structural_design_calculation_for_wpc_pergola.pdf

Upload: ptopic10

Post on 21-Feb-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    1/81

    Structural Design Calculation

    For Pergola

    Revision :5

    Prepared by :EC

    Date : 8/10/2009

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    2/81

    1

    CONTENTS

    1. Introduction..

    2. Design Code and Reference

    3. Design Synopsis

    4. Design Parameters

    4.1 Design Load.

    4.2 Design WindPressure.

    4.3 Loading Combination.

    5. Material Properties

    6. Pergola 2 at Area C: Loading assessment and design.

    7. Pergola 3 at Area D : Loading assessment and design.

    8. Pergola 4 at Area H1 : Loading assessment and design.

    9. Pergola 5 at Area H2 : Loading assessment and design.

    10. Loading schedule and Anchor Bolt Design.

    11. AppendixA - Wind TopographyAnalysis

    Appendix B - Reference Design Intent Drawing

    Appendix C - Recycled Plastic Wood Test Report

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    3/81

    2

    1. Introduction

    This calculation is to design pergolas structure for four numbers proprietary

    pergola located at area C , D , H1 and H2.

    2. Design Code and Reference

    Code of Practice for the Structural Use of Steel 2005

    Code of Practice on Wind Effects Hong Kong - 2004

    Hong Kong Building (Construction) Regulations 1990

    3. Design Synopsis

    The largest loaded span and loading area will be used for design.

    4. Design ParametersFor simplified analysis, Pergolas structure will be designed for weak direction .

    (i.e. largest wind projection area).

    4.1 Design Load

    live load - recycle plastic wood (slat) = 0.75 kPa

    dead load - recycle plastic wood (slat) = 1197 kg/m3

    dead laod pergola steel structure = 7850 kg/m3

    4.2 Design Wind Pressure

    Design Wind Pressure (H

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    4/81

    3

    5. Material Properties

    Structural Steel

    Steel Grade = S275JR unless stated otherwise

    to BS EN 10025 Part 1-6 : 2004 for Hot

    Rolled Sections and BS EN 10210 Part 1 : 2006 for Hot

    finished hollow sections.

    = S275J0H for cold formed steel hollow,

    Strength reduced 25% to 220 N/mm2

    to BS EN 10219 Part 1 : 2006

    Weld Strength = 220 N/mm2

    Welding work shall be complicance with BS EN 1011Part 1:1998

    Electrodes to welding shall be complicance with BS EN ISO 2560:2005.

    Recycled Plastic Wood

    Tensile Strength = 11.9N/mm2

    Bending Strength = 23.7 N/mm2

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    5/81

    4

    6. Pergola 2 at Area C : Loading assessment and design

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    6/81

    3

    2

    3

    3

    Design for Steel Pergola at Ma Hang Headland Park

    Calculation is provided following load transfer path from roof deck to steel post and anchor bolt/steel base plate.

    Largest span, Loaded area, wind topography factor and loading combination will be used for structural member

    design.

    Pergola: 2

    Area : C

    Dead Load

    Slat Self Weight, qds = 1197 kg/m

    Structural Steel Sefl weight, qdst = 7850 kg/m

    Wind Load

    Basic wind pressure , qz = 1.82 kPa

    (H < 5m)

    Wind pressure coefficient, Cp = 2

    Topography factor for Area A, Sa = 1.15

    Design wind pressure, qw =1.15*Sa*Cp *qz = 4.81 kPa

    (Additional 15% wind load is adopted for design)

    Live Load

    Maintenance Live load on roof deck, ql = 0.75 kPa

    Design for 60 (B) mm x 90 mm (D) Slat, Recycled Plastic Wood

    Design

    This

    Slat

    Plan

    From First Principle,4

    Isx = 1/12*60*90^3= 3645000 mm

    Zsx = Isx / (D/2) = 3645000/(90/2)= 81000 mm

    As = B*D = 60*90= 5400 mm

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    7/81

    2

    Maximum span, L = 1900 mm

    Load width for wind load, bw = 60 mm

    Load width for live load, b l =280+60 = 159 mm

    Dead Load

    self weight of slat, wds = 1197*9.81/1000*60/1000*90/1000= 0.063 kN/m

    Live load

    Maintenance live load, wls = 0.75*159/1000= 0.12 kN/m

    Wind load

    Downward wind load, wws = 4.81*60/1000= 0.29 kN/m

    Case 1 : 1.4 DL + 1.6 LL

    Factored UDL on slat , wf1 = 1.4*wds+1.6*wls= 0.28 kN/m

    Case 2 : 1.2 DL + 1.2LL + 1.2WL(download)

    Factored UDL on slat , wf2 = 1.2*wds+1.2*wls+1.2*wws= 0.57 kN/m (Controlled case)

    Case 3 : 1.4 DL + 1.4WL(download)

    Factored UDL on slat , wf3 = 1.4*wds+1.4*wws= 0.49 kN/m

    Use maximum factored UDL for Design, wfd = 0.57 kN/m

    Bending design

    Mf = 1/8*0.57*(1900/1000)^2= 0.26 kNm

    2 2

    fb = Mf / Zs = 0.26*10^6/81000= 3.21 N/mm < 11.9 N/mm

    CHECK OK

    Shear Design

    Vf = 1/2*0.28*1900/1000= 0.27 kN

    fv = Vf / As = 0.27*1000/5400= 0.05 N/mm < 0.6*11.9

    = 7.14 N/mm2

    CHECK OK

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    8/81

    v

    w

    2

    Connection design between 60x90mm slat and 80x50x4mm steel plate

    Design this steel plate connection

    Section

    Design this steel plate connection

    Section

    Load combination : 1.2 DL + 1.2LL + 1.2WL(download) control and is used for design

