sub femtosecond k-shell excitation using carrier envelop phase stabilized 2-cycles ir (2.1 m)...

25
Sub femtosecond K-shell excitation using Carrier Envelop Phase Stabilized 2-Cycles IR (2.1m) Radiation Source. Gilad Marcus The Department of Applied Physics, Hebrew University,Jerusalem, Israel FRISNO 12, Ein Gedi 2013

Upload: valerie-edith-bailey

Post on 18-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Sub femtosecond K-shell excitation using Carrier Envelop Phase Stabilized 2-Cycles IR (2.1  m) Radiation Source. Gilad Marcus The Department of Applied

Sub femtosecond K-shell excitation using Carrier Envelop Phase Stabilized 2-Cycles IR

(2.1m) Radiation Source.

Gilad Marcus

The Department of Applied Physics, Hebrew University,Jerusalem, Israel

FRISNO 12, Ein Gedi 2013

Page 2: Sub femtosecond K-shell excitation using Carrier Envelop Phase Stabilized 2-Cycles IR (2.1  m) Radiation Source. Gilad Marcus The Department of Applied

AcknowledgmentAcknowledgment

Xun Gu 1

Wolfram Helml 1

Yunpei Deng 1

• Reinhard Kienberger 1

• Ferenc Krausz 1

• Robert Hartmann 2

• Takayoshi Kobayashi 3

• Lothar Strueder 4

1. Max Planck, Quantum Optic, Germany2. pnSensor GmbH, Germany3. University of Electro-Communications, Chofu, Tokyo,

Japan4. Max Planck, Extraterrestrial Physics, Germany

Page 3: Sub femtosecond K-shell excitation using Carrier Envelop Phase Stabilized 2-Cycles IR (2.1  m) Radiation Source. Gilad Marcus The Department of Applied

Outlines

Introduction (defining the goal)

The IR OPCPA system

keV high harmonics

Page 4: Sub femtosecond K-shell excitation using Carrier Envelop Phase Stabilized 2-Cycles IR (2.1  m) Radiation Source. Gilad Marcus The Department of Applied

2 2kin 2

max W 3.17 , 4p p

e L

eEU U I

m

High Harmonics the 3 steps model

plateau

cut-offx

uv

TL

Page 5: Sub femtosecond K-shell excitation using Carrier Envelop Phase Stabilized 2-Cycles IR (2.1  m) Radiation Source. Gilad Marcus The Department of Applied

Re-collision Processes

Double ionization / excitation

Elastic scattering

Discrete electron spectrum

High Harmonics

High harmonics spectra

Page 6: Sub femtosecond K-shell excitation using Carrier Envelop Phase Stabilized 2-Cycles IR (2.1  m) Radiation Source. Gilad Marcus The Department of Applied

• Currently, the photon energy of atto-second pulses is limited to ~150 eV ( ~8 nm).

Pushing the HHG toward the x-ray regime Shorter attosecond pulses Access to the water-window (300-500 eV) Time resolved spectroscopy of inner-shell processes X-ray diffraction imaging with a better resolution

Re-colliding electrons with higher energies Laser induced diffraction imaging with better time and space

resolution (elastic scattering) Efficient Inner-shell excitation (inelastic scattering)

Motivation for keV HHG

Page 7: Sub femtosecond K-shell excitation using Carrier Envelop Phase Stabilized 2-Cycles IR (2.1  m) Radiation Source. Gilad Marcus The Department of Applied

Pushing atto-tools toward higher energiesby using a longer wavelength

I (PW/cm2)

0.15 0.5 1.0

λ (nm) 800 2100 800 2100 800 2100

Up (eV) 9.0 61.8 30 206 60 412

ħωmax (eV)

44 211 110 668 205 1321

2pU I

Ion yield of Xe vs. Laser intensity

Page 8: Sub femtosecond K-shell excitation using Carrier Envelop Phase Stabilized 2-Cycles IR (2.1  m) Radiation Source. Gilad Marcus The Department of Applied

Few-cycles Pulse

Recombination emission:soft-X-ray photon emission upon the electron recombining into its ground state

Ionizationthreshold

Cosine waveform

Emission ofhighest-energy photon

( ) cos CEPE f t t

Page 9: Sub femtosecond K-shell excitation using Carrier Envelop Phase Stabilized 2-Cycles IR (2.1  m) Radiation Source. Gilad Marcus The Department of Applied

Few-cycles Pulse

Ionizationthreshold

Sine waveform

Emission ofhighest-energy photons

Recombination emission:soft-X-ray photon emission upon the electron recombining into its ground state

( ) cos2

E f t t

Page 10: Sub femtosecond K-shell excitation using Carrier Envelop Phase Stabilized 2-Cycles IR (2.1  m) Radiation Source. Gilad Marcus The Department of Applied

The 2-cycles IR source

15 fsec740 µJ1 kHz

Self CEP Stabilization

nm

Page 11: Sub femtosecond K-shell excitation using Carrier Envelop Phase Stabilized 2-Cycles IR (2.1  m) Radiation Source. Gilad Marcus The Department of Applied

OPA system output: Carrier wave-length: 2.1mPulse duration: 15.7 fs (2 cycles)Pulse energy: 0.7 mJRep rate: 1000 Hz Automatically Carrier-envelope-phase-stabilized

wav

elen

gth,

nm

f-to-3f interferogram

2 cycles IR (2.12 cycles IR (2.1m) sourcem) source

Long term (few hours) phase scanB.Bergues, et. al, New Journal of Physics 13, no. 6 ( 2011): 063010.

