super dense core plasmas in lhd - princeton plasma physics ... · super dense core plasmas in lhd...

16
Super Dense Core plasmas in LHD J. H. Harris, R. Sanchez, D. J. Spong Oak Ridge National Laboratory, USA N. Ohyabu, K. Watanabe, H. Yamada & LHD team National Institute of Fusion Science, Japan J-A Jimenez CIEMAT, Spain

Upload: others

Post on 22-Apr-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Super Dense Core plasmas in LHD - Princeton Plasma Physics ... · Super Dense Core plasmas in LHD J. H. Harris, R. Sanchez, D. J. Spong Oak Ridge National Laboratory, USA N. Ohyabu,

Super Dense Core plasmas in LHD

J. H. Harris, R. Sanchez, D. J. Spong Oak Ridge National Laboratory, USA

N. Ohyabu, K. Watanabe, H. Yamada & LHD team National Institute of Fusion Science, Japan

J-A Jimenez CIEMAT, Spain

Page 2: Super Dense Core plasmas in LHD - Princeton Plasma Physics ... · Super Dense Core plasmas in LHD J. H. Harris, R. Sanchez, D. J. Spong Oak Ridge National Laboratory, USA N. Ohyabu,

2

LHD Super Dense Core plasmas test bothinstability and confinement barrier physics

RPellet

Z

coremantle

• Island or helical divertor lowers recycling• Internal diffusion barrier @ ρ ~ 0.4-0.7

– Very steep ∇n– Radial width varies with configuration, β– Macroscopically stable, quiescent

• Likely physics mechanisms (?)– ∇p drives sheared flow ⇒ confinement– MHD stability helps maintain steep ∇p

• High n, low T reactor ?

N. Ohyabu et al, PRL 97, 055002 (2006) B = 2.6 T

Page 3: Super Dense Core plasmas in LHD - Princeton Plasma Physics ... · Super Dense Core plasmas in LHD J. H. Harris, R. Sanchez, D. J. Spong Oak Ridge National Laboratory, USA N. Ohyabu,

Pellet fueling ⇒ peaked n(r), p(r)

Page 4: Super Dense Core plasmas in LHD - Princeton Plasma Physics ... · Super Dense Core plasmas in LHD J. H. Harris, R. Sanchez, D. J. Spong Oak Ridge National Laboratory, USA N. Ohyabu,

4

Core density collapse (CDC) events

• Density, β can collapse at large Shafranov shift (~50%)

• Increasing elongation (and ι(0)) reduce shift,mitigate/avoid CDC. Dynamic configuration controlplanned for 2009.

• Equilibrium limit? Reconnection? Flux surface quality?

Yamada et al, PPCF, 49 (2007) B487

Page 5: Super Dense Core plasmas in LHD - Princeton Plasma Physics ... · Super Dense Core plasmas in LHD J. H. Harris, R. Sanchez, D. J. Spong Oak Ridge National Laboratory, USA N. Ohyabu,

LHD SDC: steep ∇n ⇒ flow shear (DKES, Spong)

Reduces turbulent xport?Need to confirm in exp’t0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1io

n/e

lect

ron

tem

per

atu

re (

keV

)

<r>/<a>

6

5

4

3

2

1

0

5 1014

0 0.2 0.4 0.6 0.8 1

Den

sity

6

5

4

3

2

1

<r>/<a>

!pqn =Er + vpBT +vTBp

"

#$

%

&'

Radial force balance

-80

-60

-40

-20

0

20

0 0.2 0.4 0.6 0.8 1

Er(V/cm)

<r>/<a>

6

5

4

3

2

1

0

1000

2000

3000

4000

5000

6000

7000

8000

0 0.2 0.4 0.6 0.8 1

<r>/<a>

6

5

4

3

2

1

<a>

<V

•!"

> (

m/s

ec)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 0.2 0.4 0.6 0.8 1

<r>/<a>

6

5

4

3

2

1

<R><V•!

" >

(m/sec)

viscosity ⇒ magnitudes

IDB“transition” ?