    Bolt design

    M10 Grade 8.8 Bolt, Ab = 58 mm

    No. of bolt, n = 2

    Factored Shear from slat, Vf = 0.42 kN

    2 2

    Bolt Shear stress, fvb = Vf / (n*Ab) = 3.62 N/mm < 375 N/mm

    CHECK OK

    80 mm(D) x 50 mm(B)x 4 mmsteelplate

    Moment of inertia, I=1/12*4*80^3= 170667 mm4

    Elastic modulus, Z = 170667/(80/2)= 4267 mm3

    Shear Area, A = 80*4= 320 mm2

    Factored Shear from slat, Vf = 0.42 kN

    No. of plate provided per slat, n = 2

    2 2

    Plate shear stress, fvp = Vf / Av / n = 0.66 N/mm < 0.6*220 N/mm

    = 132 N/mm2

    CHECK OK

    Eccentricity, e = 25 mm

    Factored eccentric moment, Me = Vf *e = 0.42*25/1000= 0.01 kNm

    2 2

    Plate bending stress, fbp = Me / Z / n = 0.01*10^6/2/4267= 1.17 N/mm < 220 N/mm

    CHECK OK

    Weld design for 80x50x4mm steel plate and 200x100x22.6kg/m GMS RHS

    Weld length provided, Lw = 80*2= 160 mm

    Weld Moment of inertia, I = 1/12*80^3= 42667 mm3

    Weld Elastic modulus, Zw = 42667/(80/2)= 1067 mm2

    Factored Shear from slat, Vf = 0.42 kN

    Factored Eccentric moment, Me = 0.01 kNm

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    9/81

    Shear Weld stress, fvw = Vf / Lw = 0.42*1000/160= 2.63 N/mm

    Bending weld stress, fbw = Me / Zw = 0.01*10^6/1067= 9.37 N/mm

    Combined weld stress, few = (fbw^2+fvw^2)^1/2 = 9.73N/mm

    Provide 4 mm fillet weld

    Provided weld strength, pw = 0.7*220*4= 616 N/mm > 9.73N/mm

    CHECK OK

    Design for 200x100x22.6kg/m GMS RHS supporting slat

    Load combination : 1.2 DL + 1.2LL + 1.2WL(download) control and is used for design

    Design this RHS

    Section Plan

    Design 200x100x22.6kg/m RHS as cantilever beam

    200x100x22.6kg/m GMS RHS

    I = 14950000 mm4Z = 149000 mm3

    A = 2870 mm2

    Length of RHS = 2000 mm

    No. of Point load from slat, n = 14

    Factored Self weight of RHS = 1.2*22.6*9.81/1000= 0.27 kN/m

    Equivalent Factored UDL on RHS, w = 0.42*2*14/(2000/1000)= 5.88 kN/m

    6.15 kN/m

    Cantilever span, L = 1764 mmFactored moment, Mf =

    Factored Shear, Vf =1/2*6.15*(1764/1000)^2=

    6.15*1764/1000=9.57 kNm

    10.85 kN

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    10/81

    2

    2

    2

    2

    Bending design2 2

    fb = Mf / Z = 9.57*10^6/149000= 64.23 N/mm < 220 N/mm

    CHECK OK

    Shear design2 2

    fv = Vf / Av = 10.85*1000/2870= 3.78 N/mm < 0.6*220 N/mm

    = 132 N/mm 2

    CHECK OK

    Deflection design

    UDL on RHS, wu = 5.88/1.2= 4.9 kN/m

    E = 205000N/mm2

    d = wL^4 / 8EI = 3.2 mm < L / 180

    = 11.11 mm

    Design of Bolt joint at 200x100x22.6 kg/m vertical RHS post supporting RHS cantilever beam

    Load combination : 1.2 DL + 1.2LL + 1.2WL(download) control and is used for design

    Design this boltjoint

    Loaded Unloaded

    Section Section

    Consider only larger projection is loaded and small projection unload for worst case design.

    Bolt design

    Area per bolt, Ab = 157 mm

    No. of bolt provided, n = 4

    For the bolt group,

    Ixx = 10000 mm

    Iyy = 10000 mm

    Ip = Ixx + Iyy = 20000 mm

    Factored Direct Shear for bolt group, Vf = 10.85 kN

    Factored Moment for bolt group, Mf = 9.57 kNm

    Distance of bolt group centroid to one bol (502+502)1/2 = 71 mm

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    11/81

    Factored shear from bending, Vfb = 9.57*10^6*71/20000/1000= 33.97 kN

    For conservative design

    Factored design shear for bolt, Vfd = Vfb + Vf = 33.97+10.85= 44.82 kN

    2 2

    Bolt shear stress, fvb = Vfd / Ab = 44.82*1000/157= 285.48 N/mm < 375 N/mm

    CHECK OK

    Design of 200x100x22.6 kg/m RHS Vertical post

    Design this steelpost

    Each 200x100x22.6kg/m RHS Vertical Post

    I = 14950000 mm4

    Z = 149000 mm3

    A = 2870 mm2

    r = 72 mm

    Effective Height of RHS post, H = 2750 mm

    No of post provided, n = 2

    Case 1 : 1.4DL+1.6LL

    Load widith per RHS post bay, b =

    Load length per RHS post bay, L =

    Load area per RHS post, A = 1.9*2.5=

    No. of slat at roof deck, n =

    Height of RHS post, H =

    1.9 m

    2.5 m

    4.75 m2

    14

    2.75 m

    Dead load: self weight of slat =

    self weight of 200x100x22.6kg/m RHS =

    Self weight of 160x80x14.4kg/m SHS =

    0.063*1.9*14=

    22.6*9.81/1000*2.5=

    14.4*9.81/1000*2.75*2=

    1.68 kN

    0.55 kN

    0.78 kN

    3.01 kN

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    12/81

    2

    Live load : Maintenance live load = 0.75*4.75= 3.56 kN

    DL eccentric moment, Mde= (1.323/3*3.01*1.323/2-0.441/3*3.01*0.441/2)= 0.78 kNm

    LL eccentric moment, Mle= (1.323/3*3.56*1.323/2-0.441/3*3.56*0.441/2)= 0.92 kNm

    w = 1.4DL + 1.6 LL = 9.91 kN

    Axial deisgn

    Pfd = 9.91 kN

    fa = Pfd / A /n= 9.91*1000/2870/2= 1.73 N/mm

    slendereness ratio, = L/r 2750/72= 38.19 1.73N/mm

    CHECK OK

    Bending design

    Eccentric moment, Mfe = (1.323/3*9.91*1.323/2-0.441/3*9.91*0.441/2)/2= 1.28 kNm

    2 2

    fb = Mf e/ Z = 1.28*10^6/149000= 8.59 N/mm < 220 N/mmCHECK OK

    Case 2 : 1.2DL+1.2LL+1.2WL(downward)

