submerged)obstacles)and)linear)wave)propagaon)submerged)obstacles)and)linear)wave)propagaon)...

1
Submerged Obstacles and Linear Wave Propaga8on Megan Golbek 1 , Yan Sheng 2 , Ravi Shankar 3 , Tucker Hartland 3 Introduc8on Submerged obstacles are constructed to create waves for recrea8onal surfing, harbor protec8on, and as a line of defense from tsunami waves. Accurate numerical models can approximate how obstacles affect waves. This study was part of a larger project that included linear and nonlinear numerical methods to approximate the wave’s transmission coefficients aRer propaga8ng over obstacles. My team and I constructed the linear numerical method. ARer construc8ng our model, we checked our model’s validity by comparing our numerical solu8ons with experimental data (figure 1 & 2) and analy8cal solu8ons (figure 4) and the effec8veness of the one and two obstacle, shelf, and stairs scenarios. Methods Results Figure 1: Single obstacle configura8on Figure 2: Shelf configura8on Figure 3: Plot of numerical solu8on two obstacles Figure 4: Plot of numerical solu8on shelf configura8on Discussion Our numerical solu8ons were accurate when compared to our Analy8cal solu8ons for the shelf and one obstacle configura8on. accurately model the physical behavior of this system. overes8mates when nonlinear effects begin and this is caused by our model being linear and neglec8ng nonlinear effects. When a wave travels over an obstacle, a reflected wave is sent backwards. This explains why the wave looses energy as it travels over each barrier. We found that the two obstacle configura8on dampened the wave the greatest because of the amount of reflected waves (figure 3). We can predict that mul8ple obstacles could cause an isolated wave to dissolve into smaller waves. Future work The simple linear model was accurate un8l nonlinear effects of the solitary wave took effect For future work, analy8cal solu8on for the twoobstacle configura8on must be found. a new nonlinear model must be constructed. new model would be more accurate for larger rela8ve wave heights. numerical method for predic8ng how mul8ple barriers effect an isolated wave. mul8ple barriers can be tested in a wave flume. Cita8ons Bryant, E. (2008). Tsunami: the underrated hazard. Springer. Chang, H. K., & Liou, J. C. (2007). Long wave reflec8on from submerged trapezoidal breakwaters. Ocean Engineering, 34(1), 185191. Cho, Y. S., & Lee, C. (2000). Resonant reflec8on of waves over sinusoidally varying topographies. Journal of Coastal Research, 870876. Shankar, R., Sheng, Y., Golbek, M., Hartland, T., Gerrodege, P., Fomin, S., & Chugunov, V. (2015). Linear long wave propaga8on over discon8nuous submerged shallow water topography. Applied Mathema-cs and Computa-on, 252, 27–44. doi:10.1016/j.amc.2014.11.034 Acknowledgements The authors are supported in part by NSF award DMS0648764, and the Undergraduate Research Opportuni8es Center of California State University, Monterey Bay. Calculate values at ar8ficial boundaries • Backward Finite differencing scheme for leR region and Forward Finite Differencing scheme for right region. Sa8sfy given boundary condi8ons • First 8me with upwind scheme. • Second 8me with BeamWarming. Calculate intermediate values • LaxWendroff method with center differencing. - 10 - 5 5 10 x - 1.5 - 1.0 - 0.5 0.5 1.0 h h 1 h 0 x L x R x=0 l 1 h 0 l 0 d 0 h 2 2 0 1 x M Ini8al wave profiles for the one and two obstacle configura8on. *All approxima8ons were calculated using Mathema8ca 9. - 10 - 5 5 10 - 1.5 - 1.0 - 0.5 0.5 1.0 Riemann Difference Analytic Conclusion We developed simple and adaptable numerical method to approximate linear long waves traversing over submerged topography Our model is successful in modeling a variety of ocean floor topography accurately simulates varying water depths for waves with small amplitudes rela8ve to water depth We solved the onedimensional linear shallow water equa8ons over submerged topography We verified our model against data found in literature against analy8cal solu8ons for the shelf and obstacle configura8on The two obstacle configura8on was shown to be the most effec8ve This study was published in the journal: Applied Mathema-cs and Computa-ons Transmitted Wave Amplitude HcmL Incident Wave Amplitude HcmL 2 3 4 5 6 3 4 5 6 7 8 Experimental Numerical H=22.2cm Plots of transmiged wave amplitudes against incident wave amplitudes, in cen8meters. Plots of transmiged wave amplitudes against incident wave amplitudes, in cen8meters. The obstacle found in literature was a triangle so we approximated with one region (experimental line) and with 5 regions(5regions line) Plots of our numerical solu8ons with analy8c solu8ons at 8me t=5. The green line is the ocean floor. Please note that the three lines are on top of each other so they may not all be visible. Plot of our numerical solu8on in Riemann variables for twoobstacle configura8on at 8me, t=11. Note the rippling due to mul8ple transmissions and reflec8ons. 1California State University, Monterey Bay, Seaside, California 2Emory University, Atlanta Georgia 3California State University, Chico, Chico, California Transmitted Wave Amplitude HcmL Incident Wave Amplitude HcmL 7 8 9 10 11 12 7 8 9 10 11 12 13 Experimental Numerical 5-Regions H=25.0cm h 1 h 0 x L x R x=0 l 1 h 0 l 0 d 0 h 2 h 3 h 4 4 0 1 2 3 x B1 x B2 x M l 2 Equa8ons We used , the Linear Shallow Water equa8ons to model our waves where, g is the accelera8on due to gravity and models the ocean floor. For our ini8al profile, we used the Gaussian func8on, Where is centered at (the ini8al distance from, , the wave amplitude to the boundary) with ini8al condi8ons: , where is the characteris8c wave amplitude and is the characteris8c fluid velocity. ARer crea8ng our ini8al profile, we iterated our code to approximate each 8me step using the Linear Shallow Water equa8ons and schemes described below. ! ! = ! ! !(! !! ! ) ! Solu8ons In a previous Research Experience for Undergraduates, Ravi Shankar found the analy8cal solu8ons for the shelf and one obstacle configura8on. Using these analy8cal solu8ons, my team and I compared our numerical solu8ons to determine the validity of our model (figure 4). We then compared our model with experimental data found in literature (figure 1 & 2). Using the experimental data, we determined a benchmark for our method and the benchmarks for the shelf ranged from .8%(for H=18.1 cm) to 13.8% (H=30.0 cm) of water depth and the obstacle configura8on ranged from 9.718.8% of H, Where H is the depth of water in front of and behind the shelf/obstacle.

