submodularization for binary pairwise energies

33
Submodularization for Binary Pairwise Energies Lena Gorelick joint work with O. Veksler I. Ben Ayed A. Delong Y. Boykov

Upload: nat

Post on 16-Feb-2016

51 views

Category:

Documents


0 download

DESCRIPTION

Lena Gorelick joint work with. Submodularization for Binary Pairwise Energies. I. Ben Ayed. O. Veksler. Y. Boykov. A. Delong. Example of Simple Binary Energy. Potts Model. Binary Pairwise Energy Quadratic Form. Potts Model. Submodular Energy - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Submodularization for Binary  Pairwise  Energies

Submodularization for Binary Pairwise Energies

Lena Gorelick

joint work with

O. Veksler

I. Ben Ayed

A. Delong

Y. Boykov

Page 2: Submodularization for Binary  Pairwise  Energies

2

Νqp

xxp

pp qpxfE

,][1(x)

Example of Simple Binary Energy

Potts Modelf 1,0x

Page 3: Submodularization for Binary  Pairwise  Energies

3

Binary Pairwise EnergyQuadratic Form

Submodular Energy global optimum with graphcut (Boros &

Hammer, 2002)

qp

qppqp

pp xxvxuE,

(x) 1,0x

pqpq vv 0

Potts Model

Page 4: Submodularization for Binary  Pairwise  Energies

4

0, pqvpq

Non-Submodular Energy NP-hard

Binary Pairwise Energy Quadratic Form

const.)(,

qp

qppqp

pp xxvxuE x

Middlebury

Image credit: Carlos Hernandes

Page 5: Submodularization for Binary  Pairwise  Energies

5

Standard Optimization Methods

General energy - NP-hardApproximate methods:

Global Linearization: QPBO, TRWS, SRMP (Kolmogorov et al. 2006, 2014)

Local Linearization: parallel ICM, IPFP (Leordeanu, 2009)

Message Passing: BP (Pearl 1989)

Page 6: Submodularization for Binary  Pairwise  Energies

6

Related WorkGlobal Linearization

)(xE QPBO, TRWS, SRMP (Kolmogorov et al. 2006,

2014)

)(~min..

yyE

Cts

Linearize introducing large number ofvariables and constraintsSolve relaxed LPor its dual

Integrality Gap

*relaxedyRounding

*integer x

Page 7: Submodularization for Binary  Pairwise  Energies

Related WorkIterative Local Linearization

7

parallel ICM (Leordeanu, 2009) large steps weak min

IPFP (Leordeanu, 2009) controls step size by relaxation Integrality Gap

)(xE

x

txEt(x)~

1tx

N}1,0{Bounded domain of discrete configurations

Page 8: Submodularization for Binary  Pairwise  Energies

8

Local Submodular Approximation LSA

Local Submodular Approximation model

Non-linear

Two ways to control step size

Et(x)~

)(xE

x

tx1tx

N}1,0{Bounded domain of discrete configurations

Page 9: Submodularization for Binary  Pairwise  Energies

9

Trust Region Local submodular approximation

Auxiliary Functions = Surrogate Functions = Upper Bounds = Majorize-Minimize Local submodular upper bound

Never leave the discrete domain

Iterative Optimization Framework

LSA-AUX

LSA-TR

Page 10: Submodularization for Binary  Pairwise  Energies

10

Iterative Optimization FrameworkTrust Region:

Discrete High Order Energies Relaxed Quadratic Binary Energies Levenberg Marquardt

Auxiliary Functions=Surrogate Functions =Upper Bounds = Majorize-Minimize Discrete High Order Energies