    1.2DL+1.2LL+1.2WL(downward)

    Section

    Factored Self weight of 2nos. RHS post = 1.2*22.6*9.81/1000*2750/1000*2= 0.95 kN

    Factored Axial compression from RHS beam, Pf = 10.85 kN

    Factored axial compression, Pfd = 11.8 kN

    Factored moment, Mf = 9.57 kNm

    Axial deisgn

    Pfd = 11.8 kN

    fa = Pfd / A/n = 11.8*1000/2870/2= 2.06 N/mm2

    slendereness ratio, = L/r 2750/72= 38.19 2.06 N/mmCHECK OK

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    13/81

    Bending design

    Mf = 9.57 kNm

    2 2

    fb = Mf / Z/ n = 9.57*10^6/149000/2= 32.11 N/mm < 220 N/mm

    CHECK OK

    Case 3 : 1.2DL + 1.2LL + 1.2WL (lateral)

    Load widith per RHS post bay, b = 1.9 mLoad length per RHS post bay, L =

    Load area per SHS post, A = 1.9*2.5=

    No. of slat at roof deck, n =

    Height of SHS post, H =

    2.5 m

    4.75 m2

    14

    2.75 m

    Dead load: self weight of slat =

    self weight of 200x100x22.6kg/m RHS =

    Self weight of 160x180x14.4kg/m SHS =

    0.063*1.9*14=

    22.6*9.81/1000*2.5=

    14.4*9.81/1000*2.75*2=

    1.68 kN

    0.55 kN

    0.78 kN

    3.01 kN

    Live load : Maintenance live load = 0.75*4.75= 3.56 kN

    Lateral wind load assessment:

    Area I 500

    Area II 200

    Area III 2750

    Lateral wind load

    Section

    (Lateral wind load)

    Design wind pressure, qw =Sa*Cp *qz = 4.81 kPa

    I- Roof Deck

    II- 200x100x22.3kg/m RHS post-2nos. Of 0.7m long

    III- 200x100x22.3kg/m SHS post 2nos. Of 2.75m long

    (1) (2) (3)=(1)*(2)*qw (4) (5)=(3)*(4)Area Project area, A (m) Nos of Projecte Wind shear, SLevel arm, L Moment, M

    b x d Area, n (kN) (m) (kNm)I 0.09 x 1.9 1 0.82 2.75 2.26II 0.5 x 0.1 2 0.48 3.1 1.49III 0.1 x 2.75 2 2.65 1.375 3.64

    3.95 7.39

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    14/81

    w

    w

    2

    2

    Design factored Axial compression, Pf = 1.2DL + 1.2LL= 1.2*3.01+1.2*3.56= 7.88 kN

    Design factored lateral wind shear, Vf = 1.2*S = 1.2*3.95= 4.74 kN

    Design factored bending moment, Mf = 1.2*M = 1.2*7.39= 8.87 kNm

    Axial deisgn

    Pfd = 7.88 kN

    fa = Pfd / A /n= 7.88*1000/2870/2= 1.37 N/mm

    slendereness ratio, = L/r 2750/72= 38.19 1.37N/mm2

    CHECK OK

    Shear design

    Vf = 4.74 kN

    2 2

    fv = Vf / A /n= 4.74*1000/2870/2= 0.83 N/mm > 0.6*220 N/mm

    = 132 N/mm2

    CHECK OK

    Bending design

    Mf = 8.87 kNm

    2 2

    fb = Mf / Z /n= 8.87*10^6/149000/2= 29.77 N/mm < 220 N/mm

    CHECK OK

    Weld Design

    Consider onepost

    Weld length provided, Lw = 2*10+2*80+4*120= 660 mm

    Weld Moment of inertia, I = 2*10*80^2+2*1/12*80^3+4*1/12*120^3+4*80*40^2= 1301333 mm3

    Weld Elastic modulus, Z = 1301333/(200)= 13013 mm2

    Factored Axial compression, Pf = 7.88 kN

    Factored Shear, Vf = 4.74 kNFactored moment, Mf = 8.87 kNm

    Axial Weld stress, faw = Pf / Lw /n = 7.88*1000/660/2= 5.97 N/mm

    Shear Weld stress, fvw = Vf / Lw /n = 4.74*1000/660/2= 3.59 N/mm

    Bending weld stress, fbw = Mf / Zw /n = 8.87*10^6/13013/2= 340.81 N/mm

    For conservative design,

    Combined weld stress, few = fbw+faw+fvw = 340.81+3.59+5.97= 350N/mm

    Provide 6 mm fillet weldProvided weld strength, pw = 0.7*220*6= 924 N/mm > 350 N/mm

    CHECK OK

    Case 4 : 1.4DL+1.4WL(lateral)

    Design factored Axial compression, Pf = 1.4DL 1.4*3.01= 4.21 kN

    Design factored lateral wind shear, Vf = 1.4*S = 1.4*3.95= 5.53 kN

    Design factored bending moment, Mf = 1.4*M = 1.4*7.39= 10.35 kNm

    Axial deisgn

    Pfd = 4.21 kN

    fa = Pfd / A /n= 4.21*1000/2870/2= 0.73 N/mm

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    15/81

    w

    w

    slendereness ratio, = L/r 2750/72= 38.19 0.73N/mm2

    CHECK OK

    Shear design

    Vf = 5.53 kN

    2 2

    fv = Vf / A/n = 5.53*1000/2870/2= 0.96 N/mm < 0.6*220 N/mm= 132 N/mm

    2

    CHECK OK

    Bending design

    Mf = 10.35 kNm

    2 2

    fb = Mf / Z/n = 10.35*10^6/149000/2 = 34.73 N/mm < 220 N/mm

    CHECK OK

    Weld Design

    Weld length provided, Lw = 2*10+2*80+4*120= 660 mm

    Weld Moment of inertia, I = 2*10*80^2+2*1/12*80^3+4*1/12*120^3+4*80*40^2= 1301333 mm3