Upload: others

Post on 30-Sep-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Submerged)Obstacles)and)Linear)Wave)Propagaon)Submerged)Obstacles)and)Linear)Wave)Propagaon) Megan)Golbek1,)Yan)Sheng2,)Ravi)Shankar3,)Tucker)Hartland3 Introduc8on) Submerged)obstacles)are)constructed)to)create

Submerged  Obstacles  and  Linear  Wave  Propaga8on  Megan  Golbek1,  Yan  Sheng2,  Ravi  Shankar3,  Tucker  Hartland3  

 

Introduc8on  

Submerged  obstacles  are  constructed  to  create  waves  for  recrea8onal  surfing,  harbor  protec8on,  and  as  a  line  of  defense  from  tsunami  waves.  Accurate  numerical  models  can  approximate  how  obstacles  affect  waves.  This  study  was  part  of  a  larger  project  that  included  linear  and  non-­‐linear  numerical  methods  to  approximate  the  wave’s  transmission  coefficients  aRer  propaga8ng  over  obstacles.  My  team  and  I  constructed  the  linear  numerical  method.  ARer  construc8ng  our  model,  we  checked  our  model’s  validity  by  comparing  our  numerical  solu8ons  with  experimental  data  (figure  1  &  2)  and  analy8cal  solu8ons  (figure  4)  and  the  effec8veness  of  the  one  and  two  obstacle,  shelf,  and  stairs  scenarios.  

