structuring of stellar coronae

24
Structuring of stellar coronae Dip.Scienze Fisiche e Astronomiche - June 23 rd 2004 Paola Testa Supervisor: G. Peres 1 Collaborations: J.J. Drake 2 , E.E. DeLuca 2 1 University of Palermo, Italy 2 Harvard-Smithsonian CfA, USA

Upload: latham

Post on 13-Jan-2016

67 views

Category:

Documents


0 download

DESCRIPTION

Structuring of stellar coronae. Paola Testa Supervisor: G. Peres 1 Collaborations: J.J. Drake 2 , E.E. DeLuca 2 1 University of Palermo, Italy 2 Harvard-Smithsonian CfA, USA. Dip.Scienze Fisiche e Astronomiche - June 23 rd 2004. Structuring of stellar coronae Spatial structuring - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Structuring of stellar coronae

Structuring of stellar coronae

Dip.Scienze Fisiche e Astronomiche - June 23rd 2004

Paola Testa

Supervisor: G. Peres1

Collaborations: J.J. Drake2, E.E. DeLuca2

1 University of Palermo, Italy

2 Harvard-Smithsonian CfA, USA

Page 2: Structuring of stellar coronae

Structuring of stellar coronaeStructuring of stellar coronae

• Spatial structuring

• Temperature, Density, EM(T) structuring

insights into:

- astrophysical plasma physics

- plasma heating mechanisms

- characteristics of magnetic field

- dynamo processes

- atomic physics

Comparison with physical models

Page 3: Structuring of stellar coronae

Structuring of stellar coronaeStructuring of stellar coronae• Spatial structuring:

Hierarchy of Structures – Different Scales

Whole star -- Active regions -- Loops

smallest observed scale (~700Km)

Page 4: Structuring of stellar coronae

Physics of Coronal Plasma

AIM: UNIFIED SCENARIO of CORONAL PHENOMENA

• Coronal Observations (X-ray, EUV)

- STELLAR CORONAE : spectral diagnostics

- SOLAR CORONA : spatial + spectral information

• Comparison with Loop Models

• Development of Existing Loop Models

- Hydrostatic

- Hydrodynamic

Page 5: Structuring of stellar coronae

High Resolution Spectroscopy of Stellar Coronae

HETG spectra of a sample of 22 active stars at different activity level, different evolutionary stages

• Single Dwarfs: AU Mic, Prox Cen, EV Lac, AB Dor, TW Hya

• Single Giants: HD 223460, 31 Com, Cet, Vel, Canopus

• Active Multiple Systems: ER Vul, 44 Boo, Algol, And,

TZ CrB, TY Pyx, UX Ari, UMa, II Peg, HR 1099,

AR Lac, IM Peg

Page 6: Structuring of stellar coronae

High Resolution Spectroscopy of Stellar Coronae

• Optical Depth - Ly/Ly(Ne, O)

- Direct Path Length Estimate

• Density diagnostics - He-like triplets (Si, Mg, O)

- Dependence on Stellar Parameters (Lx, Fx, gravity, rotation period, Rossby number)

- Estimate of Coronal Filling Factors

- Comparison with Loop Models Expectations

Page 7: Structuring of stellar coronae

Spectroscopy of Stellar Coronae

Density diagnostics (Testa et al., ApJ 2004)

- correlation with Lx, Lx/Lbol

dwarfs

- electron density: < 1013 cm-3 from Si XIII (T~10 MK)

~ 1012 cm-3 from Mg XI (T~6-7 MK)

~ 1010 cm-3 from O VII (T~2-3 MK)higher p for higher T

Page 8: Structuring of stellar coronae

Spectroscopy of Stellar Coronae

Surface Filling Factors:

- remarkably COMPACT CORONAL STRUCTURES especially for the hotter plasma

Mg XI f ~ 10 -

4 – 10

- 1

O VII f ~ 10 -

3 – 1

X-ray surface flux observed in solar AR (Withbroe & Noyes, ARAA, 1977)

Page 9: Structuring of stellar coronae

Structuring of stellar coronaeStructuring of stellar coronae

• Optical depth as diagnostics for structuring:

= n l

= (e2/mc) f (M/2kT)1/2(1/)1/2

n = (nH/ne) AZ (nion/nel) ne

~ 1.16·10-14 · f M1/2 (nH/ne) AZ (nion/nel) ne l

• Study of SOLAR STRUCTURES:

Controversial results from the analysis of FeXVII resonance line at ~15.03Å: Phillips et al. (1996), Schmelz et al. (1997), Saba et al. (1999)

• Analysis of Stellar Emission:

Ness et al. (2003) analysis of large survey of stellar spectra

no clear evidence for resonant scattering from Fe lines

Ness et al. (2003)

Page 10: Structuring of stellar coronae

Effectiveness of diagnostics

- Patterns of Abundances in active stars:

Audard (2003), Drake (2003), show that Fe is underabundant and Ne, O are overabundant in active stars

• Diagnostics from FeXVII lines:

- Atomic physics:

Doron & Behar (2002), Gu (2003) show the relevance of radiative recombination, dielectronic recombination and resonance excitation for interpreting the relative strength of FeXVII-FeXX lines

Optical Depth Analysis

Page 11: Structuring of stellar coronae

(Testa et al. 2004, ApJL)

- Detection of X-ray Resonant Scattering

Optical Depth Analysis

Page 12: Structuring of stellar coronae

Spectroscopy of Stellar Coronae Path Length

Escape probability

(assumption of homogeneity: both emission and absorption occur over the whole l.o.s. through the corona)

p(t) ~ 1 / (1 + 0.43 )

~ 1.16·10-14 · f M1/2 (nH/ne) AZ (nion/nel) ne l

(Kastner & Kastner, 1990;

Kaastra & Mewe, 1995)

Optical Depth

Page 13: Structuring of stellar coronae

Spectroscopy of Stellar Coronae

Path Length Estimate

l R

l ~ 10 LRTV

Page 14: Structuring of stellar coronae

Spectroscopy of Stellar Coronae

Summary

- Coexisting Classes of Coronal Structures with different

• density, temperature, filling factors

- data suggest dependence of ne and filling factors on parameters of stellar activity

- higher Fx values correspond to higher surface filling factors

- characteristic lengths R most of all for hotter plasma

Page 15: Structuring of stellar coronae

Solar Coronal Loops

Data

time series of observations with

- TRACE -EUV narrow band imager (171Å, 195Å)

high spatial resolution and temporal cadence

- CDS/SoHO -EUV spectra

detailed information on thermal structure

Page 16: Structuring of stellar coronae

Solar Coronal Loops

Main Results

- spatial distribution of plasma very different at different T

- EM(T) along the l.o.s. points to thermal structuring of the plasma along the l.o.s. filamentary structure

- EM(T): similar at different heights with ascending portion T

loop baseh ~ 1.7e10cmloop top (~3.5e10cm)

Page 17: Structuring of stellar coronae

Models of Coronal Plasma StructuresModels of Coronal Plasma Structures

• Loop Models

- Hydrostatic

- Hydrodynamic

can be used as diagnostic tools for interpreting both solar and stellar data

- Direct comparison of ne, T structure inside a single loop for spatially resolved solar observations (e.g. Reale ApJ 2002, Testa et al. ApJ 2002)

- Analysis of EM(T) as distribution of loops composing the corona

Page 18: Structuring of stellar coronae

Structuring of stellar coronaeStructuring of stellar coronaeNeed for new Loop Models

• several observed EM(T)~ T with >3/2 typical of hydrostatic loop models (e.g., Rosner, Tucker & Vaiana 1978) with uniform heating and constant cross-section:

e.g. Capella (Dupree et al. 1993, Mewe et al. 2001, Argiroffi et al. 2003);

several RS CVns (e.g. Sanz-Forcada et al. 2001,2002);

giants (e.g. Ayres et al. 1998)

(Sanz-Forcada et al.2002)

Page 19: Structuring of stellar coronae

Structuring of stellar coronaeStructuring of stellar coronae

? loop models with EM(T) with slope steeper than 3/2 ?

We are exploring hydrodynamic loops with heating

concentrated at the footpoints hydrostatic models allowing loop expansion

in the lower layers

Page 20: Structuring of stellar coronae

Loop ModelsLoop ModelsHydrodynamic Loop Model

• heat pulses at the footpoints

• model: symmetric, with uniform cross-section

• solves equations for density, momentum, energy

constant heatingpulsed heating

Page 21: Structuring of stellar coronae

dynamic models of a loop impulsively heated at the footpoints (Testa, Peres & Reale, in prep.)

Loop ModelsLoop ModelsHydrodynamic Loop Model

• heat pulses at the footpoints

• model: symmetric, with uniform cross-section

• solves equations for density, momentum, energy

EM(T) of the Sun (Brosius et al. 1996) and of Capella (Dupree et al. 1996), scaled arbitrarily for clarity.

Page 22: Structuring of stellar coronae

Structuring of stellar coronaeStructuring of stellar coronaeHydrodynamic Loop Model

effective viscosity

P(T) radiative losses function

Spitzer conductivity (Spitzer 1962)

fractional ionization

hydrogen ionization potential

EH=EH (s,t)ad hoc heating function

Page 23: Structuring of stellar coronae

Spectroscopy of Stellar Coronae Path Length

Escape probability

(assumption of homogeneity: both emission and absorption occur over the whole l.o.s. through the corona)

p(t) ~ 1 / (1 + 0.43 )

= n l

= (e2/mc) f (M/2kT)1/2(1/)1/2

n = (nH/ne) AZ (nion/nel) ne

~ 1.16·10-14 · f M1/2 (nH/ne) AZ (nion/nel) ne l

(Kastner & Kastner, 1990;

Kaastra & Mewe, 1995)

Optical Depth

Page 24: Structuring of stellar coronae

Future Work

- development of more realistic plasma models, e.g., multi-species models including allowance for species-dependent heating

- detailed comparison with observations

- modeling of X-ray emitting astrophysical sources other than stellar coronae