    Weld Elastic modulus, Z = 1301333/(200)= 13013 mm2

    Factored Axial compression, Pf = 4.21 kN

    Factored Shear, Vf = 5.53 kN

    Factored moment, Mf = 10.35 kNm

    Axial Weld stress, faw = Pf / Lw /n = 4.21*1000/660/2= 3.19 N/mm

    Shear Weld stress, fvw = Vf / Lw /n = 5.53*1000/660/2= 4.19 N/mm

    Bending weld stress, fbw = Mf / Zw /n = 10.35*10^6/13013/2= 397.68 N/mm

    For conservative design,

    Combined weld stress, few = fbw+faw+fvw = 397.68+4.19+3.19= 405N/mm

    Provide 6 mm fillet weld

    Provided weld strength, pw = 0.7*220*6= 924 N/mm > 405N/mm

    CHECK OK

    Case 5 : 1.4DL+1.4WL(downward)

    Load widith per SHS post bay, b = 1.9 m

    Load length per SHS post bay, L = 2.5 m

    Load area per SHS post, A = 1.9*2.5= 4.75 m2

    No. of slat at roof deck, n = 14

    Height of SHS post, H = 2.75 m

    Dead load:

    self weight of slat = 0.063*1.9*14= 1.68 kN

    self weight of 200x100x22.6kg/m RHS = 22.6*9.81/1000*2.5= 0.55 kN

    Self weight of 2nos.160 x80x14.4kg/m SHS = 14.4*9.81/1000*2.75*2= 0.78 kN

    3.01 kN

    1.4DL = 1.4*3.01= 4.214 kN

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    16/81

    Downward wind load :

    Nos. of slat, n = 14

    design wind pressure, qw = 4.81 kPa

    load width per slat, B = 60 mm

    (Section)

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    17/81

    w

    w

    2

    Downward wind load, WLdownward = 60/1000*1.9*14*4.81= 7.68 kN

    Eccentric moment, Me,downward = 7.68*1.935/2= 7.43 kNm

    1.4DL + 1.4 * WLdownward = 13.6 kN

    1.4*Me,downward = 10.402 kNm

    Axial deisgn

    Pfd = 13.6 kN

    fa = Pfd / A /n= 13.5796*1000/2870/2= 2.37 N/mm

    slendereness ratio, = L/r 2750/72= 38.19 2.37N/mm2

    CHECK OK

    Bending design

    Mf = 10.402 kNm

    2 2

    fb = Mf / Z /n= 10.402*10^6/149000/ 2= 34.91 N/mm < 220 N/mm

    CHECK OK

    Weld Design

    Weld length provided, Lw = 2*10+2*80+4*120= 660 mm

    Weld Moment of inertia, I = 2*10*80^2+2*1/12*80^3+4*1/12*120^3+4*80*40^2= 1301333 mm3

    Weld Elastic modulus, Z = 1301333/(200)= 13013 mm2

    Factored Axial compression, Pf = 13.6 kN

    Factored moment, Mf = 10.402 kNm

    Axial Weld stress, faw = Pf / Lw /n = 13.5796*1000/660 /2= 10.29 N/mm

    Bending weld stress, fbw = Mf / Zw /n = 10.402*10^6/13013/2 = 399.68 N/mm

    For conservative design,

    Combined weld stress, few = fbw+faw+fvw = 399.68+10.29= 410N/mm

    Provide 6 mm fillet weld

    Provided weld strength, pw = 0.7*220*6= 924 N/mm > 410N/mm

    CHECK OK

    Case 6 : 1.0DL-1.4WL(downward)

    Load widith per SHS post bay, b = 1.9 mLoad length per SHS post bay, L = 2.5 m

    Load area per SHS post, A = 1.9*2.5= 4.75 m2

    No. of slat at roof deck, n = 14

    Height of SHS post, H = 2.75 m

    Dead load:

    self weight of slat = 0.063*1.9*14= 1.68 kN

    self weight of 200x100x22.6kg/m RHS = 22.6*9.81/1000*2.5= 0.55 kN

    Self weight of 2nos.160 x80x14.4kg/m SHS = 14.4*9.81/1000*2.75*2= 0.78 kN

    3.01 kN

    Live load : Maintenance live load = 0.75*4.75= 3.56 kN

    1.0DL = 1.0*3.01= 3.01 kN

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    18/81

    w

    w

    2

    Downward wind load :

    Nos. of slat, n = 14

    design wind pressure, qw = 4.81 kPa

    load width per slat, B = 60 mm

    (Section)

    Downward wind load, WLdownward = 60/1000*1.9*14*4.81= 7.68 kN

    Eccentric moment, Me,downward = 7.68*1.935/2= 7.43 kNm

    1.0DL - 1.4 * WLdownward = 11.9 kN

    1.4*Me,downward = 10.402 kNm

    Axial deisgn

    Pfd = 11.9 kN

    fa = Pfd / A /n= 11.894*1000//2= 2.07 N/mm

    slendereness ratio, = L/r 2750/72= 38.19 2.07N/mm2

    CHECK OK

    Bending design

    Mf = 10.402 kNm

    2 2

    fb = Mf / Z /n= 10.402*10^6/149000/ 2= 34.91 N/mm < 220 N/mm

    CHECK OK

    Weld Design

    Weld length provided, Lw = 2*10+2*80+4*120= 660 mm

    Weld Moment of inertia, I = 2*10*80^2+2*1/12*80^3+4*1/12*120^3+4*80*40^2= 1301333 mm3

    Weld Elastic modulus, Z = 1301333/(200)= 13013 mm2

    Factored Axial c ompression, Pf = 11.9 kN

    Factored moment, Mf = 10.402 kNm

    Axial Weld stress, faw = Pf / Lw /n = 11.894*1000/660 /2= 9.01 N/mmBending weld stress, fbw = Mf / Zw /n =

    For conservative design,

    10.402*10^6/13013/2 = 399.68 N/mm

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    19/81

    Combined weld stress, few = fbw+faw+fvw = 399.68+9.01= 409N/mm

    Provide 6 mm fillet weld

    Provided weld strength, pw = 0.7*220*6= 924 N/mm > 409N/mm

    CHECK OK

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    20/81

    Design of anchor bolt

    Plan

    Consider Case 1 and Case 5 for steel post,Factored Axial compression, Pf = 13.6 kN (Case 5 control)Factored Shear, Vf =

    Factored moment, Mf =5.5 kN

    10.402 kNm(Case 4 control)

    (Case 5 control)

    Anchor bolt design is performed by Hilti's computer program. Please refer next page.

