stsm report - skin-laser-imaging.org

4
STSM report STSM Application number: COST-STSM-BM1205- STSM Grantee: 3URI ,JRU 0HJOLQVNL STSM title: 7KH QHZ RSWLFDO GLDJQRVWLF PRGDOLW\ ± WKH UROH RI QXFOHDU VL]H LQ FHOO GLIIHUHQWLDWLRQ Home Institution: University of Oulu, Finland Host Institution: :HL]PDQQ ,QVWLWXWH RI 6FLHQFH ,VUDHO STSM period: .0.201 to .0.201 STSM purpose: To WU\ DQG WHVW D QHZ RSWLFDO PRGDOLW\ DQG WR SUHSDUH D MRLQW VFLHQWLILF SXEOLFDWLRQ Description of the work carried out during the STSM: In 2ptoelectronics and Measurement 7echniques /aboratory of the University of Oulu a QHZ method for noninvasive diagnostic of cancerous and non-cancerous tissue sDPSOHV E\ XVLQJ circularly polarized light KDV EHHQ LQWURGXFHG. An alternative approach of VWDWHRIWKHDUW RSWLFDO LPDJLQJ PRGDOLWLHV for WLVVXH GLDJQRVLV DQG cancer detection DUH DYDLODEOH LQ 'r. 9LDFKHVODY .DOFKHQNR’s 8QLW at the :HL]PDQQ ,QVWLWXWH RI 6FLHQFH (,VUDHO). ,JRU 0HJOLQVNL YLVLWHG WKH :HL]PDQQ ,QVWLWXWH RI 6FLHQFH DQG MRLQWO\ ZLWK 'U .DOFKHQNR ZRUNHG RQ WKH YDOLGDWLRQ RI WKH SRODUL]DWLRQ EDVHG WHFKQLTXH DQG LWV WHVWLQJ WR PHDVXUH WKH QXFOHDU VL]H RI FHOOV ZLWK FDQFHU SUHFDQFHU DQG QRQFDQFHU ,Q DGGLWLRQ 3URI 0HJOLQVNL DQG 'U .DOFKHQNR GHYHORSHG D QHZ WHFKQLTXH IRU KLJK TXDOLW\ SHUIXVLRQ LPDJLQJ LQ WHUPV RI :* DFWLYLWLHV %DVHG RQ WKH UHVXOWV RI FROODERUDWLRQ D MRLQW SXEOLFDWLRQ ZLOO EH SUHSDUHG SUHSDUHG DQG SXEOLVKHG VKRUWO\ 7KH UHVXOWV RI WKH MRLQW FROODERUDWLRQ ZLOO EH DOVR SUHVHQWHG DW WKH XSFRPLQJ FRQIHUHQFHV DQG &267 PHHWLQJV 0XWXDO EHQHILWV IRU WKH +RPH DQG +RVW LQVWLWXWLRQV: %RWK +RVW DQG +RPH LQVWLWXWLRQV DJUHH WR FRQWLQXH FROODERUDWLRQ 0RUH WLVVXH VDPSOHV ZLOO EH WHVWHG LQ 2XOX DQG ZLOO EH PHVXUHG LQGHSHQGHQWO\ E\ WZR GLIIHUHQW H[SHULPHQWDO V\VWHPV LQ WKH :HL]PDQQ ,QVWLWXWH RI 6FLHQFH %DVHG RQ WKHVH VWXGLHV ZH H[SHFW D GHYHORSPHQW RI D QHZ H[SHULPHQWDO V\VWHP WKDW ZLOO EH DEOH WR SUHGLFW WKH FKDQJHV RI LQ FDQFHURXV DQG QRQFDQFHURXV WLVVXHV EDVHG RQ WKH FKDQJHV RI WKH QXFOHDU VL]H LQ WKH FHOOV 3RWHQWLDOO\ D QHZ GLDJQRVWLF PRGDOLW\ LV YHU\ OLNHO\ FDQ EH GHYHORSHG

Upload: others

Post on 09-Feb-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: STSM report - skin-laser-imaging.org