I. Znakovskaya, et al. PRL 108, no. 6 (2012): 063002.

Page 12: Sub femtosecond K-shell excitation using Carrier Envelop Phase Stabilized 2-Cycles IR (2.1  m) Radiation Source. Gilad Marcus The Department of Applied

THG FROG

compressor(bulk silicon)

Diagnostics for pulse compression measurement

THG FROG

focusing lens(CaF2, 250 mm)

High harmonic beam from N2

through 150nm Pd +500nm C

Ne/N2 gas target,pressure up to 3 bar!

PNCamera

keV high harmonics and K-shell excitationkeV high harmonics and K-shell excitation

Page 13: Sub femtosecond K-shell excitation using Carrier Envelop Phase Stabilized 2-Cycles IR (2.1  m) Radiation Source. Gilad Marcus The Department of Applied

THG FROG

compressor(bulk silicon)

Diagnostics for pulse compression measurement

THG FROG

focusing lens(CaF2, 250 mm)

keV high harmonics and K-shell excitationkeV high harmonics and K-shell excitation

High harmonic beam from N2

through 150nm Pd +500nm C

Ne/N2 gas target,pressure up to 3 bar!

PNCamera

Page 14: Sub femtosecond K-shell excitation using Carrier Envelop Phase Stabilized 2-Cycles IR (2.1  m) Radiation Source. Gilad Marcus The Department of Applied

keV high harmonics and K-shell excitation

500 1000 15000

10

20

30

40

50

60

photons energy [eV]

cou

nts

/ b

in

500 1000 15000

10

20

30

40

50

60

photons energy [eV]

cou

nts

/ b

in

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

tran

smis

sio

n

0

0.1

0.2

0.3

0.4 (b)(a)

500 1000 15000

10

20

30

40

50

60

photons energy [eV]

coun

ts /

bin

500 1000 15000

10

20

30

40

50

60

photons energy [eV]

coun

ts /

bin

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

tran

smis

sion

0

0.1

0.2

0.3

0.4 (b)(a)

High harmonics spectrum from a neon gas target through 500nm aluminum

Same spectrum through additional 500nm of vanadium (a) or iron (b)

Vanadium L-edge Iron L-edge

200 400 600 800 1000 1200 1400 1600 1800 2000 220010

0

101

102

103

104

photons energy [eV]

co

un

t /

bin

HHG (Ne)T (3bar Ne)T (500nm Al)

10-3

10-2

10-1

100

tra

ns

mis

sio

n

Page 15: Sub femtosecond K-shell excitation using Carrier Envelop Phase Stabilized 2-Cycles IR (2.1  m) Radiation Source. Gilad Marcus The Department of Applied

keV high harmonics and K-shell excitation

500 1000 150010

0

102

104

106

108

1010

Spectrum from Ne Target

photons energy [eV]

co

un

ts /

bin

100 200 300 400 500 600

102

104

106

Spectrum from N2 Target

photons energy [eV]

co

un

ts /

bin

Ne K-edge

NitrogenK-edge

Page 16: Sub femtosecond K-shell excitation using Carrier Envelop Phase Stabilized 2-Cycles IR (2.1  m) Radiation Source. Gilad Marcus The Department of Applied

keV high harmonics and K-shell excitation

Enhanced peak at the K-edgeEnhanced peak at the K-edge

Better phase matching conditionsdue to the absorption lines

Inner shell excitation followed by x-ray fluorescence

0.5 1 1.5

0

0.5

1

/0

Re(n)Im(n)

Page 17: Sub femtosecond K-shell excitation using Carrier Envelop Phase Stabilized 2-Cycles IR (2.1  m) Radiation Source. Gilad Marcus The Department of Applied

keV high harmonics and K-shell excitation

Enhanced peak at the K-edgeEnhanced peak at the K-edge

Calculation shows: Plasmadispersion still dominate

Inner shell excitation followed by x-ray fluorescence

0.5 1 1.5

0

0.5

1

/0

Re(n)Im(n)

Page 18: Sub femtosecond K-shell excitation using Carrier Envelop Phase Stabilized 2-Cycles IR (2.1  m) Radiation Source. Gilad Marcus The Department of Applied

keV high harmonics and K-shell excitationkeV high harmonics and K-shell excitation