    Provide 8 nos. HIT-RE500/HAS-E M16x125 bolt

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    21/81

    Loading schedule (unfactoredload)

    Item DL LL DL+LL Lateral windUpward/downward

    windAxial (kN) Axial (kN) Axial (kN) Shear (kN) Moment (kNm) Axial (kN)

    Pergola 4

    at Area

    H1 3.01 3.56 6.57 3.95 7.39 7.68

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    22/81

    7. Pergola 3 at Area D : Loading assessment and design

    5

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    23/81

    3

    2

    3

    3

    Design for Steel Pergola at Ma Hang Headland Park

    Calculation is provided following load transfer path from roof deck to steel post and anchor bolt/steel base plate.

    Largest span, Loaded area, wind topography factor and loading combination will be used for structural member

    design.

    Pergola: 3

    Area : D

    Dead Load

    Slat Self Weight, qds = 1197 kg/m

    Structural Steel Sefl weight, qdst = 7850 kg/m

    Wind Load

    Basic wind pressure , qz = 1.82 kPa

    (H < 5m)

    Wind pressure coefficient, Cp = 2

    Topography factor for Area A, Sa = 1.82

    Design wind pressure, qw =1.15*Sa*Cp *qz = 7.62 kPa

    (Additional 15% wind load is adopted for design)

    Live Load

    Maintenance Live load on roof deck, ql = 0.75 kPa

    Design for 60 (B) mm x 90 mm (D) Slat, Recycled Plastic Wood

    Design

    This

    Slat

    Plan

    From First Principle,4

    Isx = 1/12*60*90^3= 3645000 mm

    Zsx = Isx / (D/2) = 3645000/(90/2)= 81000 mm

    As = B*D = 60*90= 5400 mm

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    24/81

    v f s

    Maximum span, L =2963-100 = 2863 mm

    Load width for wind load, bw = 60 mm

    Load width for live load, b l =280+60 = 153 mm

    Dead Load

    self weight of slat, wds = 1197*9.81/1000*60/1000*90/1000= 0.063 kN/m

    Live load

    Maintenance live load, wls = 0.75*153/1000= 0.11 kN/m

    Wind load

    Downward wind load, wws = 7.62*60/1000= 0.46 kN/m

    Case 1 : 1.4 DL + 1.6 LL

    Factored UDL on slat , wf1 = 1.4*wds+1.6*wls= 0.26 kN/m

    Case 2 : 1.2 DL + 1.2LL + 1.2WL(download)

    Factored UDL on slat , wf2 = 1.2*wds+1.2*wls+1.2*wws= 0.76 kN/m (Controlled case)

    Case 3 : 1.4 DL + 1.4WL(download)

    Factored UDL on slat , wf3 = 1.4*wds+1.4*wws= 0.73 kN/m

    Use maximum factored UDL for Design, wfd = 0.76 kN/m

    Bending design

    Mf = 1/8*0.76*(2863/1000)^2= 0.78 kNm

    2 2

    fb = Mf / Zs = 0.78*10^6/81000= 9.63 N/mm < 11.9 N/mm

    CHECK OK

    Shear Design

    Vf = 1/2*0.26*2863/1000= 0.37 kN

    f = V / A = 0.37*1000/5400= 0.069 N/mm2

    < 0.6*11.9

    = 7.14 N/mm2

    CHECK OK

    Connection design between 60x90mm slat and 80x50x4mm steel plate

    Design this steel plate connection

    Section

    Design this steel plate connection

    Section

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    25/81

    v

    w

    2

    Load combination : 1.2 DL + 1.2LL + 1.2WL(download) control and is used for design

    Bolt design

    M10 Grade 8.8 Bolt, Ab = 58 mm

    No. of bolt, n = 2

    Factored Shear from slat, Vf = 0.42 kN

    2 2

    Bolt Shear stress, fvb = Vf / (n*Ab) = 3.62 N/mm < 375 N/mm

    CHECK OK

    80 mm(D) x 50 mm(B)x 4 mmsteelplate

    Moment of inertia, I 1/12*4*80^3= 170667 mm4

    Elastic modulus, Z = 170667/(80/2)= 4267 mm3

    Shear Area, A = 80*4= 320 mm2

    Factored Shear from slat, Vf = 0.42 kN

    No. of plate provided per slat, n = 2

    2 2

    Plate shear stress, fvp = Vf / Av / n = 0.66 N/mm < 0.6*220 N/mm

    = 132 N/mm2

    CHECK OK

    Eccentricity, e = 25 mm

    Factored eccentric moment, Me = Vf *e = 0.42*25/1000= 0.01 kNm

    2 2

    Plate bending stress, fbp = Me / Z / n = 0.01*10^6/2/4267= 1.17 N/mm < 220 N/mm

    CHECK OK

    Weld design for 80x50x4mm steel plate and 200x100x22.6kg/m GMS RHS

    Weld length provided, Lw = 80*2= 160 mm

    Weld Moment of inertia, I = 1/12*80^3= 42667 mm3

    Weld Elastic modulus, Zw = 42667/(80/2)= 1067 mm2

    Factored Shear from slat, Vf = 0.42 kN

    Factored Eccentric moment, Me = 0.01 kNm

    Shear Weld stress, fvw = Vf / Lw = 0.42*1000/160= 2.63 N/mm

    Bending weld stress, fbw = Me / Zw = 0.01*10^6/1067= 9.37 N/mm

    Combined weld stress, few = (fbw^2+fvw^2)^1/2 = 9.73 N/mm

    Provide 4 mm fillet weld

    Provided weld strength, pw = 0.7*220*4= 616 N/mm > 9.73 N/mm

    CHECK OK

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    26/81

    Design for 200x100x22.6kg/m GMS RHS supporting slat

    Load combination : 1.2 DL + 1.2LL + 1.2WL(download) control and is used for design

