study on antennas appropriate for low-power rectennas in …wpt/paper/wpt2013-35.pdf · 2017. 1....

5
♫ᅋἲே 㟁Ꮚሗ㏻ಙᏛ ಙᏛᢏሗ THE INSTITUTE OF ELECTRONICS, IEICE Technical Report INFORMATION AND COMMUNICATION ENGINEERS WPT2013-35(2014-03) This article is a technical report without peer review, and its polished and/or extended version may be published elsewhere. Ἴ↓⥺㟁ຊఏ㏦⏝పධຊࢼࢸࢡࡓࡋ ✲◊ࡢࢼࢸ⠛ཎ ┿Ẏ ி㒔Ꮫ⏕Ꮡᅪ◊✲ᡤ 611-0011 ி㒔ᗓᏱᕷE-mail: [email protected], [email protected], mitani.tomohiko.3u @rish.kyoto-u.ac.jp ࡢࢼࢸࢡධຊ㟁ຊ࠸ࡉࠊࡁRF-DC ኚຠ⋡పୗ࠺࠸ၥ㢟Ⅼ࠶ࡀඛ⾜◊✲ࢱࡣᅇ㊰ ᅽὶᅇ㊰⏝ࡢ➃ࢻ㟁ᅽ RF-DC ኚຠ⋡ᨵၿࠋࡓࡁᮏ◊✲ࠊࡣࢼࢸࢡQ ࢼࢸࢼࢸࢡࠊࡋపධຊ ࡢࢼࢸࢡRF-DC ኚຠ⋡ᨵၿ┠ᣦ ࠋࡍࡣࡎὶᅇ㊰タィࠊࡋὶᅇ㊰⥺ࡢ RF-DC ኚຠ⋡ᨵ ࠋࡓࡋࡉࠊࡢ➃ࢻ㟁ᅽ ࡢࢼࢸタィ⾜ࠋࡓࡗࠊࡓQ ࡞␗ࡀࢼࢸὶᅇ㊰᥋⥆ࠊࡋὶᅇ㊰ὶຠ⋡ẚ㍑⾜ ࠋࡓࡗRF-DC ኚຠ⋡ࢼࢸࢡࠊࢫQ Study on Antennas Appropriate for Low-Power Rectennas in Microwave Power Transmission Yan Zhou, Naoki Shinohara and Tomohiko Mitani Research Institute for Sustainable Humanosphere, Kyoto Univ., Gokasho, Uji City, Kyoto Prefecture, Japan. 611-0011 E-mail: [email protected], [email protected], mitani.tomohiko.3u @rish.kyoto-u.ac.jp Abstract We proposed two methods to improve the RF-DC conversion efficiency of a low input rectenna; one was to improve the impedance of the rectenna and the other was to design the high Q value antenna. To begin with, we proved that the efficiency of the rectifying circuit can be improved by raising characteristic impedance. Then we designed the high impedance patch antennas and obtained that the characteristics of patch antennas were independent of impedance. Next, we measured efficiency of low-power rectifying circuit connected with a high Q value patch antenna. We obtained higher conversion efficiency with a low Q value antenna, but which had a small reflection loss. Keyword RF-DC conversion efficiency, rectenna, impedance, high Q value 1.1. ◊✲⫼ᬒ┠ⓗ ⌧ᅾ Ἴ↓⥺㟁ຊఏ㏦ (MPT) ὀ┠㞟 MPT ᢏ⾡⏝ RFID ࢢࢱ ࢫࢱ ࠶ࠊ※ ࡣ࠸ ࡏࡉప㟁ຊᶵჾ ↓⥺㟁ຊ౪⤥ ࠊࡁ㟁ụᦚ㍕ ᚲせ ࡢ࠸࡞〇ရ ࢺࢫࢥࡢ ࢸࢡ ࡣࢼMPT 㔜せ ᢏ⾡ ධຊ㟁ຊ ࠸ࡉ ࠊࡁ ࡢࢼࢸࢡRF-DC ኚຠ⋡ ࡞ࡃ [1] ࡢࢼࢸࢡຠ⋡ ඛ⾜◊✲ ᅽὶᅇ㊰ ᅇ㊰୪ඹ ࡏࡉ ༳ຍ ᪉ἲ [2] ᅇ㊰ 」㞧 ࠺࠸ၥ㢟Ⅼ ࠶ࡀ 〇స ࡀࢺࢫࢥࡢ ࡞ࡃ ࡇࡑ ⡆⣲ ࡓࡋ ࢼࢸࢡ ࠊࡋRF-DC ኚຠ ┠ᣦ ࠋࡍᮏ◊✲ ⡆⣲ ࡓࡋ ࢼࢸࢡ ༳ຍ 㟁ᅽ ࡏࡉᡭἲ ࢼࢸࢡQ ࢼࢸ ࢸࢡ ࠋࡓࡋ1 ᕥᅗ ࢼࢸࢡ ࠊࡣ ࢼࢸ ࡣࡓ ὶᅇ㊰⏝ ࡢ➃ࢻ㟁ᅽ ࡏࡉᡭἲ 1 Q ࢼࢸࢡ ࢲࠊ ࡣ Q ࢼࢸ ࢲࠊࡋ ༳ຍ 㟁ᅽ ᡭἲ 1. ࢼࢸࢡQ ࢼࢸ ࢼࢸࢡ

Upload: others

Post on 04-Feb-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

  • THE INSTITUTE OF ELECTRONICS, IEICE Technical Report INFORMATION AND COMMUNICATION ENGINEERS WPT2013-35(2014-03)

    This article is a technical report without peer review, and its polished and/or extended version may be published elsewhere.