Page 6: Super Dense Core plasmas in LHD - Princeton Plasma Physics ... · Super Dense Core plasmas in LHD J. H. Harris, R. Sanchez, D. J. Spong Oak Ridge National Laboratory, USA N. Ohyabu,

6

MHD equilibrium & stability in stellaratorsQPS, Ware et al 2004

3%1% 5%

flux S

β

Strong self-stabilization of interchanges (theory + exp’t)Shafranov shift ➙ magnetic well ➙Experimentally tested thru β = 4.3%

➙ ATF, CHS, W7AS, LHDExp’t tolerant: can even start from magnetic hill

Stable to kinkzero-to-modest current,avoids major resonances

Second stability for ballooning modes ?Theory: ballooning appear @ β ~ 2%, but . . . ➙ predicted limiting inst. not seen in stell. exp’ts

3-D truncation of ballooning spectrum or FLR?Local chg to ∇p ⇒ non-linear stabilization? Small set of unstable field lines?

Chance to isolate ballooning ➙ definitive exp’tIf ballooning benign ➙ more freedom for optimizationImportant research on LHD, Heliotron-J,TJ-II, NCSX, W7X . . . NB that ballooning mode is 3-D even in tokamaks (TFTR, Fredrickson et al)

Page 7: Super Dense Core plasmas in LHD - Princeton Plasma Physics ... · Super Dense Core plasmas in LHD J. H. Harris, R. Sanchez, D. J. Spong Oak Ridge National Laboratory, USA N. Ohyabu,

7

LHD: configuration scan affects ballooning

COBRA code (R. Sanchez)Ballooning onlyVery fast (seconds) p ∝(1-ρ2) (imposed)Mostly stable at lower βAt higher β, unstable regions depend on configuration

These β already achieved (LHD).Macroscopically stable. Local profile effects, fluctuations under study (database)

Is ballooning important?

2%

4%

stable

unstable

Page 8: Super Dense Core plasmas in LHD - Princeton Plasma Physics ... · Super Dense Core plasmas in LHD J. H. Harris, R. Sanchez, D. J. Spong Oak Ridge National Laboratory, USA N. Ohyabu,

8

LHD SDC equilibria: reversed shear

• Zero shear radius moves out withincreasing β

• Tokamak shear inside zero shearradius, stellarator shear outside

• Magnetic well ⇒ hill just outsidezero shear radius

• Zero shear radius moves inward inρ as configuration Raxis is decreasedwith external coils

• Note drop in ι : breeding ground fortopology changes--reconnection,etc. Contributes to collapse events?

VMEC

〈β〉 = 0.5%

〈β〉 = 6.6%

〈β〉 = 0.5%

〈β〉 = 6.6%-V′

ι

ρ

Page 9: Super Dense Core plasmas in LHD - Princeton Plasma Physics ... · Super Dense Core plasmas in LHD J. H. Harris, R. Sanchez, D. J. Spong Oak Ridge National Laboratory, USA N. Ohyabu,

9

Ballooning stability in core & mantle differ

• Core plasma (ι′ < 0) becomes more stable as β increases ⇒ (2nd stability)• Ballooning instability in mantle (ι′ > 0) increases with β: regulates ∇p?• Present exp’ts still ideally stable (β ≤ 1.5%); resistive modes can be active• Core region smaller for shifted-in configuration• Does stability physics improve core and limit edge confinement?• Could be hunting ground for ballooning modes, but difficult to find

because of finite spatial coherence

stable

unstable

COBRA

R = 365R = 375

Page 10: Super Dense Core plasmas in LHD - Princeton Plasma Physics ... · Super Dense Core plasmas in LHD J. H. Harris, R. Sanchez, D. J. Spong Oak Ridge National Laboratory, USA N. Ohyabu,

10

Location of critical surfaces as ƒ (configuration, β)

• Zero shear and inner edge of ballooning region stay inside magnetic well• Inward shift of Rax (3.75⇒3.65) shifts critical radii inward in ρ

well ⇒ hill

zero shear

ballooning

Page 11: Super Dense Core plasmas in LHD - Princeton Plasma Physics ... · Super Dense Core plasmas in LHD J. H. Harris, R. Sanchez, D. J. Spong Oak Ridge National Laboratory, USA N. Ohyabu,