    Design this RHS

    Section Plan

    Design 200x100x22.6kg/m RHS as cantilever beam

    200x100x22.6kg/m GMS RHS

    I = 14950000 mm4

    Z = 149000 mm3A = 2870 mm2

    Length of RHS = 2131 mm

    No. of Point load from slat, n = 14

    Factored Self weight of RHS = 1.2*22.6*9.81/1000= 0.27 kN/m

    Equivalent Factored UDL on RHS, w = 0.42*2*14/(2131/1000)= 5.52 kN/m

    5.79 kN/m

    Cantilever span, L = 1764 mm

    Factored moment, Mf = 1/2*5.79*(1764/1000)^2= 9.01 kNm

    Factored Shear, Vf = 5.79*1764/1000= 10.21 kN

    Bending design2 2

    fb = Mf / Z = 9.01*10^6/149000= 60.47 N/mm < 220 N/mm

    CHECK OK

    Shear design2 2

    fv = Vf / Av = 10.21*1000/2870= 3.56 N/mm < 0.6*220 N/mm

    = 132 N/mm2

    CHECK OK

    Deflection design

    UDL on RHS, wu = 5.52/1.2= 4.6 kN/m

    E = 205000 N/mm2d = wL^4 / 8EI = 3.87 mm < L / 180

    = 11.84 mm

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    27/81

    2

    2

    2

    2

    Design of Bolt joint at 200x100x22.6kg/m vertical RHS post supporting RHS cantilever beam

    Load combination : 1.2 DL + 1.2LL + 1.2WL(download) control and is used for design

    Design this boltjoint

    Loaded Unloaded

    Section Section

    Consider only larger projection is loaded and small projection unload for worst case design.

    Bolt design

    Area per bolt, Ab = 157 mm

    No. of bolt provided, n = 4

    For the bolt group,

    Ixx = 10000 mm

    Iyy = 10000 mm

    Ip = Ixx + Iyy = 20000 mm

    Factored Direct Shear for bolt group, Vf = 10.21 kN

    Factored Moment for bolt group, Mf = 9.01 kNm

    Distance of bolt group centroid to onebolt(=502+502)1/2 = 71 mm

    Factored shear from bending, Vfb = 9.01*10^6*71/20000/1000= 31.99 kN

    For conservative design

    Factored design shear for bolt, Vfd = Vfb + Vf = 31.99+10.21= 42.2 kN

    2 2

    Bolt shear stress, fvb = Vfd / Ab = 42.2*1000/157= 268.79 N/mm < 375 N/mm

    CHECK OK

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    28/81

    Design of 200x100x22.6 kg/m RHS Vertical post

    Design this steelpost

    Each 200x100x22.6kg/m RHS Vertical Post

    I = 14950000 mm4

    Z = 149000 mm3

    A = 2870 mm2

    r = 72 mm

    Effective Height of RHS post, H = 2750 mm

    No of post provided, n =

    Case 1 : 1.4DL+1.6LL

    Load widith per RHS post bay, b =

    2

    2.772 mLoad length per RHS post bay, L =

    Load area per RHS post, A = 2.772*2.131=

    No. of slat at roof deck, n =

    Height of RHS post, H =

    2.131 m

    5.91 m2

    14

    2.75 m

    Dead load: self weight of slat =

    self weight of 200x100x22.6kg/m RHS =

    Self weight of 160x80x14.4kg/m SHS =

    0.063*2.772*14=

    22.6*9.81/1000*2.131=

    14.4*9.81/1000*2.75*2=

    2.44 kN

    0.47 kN

    0.78 kN

    3.69 kN

    Live load : Maintenance live load = 0.75*5.91= 4.43 kN

    DL eccentric moment, Mde= (1.323/3*3.69*1.323/2-0.441/3*3.69*0.441/2)= 0.96 kNm

    LL eccentric moment, Mle= (1.323/3*4.43*1.323/2-0.441/3*4.43*0.441/2)= 1.15 kNm

    w = 1.4DL + 1.6 LL = 12.254 kN

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    29/81

    2

    Axial deisgn

    Pfd = 12.254 kN

    fa = Pfd / A /n= 12.254*1000/2870/2= 2.13 N/mm

    slendereness ratio, = L/r 2750/72= 38.19 2.13N/mm

    CHECK OK

    Bending design

    Eccentric moment, Mfe = (1.323/3*12.254*1.323/2-0.441/3*12.254*0.441/2)/2= 1.59 kNm

    2 2

    fb = Mf e/ Z = 1.59*10^6/149000= 10.67 N/mm < 220 N/mm

    CHECK OK

    Case 2 : 1.2DL+1.2LL+1.2WL(downward)

    1.2DL+1.2LL+1.2WL(downward)

    Section

    Factored Self weight of 2nos. RHS post = 1.2*22.6*9.81/1000*2750/1000*2= 0.95 kN

    Factored Axial compression from RHS beam, Pf = 10.21 kN

    Factored axial compression, Pfd = 11.16 kN

    Factored moment, Mf = 9.01 kNm

    Axial deisgn

    Pfd

    = 11.16 kN

    fa = Pfd / A/n = 11.16*1000/2870/2= 1.94 N/mm2

    slendereness ratio, = L/r 2750/72= 38.19 1.94 N/mm

    CHECK OK

    Bending design

    Mf = 9.01 kNm2 2

    fb = Mf / Z/ n = 9.01*10^6/149000/2= 30.23 N/mm < 220 N/mm

    CHECK OK

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    30/81

    Case 3 : 1.2DL + 1.2LL + 1.2WL (lateral)