STSM report

STSM Application number: COST-STSM-BM1205-�����

STSM Grantee: 3URI��,JRU�0HJOLQVNL

STSM title: 7KH�QHZ�RSWLFDO�GLDJQRVWLF�PRGDOLW\�±�WKH�UROH�RI�QXFOHDU�VL]H�LQ�FHOO�GLIIHUHQWLDWLRQ�

Home Institution: University of Oulu, Finland

Host Institution: :HL]PDQQ�,QVWLWXWH�RI�6FLHQFH��,VUDHO

STSM period: ��.0�.201� to ��.0�.201�

STSM purpose: To� WU\�DQG�WHVW�D�QHZ�RSWLFDO�PRGDOLW\�DQG�WR�SUHSDUH�D�MRLQW�VFLHQWLILF�SXEOLFDWLRQ�

Description of the work carried out during the STSM: In 2ptoelectronics and Measurement 7echniques /aboratory of the University of Oulu a QHZ�method for�non�invasive diagnostic of cancerous and non-cancerous tissue�sDPSOHV E\�XVLQJ�circularly polarized light�KDV� EHHQ� LQWURGXFHG. An alternative approach of VWDWH�RI�WKH�DUW� RSWLFDO� LPDJLQJ� PRGDOLWLHV� for WLVVXH�GLDJQRVLV� DQG� cancer detection DUH� DYDLODEOH� LQ� 'r.   9LDFKHVODY� .DOFKHQNR’s   8QLW   at   the   :HL]PDQQ�,QVWLWXWH�RI�6FLHQFH�(,VUDHO).

,JRU� 0HJOLQVNL� YLVLWHG� WKH� :HL]PDQQ� ,QVWLWXWH� RI� 6FLHQFH� DQG� MRLQWO\� ZLWK� 'U�� .DOFKHQNR� ZRUNHG�RQ� WKH� YDOLGDWLRQ� RI� WKH� SRODUL]DWLRQ� EDVHG� WHFKQLTXH� DQG� LWV� WHVWLQJ� WR� PHDVXUH� WKH� QXFOHDU� VL]H� RI�FHOOV� ZLWK� FDQFHU�� SUH�FDQFHU� DQG� QRQ�FDQFHU�� ,Q� DGGLWLRQ� 3URI�� 0HJOLQVNL� DQG� 'U� .DOFKHQNR�GHYHORSHG� D� QHZ� WHFKQLTXH� IRU� KLJK� TXDOLW\� SHUIXVLRQ� LPDJLQJ� �LQ� WHUPV� RI� :*�� DFWLYLWLHV���

%DVHG�RQ�WKH�UHVXOWV�RI�FROODERUDWLRQ�D�MRLQW�SXEOLFDWLRQ�ZLOO�EH�SUHSDUHG�SUHSDUHG�DQG�SXEOLVKHG�VKRUWO\��7KH�UHVXOWV�RI�WKH�MRLQW�FROODERUDWLRQ�ZLOO�EH�DOVR�SUHVHQWHG�DW�WKH�XSFRPLQJ�FRQIHUHQFHV�DQG�&267������PHHWLQJV��

0XWXDO�EHQHILWV�IRU�WKH�+RPH�DQG�+RVW�LQVWLWXWLRQV:

%RWK�+RVW� DQG�+RPH� LQVWLWXWLRQV� DJUHH� WR� FRQWLQXH� FROODERUDWLRQ��0RUH� WLVVXH� VDPSOHV�ZLOO� EH� WHVWHG� LQ�2XOX�DQG�ZLOO�EH�PHVXUHG� LQGHSHQGHQWO\�E\�WZR�GLIIHUHQW�H[SHULPHQWDO� V\VWHPV�LQ�WKH�:HL]PDQQ�,QVWLWXWH�RI�6FLHQFH�� %DVHG� RQ� WKHVH� VWXGLHV�ZH� H[SHFW� D�GHYHORSPHQW� RI� D� QHZ� H[SHULPHQWDO� V\VWHP� WKDW� ZLOO�EH� DEOH� WR� SUHGLFW� WKH� FKDQJHV� RI� LQ�FDQFHURXV� DQG� QRQ�FDQFHURXV� WLVVXHV�EDVHG�RQ�WKH�FKDQJHV�RI�WKH�QXFOHDU�VL]H�LQ�WKH�FHOOV�� 3RWHQWLDOO\� D� QHZ� GLDJQRVWLF� PRGDOLW\� LV� YHU\� OLNHO\� FDQ�EH�GHYHORSHG����

Page 2: STSM report - skin-laser-imaging.org

6760�5(3257��&RQWG�

Figure�1�shows�the�experimental�setup.�Circular�polarized�light�is�produced�using�a�635�nm�laser�diode�(Thorlabs,�Inc.,�USA)�and� focused�onto� the�surface�of� the�sample.�Scattered� light� is�collected�at�a�distance� (d�= 1�mm)�away� from� the�point� of� incidence� and� is� then� passed� through� an� analyzer� to�measure� its� state� of� polarization.� The� source-detector�separation�d�plays�an�important�role�in�the�observation�of�circular�polarization.�With�d�= 0,�the�detected�signal�is�likely�to�be�saturated�by�light�in�the�cross-polarized�state.�This�is�due�to�an�overwhelming�percentage�of�single�backscattering�at�the�sub-surface�area.�The�contribution�of�the�co-polarized�component�grows�with�the�increase�of�d.�In�order�to�reduce�the�uncertainty�in�the�source-detector�separation�d�and�to�avoid�surface�refections,�two�standard�microscope�objectives�have�been� used� to� deliver� incident� laser� radiation� and� detect� scattering� light� respectively.� These� objectives� have� been�implemented�into�the�setup�at�angles�45◦± 2◦ and�10◦± 2◦ (see�Fig.1)�which�are�chosen�intentionally,�as�the�physical�size�of� the�objectives� forbids� them� from�maintaining�a�normal�angle� to� the�surface�of� the�scattering�medium.�The�effective�path-lengths�distribution�of� the�photons�migrated�from�source� to�detector�within� the�medium,�shown�in�Fig.1,�has�been�simulated�by�Monte�Carlo�method��GHYHORSHG�E\�3URI��0HJOLQVNL��Ior�the�actual�parameters�of�the�experimental�system.

Figure�1.�Schematic�presentation�of� the�experimental� setup.� The�circular�polarized� light� is�focused�onto� the�sample�surface.� Back-scattered�light�is�collected�at�distance�d�away�from�the�point�of�incidence,�then�its�state�of�polarization�is�analyzed.

All� the� experiments� have� been� conducted� using� WLVVXH� VDPSOHV� ZLWK� WKH� FRQILUPHG� QXFOHDU� VL]H� RI� FHOOV��LQFOXGLQJ� FDQFHURXV�� SUH�FDQFHURXV� DQG� QRQ�FDQFHURXV.� The� results�of� the�polarization�of� the�back-scattered� light�observed�for�each�sample�are�presented�below.Figure�2�presents�the�intensity�of�circular�polarized�laser�light�backscattered�from�the�FHOOV� FXOWXUHV.�The� results� clearly�demonstrate�a�shift�of�the�detected�intensity�of�the�circular�polarized�optical�radiation�backscattered�from�the�the�different�FHOOV� FDOWXUHV.� It� is�also� clearly� seen� that�with� the� increasing� QXFOHDU� VL]H� the�polarization� state� of�backscattered� light�eventually�changes� its�helicity,� as� this� corresponds� to� the� relative�positions�of� the�minima.�

Fig��.�Poincare�sphere�plots�the�SRVLWLRQV�RI�WKH�polarization�vectors�FRUUHVSRQGLQJ�WR�WKH�LQFUHDVH�RI�QXFOHDU�VL]H�

TR� FRQFOXGH�� WKH� GHYHORSHG� system� is� capable� of� detecting� small� changes� LQ� the� scattering� anisotropy� of� VFDWWHULQJ�particles,�VXFK�DV�QXFOHDU�RI�WKH�FHOOV��7his�should�have�obvious�applications�in�the�FDQFHU�GLDJQRVLV,�e.g.�as�the�detection�of�QXFOHDU�VL]H�LQFUHDVH�DW�WKH�SUH�FDQFHURXV�VWDJH.

