ppm): 7.28-7.76 (bs), 1.62 (d, CH3, J=3.0 Hz). 13C NMR (100.6MHz, CDCl3, δ in ppm): 140.2 (d, C1, J= 13.0 Hz), 133.9 (td, C2, J= 20.0, 25.0 Hz), 128.7 (s, C4), 128.6 (d, C3, J= 8.0 Hz), 12.8 (d, CH3, J= 14.0 Hz). 31P NMR (162MHz, CDCl3, δ in ppm): -27.41. 2H NMR (400 MHz, CDCl3, δ in ppm): 7.52.

20

Page 21: SUPLEMENTARY INFORMATION Obtaining Information about ... · SUPLEMENTARY INFORMATION Selective Deuteration of Phosphorus Ligands using Ruthenium Nanoparticles. A Procedure for Obtaining

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5

f1 (ppm)

1.00

0.78

0.27

0.05

1.61

1.62

2.01

2.04

7.26

7.26

7.28

7.31

7.31

7.32

7.32

7.35

7.46

7.48

7.48

7.51

7.51

7.53

Figure 32. 1H-NMR of tetradeuterated methyldiphenylphosphine (12) *Signal corresponding to methyldiphenylphsphine oxide.

102030405060708090100110120130140150160170f1 (ppm)

12.8

112

.95

77.0

477

.36

77.6

8

128.

5712

8.63

128.

7012

8.81

128.

9312

9.04

130.

8013

0.90

131.

7813

2.08

132.

2013

2.44

140.

2114

0.32

Figure 33. 13C-NMR of tetradeuterated methyldiphenylphosphine (12).

21

*

Page 22: SUPLEMENTARY INFORMATION Obtaining Information about ... · SUPLEMENTARY INFORMATION Selective Deuteration of Phosphorus Ligands using Ruthenium Nanoparticles. A Procedure for Obtaining

128.5129.5130.5131.5132.5133.5134.5135.5136.5137.5138.5139.5140.5f1 (ppm)

128.

5712

8.63

128.

7012

8.81

128.

9312

9.04

130.

8013

0.90

131.

7813

1.96

132.

0213

2.08

132.

2013

2.26

132.

44

140.

2114

0.32

Figure 34. 13C-NMR of tetradeuterated methyldiphenylphosphine (12).

-35-30-25-20-15-10-50510152025303540f1 (ppm)

1.00

0.15

-27.

41

29.9

3

Figure 35. 31P-NMR of h tetradeuterated methyldiphenylphosphine (12).

22

*

*

Page 23: SUPLEMENTARY INFORMATION Obtaining Information about ... · SUPLEMENTARY INFORMATION Selective Deuteration of Phosphorus Ligands using Ruthenium Nanoparticles. A Procedure for Obtaining

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0f1 (ppm)

7.52

Figure 36. 2H-NMR of tetradeuterated methyldiphenylphosphine (12).

Figure 37. Mas spectrum of tetradeuterated methyldiphenylphosphine (12) PC13H9D4.

23

Page 24: SUPLEMENTARY INFORMATION Obtaining Information about ... · SUPLEMENTARY INFORMATION Selective Deuteration of Phosphorus Ligands using Ruthenium Nanoparticles. A Procedure for Obtaining

Synthesi of octadeuterated 1,4-bis(diphenylphosphino)butane P2C28H20D8 (14).Following the general procedure 1,4-bis(diphenylphosphino)butane was heated for 48h at 80ºC for providing the octadeuterated phosphine (14).

P1

23

4

2 bar D2, 80ºC

48 h, PVP@Ru NPs

PP

P

D D

DD

D

D

D

D

H NMR (400 MHz, CDCl3, δ in ppm): 7.22 (s), 1.93 (m, CH2),1.46 (m, CH2). 13C NMR (100.6MHz, CDCl3, δ in ppm): 138.8 (d, C1, J= 15.0 Hz), 132.7 (td, C2, J= 18.0, 25.0 Hz), 128.8 (s, C4), 128.6 (d, C3, J= 6.0 Hz), 28.0 (m, CH2). 31P NMR (162MHz, CDCl3, δ in ppm): -16.74. 2H NMR (400 MHz, CDCl3, δ in ppm): 7.60.

-1.5-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.5f1 (ppm)

0.86

1.00

1.90

1.45

1.46

1.47

1.91

1.93

1.95

7.22

Figure 38. 1H-NMR octadeuterated 1,4-bis(diphenylphosphino)butane (14).

24

Page 25: SUPLEMENTARY INFORMATION Obtaining Information about ... · SUPLEMENTARY INFORMATION Selective Deuteration of Phosphorus Ligands using Ruthenium Nanoparticles. A Procedure for Obtaining

102030405060708090100110120130140150f1 (ppm)

27.7

527

.89

27.9

928

.04

28.1

0

77.0

477

.36

77.6

8

128.

5312

8.60

128.

7813

2.33

132.

5113

2.57

132.

7513

2.81

132.

9013

2.99

133.

0913

8.79

138.

92

Figure 39. 13C-NMR octadeuterated 1,4-bis(diphenylphosphino)butane (14).

126127128129130131132133134135136137138139140141f1 (ppm)

128.