    Load widith per RHS post bay, b = 2.772 mLoad length per RHS post bay, L =

    Load area per SHS post, A = 2.772*2.131=

    No. of slat at roof deck, n =

    Height of SHS post, H =

    2.131 m

    5.91 m2

    14

    2.75 m

    Dead load: self weight of slat =

    self weight of 200x100x22.6kg/m RHS =

    Self weight of 160x180x14.4kg/m SHS =

    0.063*2.772*14=

    22.6*9.81/1000*2.131=

    14.4*9.81/1000*2.75*2=

    2.44 kN

    0.47 kN

    0.78 kN

    3.69 kN

    Live load : Maintenance live load = 0.75*5.91= 4.43 kN

    Lateral wind load assessment:

    Area I 500

    Area II 200

    Area III 2750

    Lateral wind load

    Section

    (Lateral wind load)

    Design wind pressure, qw =Sa*Cp *qz = 7.62 kPa

    I- Roof Deck

    II- 200x100x22.3kg/m RHS post-2nos. Of 0.7m long

    III- 200x100x22.3kg/m SHS post 2nos. Of 2.75m long

    (1) (2) (3)=(1)*(2)*qw (4) (5)=(3)*(4)Area Project area, A (m) Nos of Projecte Wind shear, SLevel arm, L Moment, M

    b x d Area, n (kN) (m) (kNm)I 0.09 x 2.772 1 1.9 2.75 5.23II 0.5 x 0.1 2 0.76 3.1 2.36III 0.1 x 2.75 2 4.19 1.375 5.76

    6.85 13.35

    Design factored Axial compression, Pf = 1.2DL + 1.2LL= 1.2*3.69+1.2*4.43= 9.74 kN

    Design factored lateral wind shear, Vf = 1.2*S = 1.2*6.85= 8.22 kN

    Design factored bending moment, Mf = 1.2*M = 1.2*13.35= 16.02 kNm

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    31/81

    w

    w

    Axial deisgn

    Pfd = 9.74 kN

    2

    fa = Pfd / A /n= 9.74*1000/2870/2= 1.7 N/mm

    slendereness ratio, = L/r 2750/72= 38.19 1.7 N/mm2

    CHECK OK

    Shear design

    Vf = 8.22 kN

    2 2

    fv = Vf / A /n= 8.22*1000/2870/2= 1.43 N/mm > 0.6*220 N/mm

    = 132 N/mm2

    CHECK OK

    Bending design

    Mf = 16.02 kNm

    2 2

    fb = Mf / Z /n= 16.02*10^6/149000/2= 53.76 N/mm < 220 N/mm

    CHECK OK

    Weld Design

    Consider onepost

    Weld length provided, Lw = 2*10+2*80+4*120= 660 mm

    Weld Moment of inertia, I = 2*10*80^2+2*1/12*80^3+4*1/12*120^3+4*80*40^2= 1301333 mm3

    Weld Elastic modulus, Z = 1301333/(200)= 13013 mm2

    Factored Axial compression, Pf = 9.74 kN

    Factored Shear, Vf = 8.22 kN

    Factored moment, Mf = 16.02 kNm

    Axial Weld stress, faw = Pf / Lw /n = 9.74*1000/660/2= 7.38 N/mm

    Shear Weld stress, fvw = Vf / Lw /n = 8.22*1000/660/2= 6.23 N/mm

    Bending weld stress, fbw = Mf / Zw /n = 16.02*10^6/13013/2= 615.54 N/mm

    For conservative design,

    Combined weld stress, few = fbw+faw+fvw = 615.54+6.23+7.38= 629N/mm

    Provide 6 mm fillet weld

    Provided weld strength, pw = 0.7*220*6= 924 N/mm > 629N/mm

    CHECK OK

    Case 4 : 1.4DL+1.4WL(lateral)

    Design factored Axial compression, Pf = 1.4DL 1.4*3.69= 5.17 kN

    Design factored lateral wind shear, Vf = 1.4*S = 1.4*6.85= 9.59 kN

    Design factored bending moment, Mf = 1.4*M = 1.4*13.35= 18.69 kNm

    Axial deisgn

    Pfd = 5.17 kN

    2

    fa = Pfd / A /n= 5.17*1000/2870/2= 0.9 N/mm

    slendereness ratio, = L/r 2750/72= 38.19 0.9 N/mm2

    CHECK OK

    Shear design

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    32/81

    w

    w

    Vf = 9.59 kN

    2 2

    fv = Vf / A/n = 9.59*1000/2870/2= 1.67 N/mm < 0.6*220 N/mm

    = 132 N/mm2

    CHECK OK

    Bending design

    Mf = 18.69 kNm2 2

    fb = Mf / Z/n = 18.69*10^6/149000/2 = 62.72 N/mm < 220 N/mm

    CHECK OK

    Weld Design

    Weld length provided, Lw = 2*10+2*80+4*120= 660 mm

    Weld Moment of inertia, I = 2*10*80^2+2*1/12*80^3+4*1/12*120^3+4*80*40^2= 1301333 mm3

    Weld Elastic modulus, Z = 1301333/(200)= 13013 mm2

    Factored Axial compression, Pf = 5.17 kN

    Factored Shear, Vf = 9.59 kN

    Factored moment, Mf = 18.69 kNm

    Axial Weld stress, faw = Pf / Lw /n = 5.17*1000/660/2= 3.92 N/mm

    Shear Weld stress, fvw = Vf / Lw /n = 9.59*1000/660/2= 7.27 N/mm

    Bending weld stress, fbw = Mf / Zw /n = 18.69*10^6/13013/2= 718.13 N/mm

    For conservative design,

    Combined weld stress, few = fbw+faw+fvw = 718.13+7.27+3.92= 729N/mm

    Provide 6 mm fillet weld

    Provided weld strength, pw = 0.7*220*6= 924 N/mm > 729N/mm

    CHECK OK

    Case 5 : 1.4DL+1.4WL(downward)

    Load widith per SHS post bay, b = 2.772 m

    Load length per SHS post bay, L = 2.131 m

    Load area per SHS post, A = 2.772*2.131= 5.91 m2No. of slat at roof deck, n = 14Height of SHS post, H = 2.75 m