Enhanced peak at the K-edgeEnhanced peak at the K-edge

Inner shell excitation followed Inner shell excitation followed by x-ray fluorescenceby x-ray fluorescence

Page 19: Sub femtosecond K-shell excitation using Carrier Envelop Phase Stabilized 2-Cycles IR (2.1  m) Radiation Source. Gilad Marcus The Department of Applied

keV high harmonics and K-shell excitation

Enhanced peak at the K-edgeEnhanced peak at the K-edge

Inner shell excitation followed by x-ray fluorescence

2exP ( ) / ( )i it D t dt

2D

0exab

1 expS

A P4

radav L

Aa

ub

ddt f L

0

rad Au

- in-elastic excitation cross section

D - electron wave packed radius

- ionization rate

- gas density

, - dacay rates (radiation , Auger)

Page 20: Sub femtosecond K-shell excitation using Carrier Envelop Phase Stabilized 2-Cycles IR (2.1  m) Radiation Source. Gilad Marcus The Department of Applied

keV high harmonics and K-shell excitation

Enhanced peak at the K-edgeEnhanced peak at the K-edge

Inner shell excitation followed by x-ray fluorescence

2exP ( ) / ( )i it D t dt

2D

0exab

1 expS

A P4

radav L

Aa

ub

ddt f L

0 1 2 3 4

0

16

32

48

64

80

pressure [bar]

ph

oto

n y

ield

0 1 2 3 40

20

40

60

80

100

120

140

160

180

pressure [bar]

ph

oto

n y

ield

[c

ou

nts

/ s

ec

]

Page 21: Sub femtosecond K-shell excitation using Carrier Envelop Phase Stabilized 2-Cycles IR (2.1  m) Radiation Source. Gilad Marcus The Department of Applied

keV high harmonics and K-shell excitation

Enhanced peak at the K-edgeEnhanced peak at the K-edge

Inner shell excitation followed by x-ray fluorescence

2exP ( ) / ( )i it D t dt

2D

0exab

1 expS

A P4

radav L

Aa

ub

ddt f L

0 1 2 3 4

0

16

32

48

64

80

pressure [bar]

ph

oto

n y

ield

0 1 2 3 40

20

40

60

80

100

120

140

160

180

pressure [bar]

ph

oto

n y

ield

[c

ou

nts

/ s

ec

]

Page 22: Sub femtosecond K-shell excitation using Carrier Envelop Phase Stabilized 2-Cycles IR (2.1  m) Radiation Source. Gilad Marcus The Department of Applied

keV high harmonics and K-shell excitation

Enhanced peak at the K-edgeEnhanced peak at the K-edge

Inner shell excitation followed by x-ray fluorescence

0exP ( ) ( ) ( ) ( )i

i i

t

t t dt v v d

2D

0exab

1 expS

A P4

radav L

Aa

ub

ddt f L

0 1 2 3 4

0

16

32

48

64

80

pressure [bar]

ph

oto

n y

ield

0 1 2 3 40

20

40

60

80

100

120

140

160

180

pressure [bar]

ph

oto

n y

ield

[c

ou

nts

/ s

ec

]

0 0.5 1 1.5 2 2.5 3 3.5 40

50

100

150

pressure [bar]

phot

on y

ield

0 2 4

0

2

4

Page 23: Sub femtosecond K-shell excitation using Carrier Envelop Phase Stabilized 2-Cycles IR (2.1  m) Radiation Source. Gilad Marcus The Department of Applied

keV high harmonics and K-shell excitation

Enhanced peak at the K-edgeEnhanced peak at the K-edge

Inner shell excitation followed by x-ray fluorescence

0exP ( ) ( ) ( ) ( )i

i i

t

t t dt v v d

2D

0exab

1 expS

A P4

radav L

Aa

ub

ddt f L

0 1 2 3 4

0

16

32

48

64

80

pressure [bar]

ph

oto

n y

ield

0 1 2 3 40

20

40

60

80

100

120

140

160

180

pressure [bar]

ph

oto

n y

ield

[c

ou

nts

/ s

ec

]

0 0.5 1 1.5 2 2.5 3 3.5 40

50

100

150

pressure [bar]

phot

on y

ield

0 2 4

0

2

4

Page 24: Sub femtosecond K-shell excitation using Carrier Envelop Phase Stabilized 2-Cycles IR (2.1  m) Radiation Source. Gilad Marcus The Department of Applied

keV high harmonics and K-shell excitationkeV high harmonics and K-shell excitation

Inner shell excitation followed by x-ray fluorescence

Pump laser pulseDuration 12 fs

Intensity 7x1014 W/cm2

m

Page 25: Sub femtosecond K-shell excitation using Carrier Envelop Phase Stabilized 2-Cycles IR (2.1  m) Radiation Source. Gilad Marcus The Department of Applied

Thank youThank you