    611-0011 E-mail: [email protected], [email protected], mitani.tomohiko.3u @rish.kyoto-u.ac.jp

    RF-DC

    RF-DC

    Q RF-DC

    RF-DC

    Q

    RF-DC Q

    Study on Antennas Appropriate for Low-Power Rectennas in Microwave Power Transmission

    Yan Zhou, Naoki Shinohara and Tomohiko Mitani

    Research Institute for Sustainable Humanosphere, Kyoto Univ., Gokasho, Uji City, Kyoto Prefecture, Japan. 611-0011 E-mail: [email protected], [email protected], mitani.tomohiko.3u @rish.kyoto-u.ac.jp

    Abstract We proposed two methods to improve the RF-DC conversion efficiency of a low input rectenna; one was to improve the impedance of the rectenna and the other was to design the high Q value antenna. To begin with, we proved that the efficiency of the rectifying circuit can be improved by raising characteristic impedance. Then we designed the high impedance patch antennas and obtained that the characteristics of patch antennas were independent of impedance. Next, we measured efficiency of low-power rectifying circuit connected with a high Q value patch antenna. We obtained higher conversion efficiency with a low Q value antenna, but which had a small reflection loss.

    Keyword RF-DC conversion efficiency, rectenna, impedance, high Q value 1.1.

    (MPT)

    MPT RFID

    MPT

    RF-DC [1]

    [2]

    RF-DC

    Q1

    1 QQ

    1. Q

  • 2. 2.1.

    ADS1.6 mm

    2.65%

    [3] 75 125125

    1 AD1000

    5070 80 90 100 2 2

    g/4 F 50

    22 100

    0.1 mm 0.1 mm

    100 1. AD1000

    (h) 0.8

    ( r) 10.35

    (tan ) 0.0023

    2

    2

    [mm]

    [mm]

    50 0.72 13.00 70 0.41 25.02 80 0.28 17.92 90 0.19 25.84 100 0.12 26.53

    3

    3

    3

    3

    41

    2

    Vout RL P in

    P ref

    4

    [mm] (R)

    [mm] (l1)

    [mm] (l2)

    [mm] 50 0.5 3 1.20 12.28 70 0.5 3 8.38 14.71 80 0.5 3 9.98 12.47 90 0.5 3 7.93 14.99 100 0.5 3 7.55 14.99

  • 0.2 mW 25 mW5 1 mW 70 80

    50 390 100

    50 85 mW 70 80

    50 6 1090 100

    50 210 mW 70 80 90 100

    5010 13 3 2

    20 mW 70 80 90100 50

    9 12 3 2

    805 13

    80

    5

    2.2. 4 0.4 mm NPC-F260A

    506 100 150

    7 100 150SMA

    g/4SMA

    4 NPC-F260A (h) 0.4

    ( r) 2.55

    (tan ) 0.0015

    6 50

    7 100 150

    826 cm

    40 mW80 mW 160 mW...

    8

  • 9 50 100 150

    10 50 100 150

    RF-DC

    2.44GHz

    RF-DC50 100 150

    9 9 1000 mW50 32 mW 100

    30 mW 15028 mW

    50 100 150RF-DC 10

    50 g/4

    10

    50 -20dB 100-18dB 100

    -8dB

    RF-DC

    3. Q 3

    RF-DC1, 2, 3

    115 5 110.35 0.8 mm

    2, 3 2.55 0.4 mm2

    33 2

    3|S11| 12 2.48 GHz

    1, 2, 3 |S11| -12 dB,-18 dB,-23 dB Q

    Qu [4] 1, 2, 3 Qu30, 23.1, 18.44

    11 1, 2, 3

    12 3

    |S11|

  • 5 1, 2, 3

    [mm]

    1 10.35 0.8 2 2.6 1.6 3 2.6 1.6

    1, 2, 3 RF-DC

    132.48 GHz

    ab

    RF-DC

    13(a)

    13(b)

    13 1, 2, 3 RF-DC

    6RF-DC

    0.5 mW, 1 mW 32 5 21 5%

    1, 2, 3 RF-DC6

    0.5 mW, 1 mW10 mW

    3

    RF-DC3 Q

    RF-DC

    6 1, 2, 3

    RF-DC

    [mW] 1 [%] 2 [%] 3 [%]

    [%] 0.5 12.99 17.16 17.96 19.60 1 25.09 29.04 30.01 29.77 2 36.86 40.00 40.80 38.61 4 47.12 48.83 50.24 46.81

    10 57.57 58.32 59.45 54.92 20 62.33 62.49 63.84 59.29 30 64.81 64.75 65.41 61.31

    4. 50 70

    80 90 100

    8050 13

    Q RF-DCQ

    RF-DC

    [1] ,

    - -” , Kansai Chapter,

    2010.pp.113-135. [2] Kitayoshi, Hitoshi, and K. Sawaya. “Passive

    Temperature Sensing Tag for Sensor Networks.” Antennas, Propagation & EM Theory, 2006. ISAPE'06. 7th International Symposium on. IEEE, 2006.

    [3] RF-ID16

    WPT2012-55Mar. 15-16, 2013.

    [4] “Q , http://www.sonnetsoftware.co.jp/support/tips/how2meas_Q/