Gorelick et al. 2012,2013

Ben Ayed et al. 2013

Olsson et al. 2008

Narasimhan & Bilmes 2005

Rother et al. 2006

Hartley & Zisserman 2004

Page 11: Submodularization for Binary  Pairwise  Energies

11

Local Submodular ApproximationLSA

qp

qppqp

pp xxvxuE,

)(x

)()()( sup xxx EEE sub

+- x

tx)(xE

Page 12: Submodularization for Binary  Pairwise  Energies

12

Local Submodular ApproximationLSA

)()()( sup xxx EEE sub

x

tx)(xE

Page 13: Submodularization for Binary  Pairwise  Energies

13

Approximate around

Local Submodular ApproximationLSA

)()()( sup xxx EEE sub

)(xE tx

)(~ x(x) subt EE

Et(x)~

x

tx)(xE

Page 14: Submodularization for Binary  Pairwise  Energies

14

Submodular functionLSA

Approximate around

Local Submodular ApproximationLSA

)()()( sup xxx EEE sub

)(xE tx

)()(~ xx(x) approxt

subt EEE

Linear Approximation

Et(x)~

x

tx)(xE

Page 15: Submodularization for Binary  Pairwise  Energies

15

0,)(sup pqqppqpq

vxxvE x

Linear Approximation of the Supermodular Term

Page 16: Submodularization for Binary  Pairwise  Energies

16

qppq xxv

Linear Approximation of the Supermodular Term

Page 17: Submodularization for Binary  Pairwise  Energies

17

Linear Approximation of the Supermodular Term

0 xy

Page 18: Submodularization for Binary  Pairwise  Energies

18

0

1

x

y

1

Linear Approximation of the Supermodular Term

1,0

0,0

1,1

0,1

0 xy

Page 19: Submodularization for Binary  Pairwise  Energies

19

Linear Approximation of the Supermodular Term

0

1

1

x

y

1,0

0 xy

Page 20: Submodularization for Binary  Pairwise  Energies

20

1

constyx 0

0

1

Linear Approximation of the Supermodular Term

x

y

1,0

0,0

1,1

Linear (Unary)

approximation

Page 21: Submodularization for Binary  Pairwise  Energies

21

Linear Approximation of the Supermodular Term

0

1

1

constyvxu

x

y

Page 22: Submodularization for Binary  Pairwise  Energies

22

LSA-TR:Trust Region Overview

)(xE

x

tx

)()()( sup xxx EEE sub

Page 23: Submodularization for Binary  Pairwise  Energies

23

LSA-TR:Trust Region Overview

)(xE

x

tx

Et(x)~

Newton Step

)()(~ xx(x) approxt

subt EEE

1tx

Page 24: Submodularization for Binary  Pairwise  Energies

LSA-TRTrust Region Sub-Problem

24

)(xE

x

tx

Et(x)~

Trust Region

)()(~ xx(x) approxt

subt EEE

Trust Region Sub-Problem

td ||||s.t. txx

24

NP-hard!Constrained Submodular Optimization

Page 25: Submodularization for Binary  Pairwise  Energies

25

fixed in each iteration inversely related to trust region size adjusted based on quality of approximation

LSA-TR: Approximate TR sub-problem

||||)()(

tt

approxt

subt EEL

xxxx(x)

Unary TermsBoykov et al. 2006

Gorelick et al. 2013

t

Submodular

Page 26: Submodularization for Binary  Pairwise  Energies

26

Experiments & Results

Page 27: Submodularization for Binary  Pairwise  Energies

27

Experiments & Results:Deconvolution Binary De-convolution All pairwise terms supermodular

Original Img Convolved Convolved+Noise

?

Page 28: Submodularization for Binary  Pairwise  Energies

Experiments & Results:Deconvolution

28

Noise:N(0,0.05)

SRMP

QPBOI

TRWS FTR-L

LBP

LSA-TR (0.3 sec.)E=21.13

LSA-AUX (0.04 sec)E=34.70

TRWS:5000 iter.E=65.07

LBP5000 iter.E=40.15

QPBO(0.1 sec.)

QPBO-I (0.2 sec.)E=66.44

IPFP(0.4 sec.)E=32.90

SRMP:5000 iter.E=39.06

Page 29: Submodularization for Binary  Pairwise  Energies

Experiments & Results:Segmentation of Thin Structures

29

QPBO

QPBO-IE= -77.08

LBPE= -84.54

IPFPE= 163.25

Image

SRMP

Potts, v<0(submodula

r)

with edge repulsion, v>0(non-submodular)

TRWSE= -67.21

LSA-TRE= -175.05

LSA-AUXE= -120.03

SRMPE= -101.61

Repulsion = Reward different labels across high contrast edges

Page 30: Submodularization for Binary  Pairwise  Energies

30

Experiments & Results:Inpainting dtf-chinesechar database

LSA-TRInput ImgGround Truth

Kappes et al., 2013

Page 31: Submodularization for Binary  Pairwise  Energies

31

Experiments & Results:In-painting Chinese Characters

Page 32: Submodularization for Binary  Pairwise  Energies

32

Curvature Regularization Efficient Squared Curvature model –

(Nieuwenhuis et al. 2014, poster on Friday)Potts Model Elastica

90-degree curvature

Heber et al. 2012

El-Zehiry&Grady, 2010

Our curvature Using LSA-TR

Page 33: Submodularization for Binary  Pairwise  Energies

33

Summary Two novel discrete optimization methods

Simple, efficient, state-of-art results The code is available online -

http://vision.csd.uwo.ca/code/

Extensions: Find new applications▪ Convexity Shape Prior (in ECCV14)

Alternative optimization framework with LSA▪ Pseudo-Bounds (in ECCV14)

Please come by our poster