Page 3: STSM report - skin-laser-imaging.org

STSM report

STSM Application number: COST-STSM-BM1205-�����

STSM Grantee: 3URI��,JRU�0HJOLQVNL

STSM title: 7KH�QHZ�RSWLFDO�GLDJQRVWLF�PRGDOLW\�±�WKH�UROH�RI�QXFOHDU�VL]H�LQ�FHOO�GLIIHUHQWLDWLRQ�

Home Institution: University of Oulu, Finland

Host Institution: :HL]PDQQ�,QVWLWXWH�RI�6FLHQFH��,VUDHO

STSM period: ��.0�.201� to ��.0�.201�

STSM purpose: To� WU\�DQG�WHVW�D�QHZ�RSWLFDO�PRGDOLW\�DQG�WR�SUHSDUH�D�MRLQW�VFLHQWLILF�SXEOLFDWLRQ�

Description of the work carried out during the STSM: In 2ptoelectronics and Measurement 7echniques /aboratory of the University of Oulu a QHZ�method for�non�invasive diagnostic of cancerous and non-cancerous tissue�sDPSOHV E\�XVLQJ�circularly polarized light�KDV� EHHQ� LQWURGXFHG. An alternative approach of VWDWH�RI�WKH�DUW� RSWLFDO� LPDJLQJ� PRGDOLWLHV� for WLVVXH�GLDJQRVLV� DQG� cancer detection DUH� DYDLODEOH� LQ� 'r.   9LDFKHVODY� .DOFKHQNR’s   8QLW   at   the   :HL]PDQQ�,QVWLWXWH�RI�6FLHQFH�(,VUDHO).

,JRU� 0HJOLQVNL� YLVLWHG� WKH� :HL]PDQQ� ,QVWLWXWH� RI� 6FLHQFH� DQG� MRLQWO\� ZLWK� 'U�� .DOFKHQNR� ZRUNHG�RQ� WKH� YDOLGDWLRQ� RI� WKH� SRODUL]DWLRQ� EDVHG� WHFKQLTXH� DQG� LWV� WHVWLQJ� WR� PHDVXUH� WKH� QXFOHDU� VL]H� RI�FHOOV� ZLWK� FDQFHU�� SUH�FDQFHU� DQG� QRQ�FDQFHU�� ,Q� DGGLWLRQ� 3URI�� 0HJOLQVNL� DQG� 'U� .DOFKHQNR�GHYHORSHG� D� QHZ� WHFKQLTXH� IRU� KLJK� TXDOLW\� SHUIXVLRQ� LPDJLQJ� �LQ� WHUPV� RI� :*�� DFWLYLWLHV���

%DVHG�RQ�WKH�UHVXOWV�RI�FROODERUDWLRQ�D�MRLQW�SXEOLFDWLRQ�ZLOO�EH�SUHSDUHG�SUHSDUHG�DQG�SXEOLVKHG�VKRUWO\��7KH�UHVXOWV�RI�WKH�MRLQW�FROODERUDWLRQ�ZLOO�EH�DOVR�SUHVHQWHG�DW�WKH�XSFRPLQJ�FRQIHUHQFHV�DQG�&267������PHHWLQJV��

0XWXDO�EHQHILWV�IRU�WKH�+RPH�DQG�+RVW�LQVWLWXWLRQV:

%RWK�+RVW� DQG�+RPH� LQVWLWXWLRQV� DJUHH� WR� FRQWLQXH� FROODERUDWLRQ��0RUH� WLVVXH� VDPSOHV�ZLOO� EH� WHVWHG� LQ�2XOX�DQG�ZLOO�EH�PHVXUHG� LQGHSHQGHQWO\�E\�WZR�GLIIHUHQW�H[SHULPHQWDO� V\VWHPV�LQ�WKH�:HL]PDQQ�,QVWLWXWH�RI�6FLHQFH�� %DVHG� RQ� WKHVH� VWXGLHV�ZH� H[SHFW� D�GHYHORSPHQW� RI� D� QHZ� H[SHULPHQWDO� V\VWHP� WKDW� ZLOO�EH� DEOH� WR� SUHGLFW� WKH� FKDQJHV� RI� LQ�FDQFHURXV� DQG� QRQ�FDQFHURXV� WLVVXHV�EDVHG�RQ�WKH�FKDQJHV�RI�WKH�QXFOHDU�VL]H�LQ�WKH�FHOOV�� 3RWHQWLDOO\� D� QHZ� GLDJQRVWLF� PRGDOLW\� LV� YHU\� OLNHO\� FDQ�EH�GHYHORSHG����

Page 4: STSM report - skin-laser-imaging.org

6760�5(3257��&RQWG�

Figure�1�shows�the�experimental�setup.�Circular�polarized�light�is�produced�using�a�635�nm�laser�diode�(Thorlabs,�Inc.,�USA)�and� focused�onto� the�surface�of� the�sample.�Scattered� light� is�collected�at�a�distance� (d�= 1�mm)�away� from� the�point� of� incidence� and� is� then� passed� through� an� analyzer� to�measure� its� state� of� polarization.� The� source-detector�separation�d�plays�an�important�role�in�the�observation�of�circular�polarization.�With�d�= 0,�the�detected�signal�is�likely�to�be�saturated�by�light�in�the�cross-polarized�state.�This�is�due�to�an�overwhelming�percentage�of�single�backscattering�at�the�sub-surface�area.�The�contribution�of�the�co-polarized�component�grows�with�the�increase�of�d.�In�order�to�reduce�the�uncertainty�in�the�source-detector�separation�d�and�to�avoid�surface�refections,�two�standard�microscope�objectives�have�been� used� to� deliver� incident� laser� radiation� and� detect� scattering� light� respectively.� These� objectives� have� been�implemented�into�the�setup�at�angles�45◦± 2◦ and�10◦± 2◦ (see�Fig.1)�which�are�chosen�intentionally,�as�the�physical�size�of� the�objectives� forbids� them� from�maintaining�a�normal�angle� to� the�surface�of� the�scattering�medium.�The�effective�path-lengths�distribution�of� the�photons�migrated�from�source� to�detector�within� the�medium,�shown�in�Fig.1,�has�been�simulated�by�Monte�Carlo�method��GHYHORSHG�E\�3URI��0HJOLQVNL��Ior�the�actual�parameters�of�the�experimental�system.

Figure�1.�Schematic�presentation�of� the�experimental� setup.� The�circular�polarized� light� is�focused�onto� the�sample�surface.� Back-scattered�light�is�collected�at�distance�d�away�from�the�point�of�incidence,�then�its�state�of�polarization�is�analyzed.

All� the� experiments� have� been� conducted� using� WLVVXH� VDPSOHV� ZLWK� WKH� FRQILUPHG� QXFOHDU� VL]H� RI� FHOOV��LQFOXGLQJ� FDQFHURXV�� SUH�FDQFHURXV� DQG� QRQ�FDQFHURXV.� The� results�of� the�polarization�of� the�back-scattered� light�observed�for�each�sample�are�presented�below.Figure�2�presents�the�intensity�of�circular�polarized�laser�light�backscattered�from�the�FHOOV� FXOWXUHV.�The� results� clearly�demonstrate�a�shift�of�the�detected�intensity�of�the�circular�polarized�optical�radiation�backscattered�from�the�the�different�FHOOV� FDOWXUHV.� It� is�also� clearly� seen� that�with� the� increasing� QXFOHDU� VL]H� the�polarization� state� of�backscattered� light�eventually�changes� its�helicity,� as� this� corresponds� to� the� relative�positions�of� the�minima.�

Fig��.�Poincare�sphere�plots�the�SRVLWLRQV�RI�WKH�polarization�vectors�FRUUHVSRQGLQJ�WR�WKH�LQFUHDVH�RI�QXFOHDU�VL]H�

TR� FRQFOXGH�� WKH� GHYHORSHG� system� is� capable� of� detecting� small� changes� LQ� the� scattering� anisotropy� of� VFDWWHULQJ�particles,�VXFK�DV�QXFOHDU�RI�WKH�FHOOV��7his�should�have�obvious�applications�in�the�FDQFHU�GLDJQRVLV,�e.g.�as�the�detection�of�QXFOHDU�VL]H�LQFUHDVH�DW�WKH�SUH�FDQFHURXV�VWDJH.