Methods                            

Results                                                                                          Figure  1:    Single  obstacle  configura8on                                      Figure  2:  Shelf  configura8on                                

                                                                                                                                                                       Figure  3:  Plot  of  numerical  solu8on  two  obstacles                Figure  4:  Plot  of  numerical  solu8on  shelf  configura8on                                    

   

Discussion    •  Our  numerical  solu8ons    

•  were  accurate  when  compared  to  our  Analy8cal  solu8ons  for  the  shelf  and  one  obstacle  configura8on.  

•  accurately  model  the  physical  behavior  of  this  system.  

•  overes8mates  when  non-­‐linear  effects  begin  and  this  is  caused  by  our  model  being  linear  and  neglec8ng  non-­‐linear  effects.  

 •  When  a  wave  travels  over  an  obstacle,  a  reflected  wave  is  sent  backwards.  

•  This  explains  why  the  wave  looses  energy  as  it  travels  over  each  barrier.  

 •  We  found  that  the  two  obstacle  configura8on  dampened  the  wave  the  greatest  

because  of  the  amount  of  reflected  waves  (figure  3).  

•  We  can  predict  that  mul8ple  obstacles  could  cause  an  isolated  wave  to  dissolve  into  smaller  waves.  

       

Future  work    The  simple  linear  model  was  accurate  un8l  non-­‐linear  effects  of  the  solitary  wave  took  effect      For  future  work,  •  analy8cal  solu8on  for  the  two-­‐obstacle  configura8on  must  be  found.  •  a  new  non-­‐linear  model  must  be  constructed.  •  new  model  would  be  more  accurate  for  larger  rela8ve  wave  heights.  •  numerical  method  for  predic8ng  how  mul8ple  barriers  effect  an  isolated  wave.  •  mul8ple  barriers  can  be  tested  in  a  wave  flume.    

Cita8ons  •   Bryant,  E.  (2008).  Tsunami:  the  underrated  hazard.  Springer.    •   Chang,  H.  K.,  &  Liou,  J.  C.  (2007).  Long  wave  reflec8on  from  submerged  trapezoidal  breakwaters.  Ocean  Engineering,  34(1),  185-­‐191.    •   Cho,  Y.  S.,  &  Lee,  C.  (2000).  Resonant  reflec8on  of  waves  over  sinusoidally  varying  topographies.  Journal  of  Coastal  Research,  870-­‐876.  •  Shankar,  R.,  Sheng,  Y.,  Golbek,  M.,  Hartland,  T.,  Gerrodege,  P.,  Fomin,  S.,  &  Chugunov,  V.  (2015).  Linear  long  wave  propaga8on  over  

discon8nuous  submerged  shallow  water  topography.  Applied  Mathema-cs  and  Computa-on,  252,  27–44.  doi:10.1016/j.amc.2014.11.034  

Acknowledgements  The  authors  are  supported  in  part  by  NSF  award  DMS-­‐0648764,  and  the  Undergraduate  Research  Opportuni8es  Center  of  California  State  University,  Monterey  Bay.      

Calculate  values  at  ar8ficial  boundaries  

• Backward  Finite  differencing  scheme  for  leR  region  and  Forward  Finite  Differencing  scheme  for  right  region.  

Sa8sfy  given  boundary  condi8ons  

• First  8me  with  upwind  scheme.  

• Second  8me  with  Beam-­‐Warming.  

Calculate  intermediate  

values  

• Lax-­‐Wendroff  method  with  center  differencing.  

-10 -5 5 10x

-1.5

-1.0

-0.5

0.5

1.0h

h1

h0

xL xRx=0

l1

h0

l0

d0h2

2 01xM

Ini8al  wave  profiles  for  the  one  and  two  obstacle  configura8on.    *All  approxima8ons  were  calculated  using  Mathema8ca  9.    