11

Ballooning mode localized to 1-2 field periods

• Chance to identify ballooning mode in stellarator configuration• Should be short coherence length, high n (5-10) fluctuations, low field side• LHD Mirnov coils underneath helical windings, in good curvature; internal

imaging diagnostic probably necessary.• Some magnetic fluctuations like this seen in ATF with broad p(r)

field period

Page 12: Super Dense Core plasmas in LHD - Princeton Plasma Physics ... · Super Dense Core plasmas in LHD J. H. Harris, R. Sanchez, D. J. Spong Oak Ridge National Laboratory, USA N. Ohyabu,

12

Configuration variation changes character of B��

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

0 0.2 0.4 0.6 0.8 1

Fmid = -0.25 ⇒ narrow p(r) ⇒ B: n = 1, 2globally coherent

ρ

⇐ ∇β⇐ β

È

0.2

0.4

0.6

0.8

1.0

ι ⇒

53

23

1

21

2

n = 1

4

~

ι

��

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

0 0.2 0.4 0.6 0.8 1

Fmid = 0 ⇒ broad p(r) ⇒ B: n = 1-6coherence length ≈ 1 field period Δφ = 30˚

ρ

È

0.2

0.4

0.6

0.8

1.0

543

23

1

n = 2

⇐ ∇β⇐ β

ι ⇒

~

ι

~

ATF:quadrupolefield variesι(ρ)

global low n(coherent over torus)

localized high ncoherent only over1 field period ⇒ballooning?

Page 13: Super Dense Core plasmas in LHD - Princeton Plasma Physics ... · Super Dense Core plasmas in LHD J. H. Harris, R. Sanchez, D. J. Spong Oak Ridge National Laboratory, USA N. Ohyabu,

High-density heliotron reactor scenario

Pwall < 2 MW/m2 and β < 7%

• High collisionality ⇒ mitigates 1/ν losses• What is optimal magnetic configuration?• System design with relatively lower volume hot plasma?

Page 14: Super Dense Core plasmas in LHD - Princeton Plasma Physics ... · Super Dense Core plasmas in LHD J. H. Harris, R. Sanchez, D. J. Spong Oak Ridge National Laboratory, USA N. Ohyabu,

Looking for ballooning modes in TJ-II

Use configuration variation find lowest threshold in βUnique feature of flexible heliac: low shear, 1 < ι < 2.5 (TJ-II)Small (few kA) induced currents allow adj. of central ι′

Tailor heating & fueling to make most unstable p(r)Near term: ECH + NBI to > 1 MW (two beams) in 2007-8Longer term: pellets, EBW

Fluctuation diagnosticsData mining of mag. fluct. trialed on H-1 heliac (Australia)

stable

unstabletransform

Page 15: Super Dense Core plasmas in LHD - Princeton Plasma Physics ... · Super Dense Core plasmas in LHD J. H. Harris, R. Sanchez, D. J. Spong Oak Ridge National Laboratory, USA N. Ohyabu,

LHD super dense core plasmas⇒ performance, physics

• Pellet injection + low recycling⇒ very high central densities (> 1020m-3) at moderate B⇒ improved core confinement

• Magnetic configuration affects onset and performance⇒ possibility for dynamic control

• Tests of important 3-D confinement physics:⇒ high β effects on topology⇒ ballooning instability⇒ confinement enhancement mechanisms

• Possible high-density reactor scenario⇒ reduce energy wall particle flux and alpha effects

• IMHO, a lovely experiment

Page 16: Super Dense Core plasmas in LHD - Princeton Plasma Physics ... · Super Dense Core plasmas in LHD J. H. Harris, R. Sanchez, D. J. Spong Oak Ridge National Laboratory, USA N. Ohyabu,

Future developments

• Dynamic control of vertical field ~ 2009 (VF power supply)⇒ control of Shafranov shift

• Full helical divertor with cooling (major upgrade)⇒ detailed design 2008⇒ available 2012 ?

• Increase NBI from from ~14 MW to ~32 MW⇒ comparable tangential and perpendicular power⇒ available 2012?

• Investigations of⇒ configuration control at finite beta⇒ sustainment of high density plasmas⇒ effects of pressure anisotropy on equil. & stability