5312

8.60

128.

78

132.

3313

2.51

132.

5713

2.75

132.

8113

2.90

132.

9913

3.09

138.

7913

8.92

Figure 40. 13C-NMR octadeuterated 1,4-bis(diphenylphosphino)butane (14) (aromatic zone).

25

C2

C1

C4

C3

Page 26: SUPLEMENTARY INFORMATION Obtaining Information about ... · SUPLEMENTARY INFORMATION Selective Deuteration of Phosphorus Ligands using Ruthenium Nanoparticles. A Procedure for Obtaining

-40-30-20-100102030405060708090100110120130140150160170180190f1 (ppm)

-16.

74

Figure 41. 31P-NMR of octadeuterated 1,4-bis(diphenylphosphino)butane (14).

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0f1 (ppm)

7.60

Figure 42. 2H-NMR of octadeuterated 1,4-bis(diphenylphosphino)butane (14).

26

Page 27: SUPLEMENTARY INFORMATION Obtaining Information about ... · SUPLEMENTARY INFORMATION Selective Deuteration of Phosphorus Ligands using Ruthenium Nanoparticles. A Procedure for Obtaining

Deuteration of triphenylphosphine oxide at 55ºC for 36 h. Synthesis of 17-18.

Following the general procedure triphenylphosphine oxide was heated at 55ºC for 36h providing a mixture of reduced products 17-18.

2 bar D2, 55ºC

P

O

Dn

DnP

O

Dn

Dn

Dn

15 17 18

Ru/PVP NPsP

O

+

Dicyclohexyl(phenyl)phosphine oxide (17) [4], 31P NMR (162MHz, CDCl3, δ in ppm): 45.95.Tricyclohexylphosphine oxide (18) [5], 31P NMR (162MHz, CDCl3, δ in ppm): 51.40.

44.545.045.546.046.547.047.548.048.549.049.550.050.551.051.552.052.553.053.5f1 (ppm)

45.9

345

.94

45.9

545

.96

46.0

1

51.3

451

.36

51.3

751

.38

51.4

051

.42

51.4

351

.45

51.4

6

Figure 43. 31P-NMR of the mixture of compounds 17 and 18 obtained by deuteration at 55°C for 36 hours.

27

P

O

Dn

Dn

P

O

Dn

Dn

Dn

Page 28: SUPLEMENTARY INFORMATION Obtaining Information about ... · SUPLEMENTARY INFORMATION Selective Deuteration of Phosphorus Ligands using Ruthenium Nanoparticles. A Procedure for Obtaining

0.20.61.01.41.82.22.63.03.43.84.24.65.05.45.86.26.6f1 (ppm)

1.19

1.82

Figure 44. 2H-NMR of the mixture of compounds 17 and 18.

Deuteration of triphenylphosphine oxide at 55ºC for 16 h. Synthesis of 16-17.Following the general procedure triphenylphosphine oxide was heated for 16h at 55ºC providing a mixture of products (15, 16).

2 bar D2, 55ºC

+P

O

Dn

Dn

15 17

P

O

Dn

16

Ru/PVP NPsP

O

Cyclohexyldiphenylphosphine oxide (16) [3], 31P NMR (162MHz, CDCl3, δ in ppm): 34.41.Dicyclohexyl(phenyl)phosphine oxide [4], 31P NMR (162MHz, CDCl3, δ in ppm): 45.18.

28

Page 29: SUPLEMENTARY INFORMATION Obtaining Information about ... · SUPLEMENTARY INFORMATION Selective Deuteration of Phosphorus Ligands using Ruthenium Nanoparticles. A Procedure for Obtaining

2829303132333435363738394041424344454647f1 (ppm)

29.1

6

34.4

1

45.1

8

Figure 45. 31P-NMR of the mixture of compounds 16 and 17 obtained by deuteration at 55°C for 36 hours.

-3.0-2.5-2.0-1.5-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0f1 (ppm)

1.19

1.66

1.97

7.50

Figure 46. 2H-NMR of the mixture of compounds 16 and 17 obtained by deuteration at 55°C for 36 hours.

29

P

O

Dn

P

O

Dn

Dn

Page 30: SUPLEMENTARY INFORMATION Obtaining Information about ... · SUPLEMENTARY INFORMATION Selective Deuteration of Phosphorus Ligands using Ruthenium Nanoparticles. A Procedure for Obtaining

S5. References[1] F. Novio, K. Philippot, B. ChaudretCat. Lett. 2010, 140, 1–7.[2] G. Pieters, C. Taglang, E. Bonnefille, T. Gutmann, C. Puente, J. Berthet, C. Dugave, B. Chaudret, B.; B. Rousseau, Angew. Chem. Int. Ed. 2014, 53, 230–234.[3] M. Stankevic, A. W1odarczyk, Tetrahedron 2013, 69, 73–81.[4] Z-S. Che, Z-Z. Zhou, H-L.Hua, X-H. Duan, J-Y. Luo, J. Wang, P-X. Zhou, Y-M. Liang, Tetrahedron 2013, 69, 1065–1068.[5] P. N. Bungua, S. Otto, Dalton Trans., 2011, 40, 9238–9249.

30