 

-10 -5 5 10

-1.5

-1.0

-0.5

0.5

1.0

Riemann

Difference

Analytic

Conclusion  •  We  developed  simple  and  adaptable  numerical  method  to  approximate  linear  

long  waves  traversing  over  submerged  topography  •  Our  model  

•   is  successful  in  modeling  a  variety  of  ocean  floor  topography  •   accurately  simulates  varying  water  depths  for  waves  with  small  

amplitudes  rela8ve  to  water  depth  •  We  solved  the  one-­‐dimensional  linear  shallow  water  equa8ons  over  submerged  

topography    •  We  verified  our  model  against  

•   data  found  in  literature  •  against  analy8cal  solu8ons  for  the  shelf  and  obstacle  configura8on  

•  The  two  obstacle  configura8on  was  shown  to  be  the  most  effec8ve  •  This  study  was  published  in  the  journal:  Applied  Mathema-cs  and  Computa-ons  

Transmitted WaveAmplitude HcmL

Incident WaveAmplitude HcmL

2 3 4 5 6

3

4

5

6

7

8

Experimental

Numerical

H=22.2cm

Plots  of  transmiged  wave  amplitudes  against  incident  wave  amplitudes,  in  cen8meters.    

Plots  of  transmiged  wave  amplitudes  against  incident  wave  amplitudes,  in  cen8meters.  The  obstacle  found  in  literature  was  a  triangle  so  we  approximated  with  one  region  (experimental  line)  and  with  5  regions(5-­‐regions  line)  

Plots  of  our  numerical  solu8ons  with  analy8c  solu8ons  at  8me  t=5.  The  green  line  is  the  ocean  floor.  Please  note  that  the  three  lines  are  on  top  of  each  other  so  they  may  not  all  be  visible.  

Plot  of  our  numerical  solu8on  in  Riemann  variables  for  two-­‐obstacle  configura8on    at  8me,  t=11.  Note  the  rippling  due  to  mul8ple  transmissions  and  reflec8ons.  

1-­‐California  State  University,  Monterey  Bay,  Seaside,  California  2-­‐Emory  University,  Atlanta  Georgia  3-­‐California  State  University,  Chico,  Chico,  California  

Transmitted WaveAmplitude HcmL

Incident WaveAmplitude HcmL

7 8 9 10 11 12

7

8

9

10

11

12

13

Experimental

Numerical

5-Regions

H=25.0cm

h1

h0

xL xRx=0

l1

h0

l0

d0

h2h3h4

4 0123

xB1xB2 xM

l2

Equa8ons  •  We  used                                      ,  the  Linear  Shallow  Water  equa8ons  

to  model  our  waves  where,  g  is  the  accelera8on  due  to  gravity  and        

                                       models  the  ocean  floor.  •  For  our  ini8al  profile,  we  used  the  Gaussian  func8on,      

Where            is  centered  at              (the  ini8al  distance  from,        ,  the  wave  amplitude  to  the                            boundary)  with  ini8al  condi8ons:                                                                                                          ,      where          is  the  characteris8c  wave  amplitude  and          is  the  characteris8c  fluid  velocity.  •  ARer  crea8ng  our  ini8al  profile,  we  iterated  our  code  to  approximate  each  8me  

step  using  the  Linear  Shallow  Water  equa8ons  and  schemes  described  below.  

! ! = !!!(!!!!)! !

Solu8ons  In  a  previous  Research  Experience  for  Undergraduates,  Ravi  Shankar  found  the  analy8cal  solu8ons  for  the  shelf  and  one  obstacle  configura8on.  Using  these  analy8cal  solu8ons,  my  team  and  I  compared  our  numerical  solu8ons  to  determine  the  validity  of  our  model  (figure  4).    We  then  compared  our  model  with  experimental  data  found  in  literature  (figure  1  &  2).  Using  the  experimental  data,  we  determined  a  benchmark  for  our  method  and  the  benchmarks  for  the  shelf  ranged  from  .8%(for  H=18.1  cm)  to  13.8%  (H=30.0  cm)  of  water  depth  and  the  obstacle  configura8on  ranged  from  9.7-­‐18.8%  of  H,  Where  H  is  the  depth  of  water  in  front  of  and  behind  the  shelf/obstacle.