    Dead load:

    self weight of slat = 0.063*2.772*14= 2.44 kN

    self weight of 200x100x22.6kg/m RHS = 22.6*9.81/1000*2.131= 0.47 kN

    Self weight of 2nos.160 x80x14.4kg/m SHS = 14.4*9.81/1000*2.75*2= 0.78 kN

    3.69 kN

    1.4DL = 1.4*3.69= 5.166 kN

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    33/81

    w

    w

    2

    Downward wind load :

    Nos. of slat, n = 14

    design wind pressure, qw = 7.62 kPa

    load width per slat, B = 60 mm

    (Section)

    Downward wind load, WLdownward = 60/1000*2.772*14*7.62= 17.74 kN

    Eccentric moment, Me,downward = 17.74*1.935/2= 17.16 kNm

    1.4DL + 1.4 * WLdownward = 32.1 kN

    1.4*Me,downward = 24.024 kNm

    Axial deisgn

    Pfd = 32.1 kN

    fa = Pfd / A /n= 32.0684*1000/2870/2= 5.59 N/mm

    slendereness ratio, = L/r 2750/72= 38.19 5.59N/mm2

    CHECK OK

    Bending design

    Mf = 24.024 kNm

    2 2

    fb = Mf / Z /n= 24.024*10^6/149000/ 2= 80.62 N/mm < 220 N/mm

    CHECK OK

    Weld Design

    Weld length provided, Lw = 2*10+2*80+4*120= 660 mm

    Weld Moment of inertia, I = 2*10*80^2+2*1/12*80^3+4*1/12*120^3+4*80*40^2= 1301333 mm3

    Weld Elastic modulus, Z = 1301333/(200)= 13013 mm2

    Factored Axial c ompression, Pf = 32.1 kN

    Factored moment, Mf = 24.024 kNm

    Axial Weld stress, faw = Pf / Lw /n = 32.0684*1000/660 /2= 24.29 N/mm

    Bending weld stress, fbw = Mf / Zw /n = 24.024*10^6/13013/2 = 923.08 N/mm

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    34/81

    2 2 1/2

    Combined weld stress, few = (fbw +faw ) = (923.08^2+24.29^2)^0.5= 923N/mm

    Provide 6 mm fillet weld

    Provided weld strength, pw = 0.7*220*6= 924 N/mm > 923N/mm

    CHECK OK

    Case 6 : 1.0DL-1.4WL(downward)

    Load widith per SHS post bay, b = 2.772 m

    Load length per SHS post bay, L = 2.131 m

    Load area per SHS post, A = 2.772*2.131= 5.91 m2

    No. of slat at roof deck, n = 14

    Height of SHS post, H = 2.75 m

    Dead load:

    self weight of slat = 0.063*2.772*14= 2.44 kN

    self weight of 200x100x22.6kg/m RHS = 22.6*9.81/1000*2.131= 0.47 kN

    Self weight of 2nos.160 x80x14.4kg/m SHS = 14.4*9.81/1000*2.75*2= 0.78 kN

    3.69 kN

    Live load : Maintenance live load = 0.75*5.91= 4.43 kN

    1.0DL = 1.0*3.69= 3.69 kN

    Downward wind load :

    Nos. of slat, n = 14

    design wind pressure, qw = 7.62 kPa

    load width per slat, B = 60 mm

    (Section)

    Downward wind load, WLdownward = 60/1000*2.772*14*7.62= 17.74 kN

    Eccentric moment, Me,downward = 17.74*1.935/2= 17.16 kNm

    1.0DL - 1.4 * WLdownward = 22.9 kN

    1.4*Me,downward = 24.024 kNm

    Axial deisgn

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    35/81

    w

    w

    2

    Pfd = 22.9 kN

    fa = Pfd / A /n= 22.906*1000//2= 3.99 N/mm

    slendereness ratio, = L/r 2750/72= 38.19 3.99N/mm2

    CHECK OK

    Bending design

    Mf = 24.024 kNm

    2 2

    fb = Mf / Z /n= 24.024*10^6/149000/ 2= 80.62 N/mm < 220 N/mm

    CHECK OK

    Weld Design

    Weld length provided, Lw = 2*10+2*80+4*120= 660 mm

    Weld Moment of inertia, I = 2*10*80^2+2*1/12*80^3+4*1/12*120^3+4*80*40^2= 1301333 mm3

    Weld Elastic modulus, Z = 1301333/(200)= 13013 mm2

    Factored Axial compression, Pf = 22.9 kN

    Factored moment, Mf

    = 24.024 kNm

    Axial Weld stress, faw = Pf / Lw /n = 22.906*1000/660 /2= 17.35 N/mm

    Bending weld stress, fbw = Mf / Zw /n = 24.024*10^6/13013/2 = 923.08 N/mm

    For conservative design,2 2 1/2

    Combined weld stress, few = (fbw +faw ) = (923.08^2+22.906^2)^0.5= 923N/mm

    Provide 6 mm fillet weld

    Provided weld strength, pw = 0.7*220*6= 924 N/mm > 923N/mm

    CHECK OK

    Design of anchor bolt

    Plan

    Consider Case 1 and Case 5 for steelpost,Factored Axial c ompression, Pf = 32.1 kN (Case 5 control)Factored Shear, Vf =

    Factored moment, Mf =9.6 kN

    24.024 kNm(Case 4 control)

    (Case 5 control)

    Anchor bolt design is performed by Hilti's computer program. Please refer next page.

    Provide 8 nos. HIT-RE500/HAS-E M16x125 bolt

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    36/81

    Loading schedule (unfactoredload)

    Item DL LL DL+LL Lateral windUpward/downward

    windAxial (kN) Axial (kN) Axial (kN) Shear (kN) Moment (kNm) Axial (kN)

    Pergola 4

    at Area

    H1 3.69 4.43 8.12 6.85 13.35 17.74

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    37/81

    8. Pergola 4 at Area H1 : Loading assessment and design

    6

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    38/81

    3

    2

    3

    3

    Design for Steel Pergola at Ma Hang Headland Park

    Calculation is provided following load transfer path from roof deck to steel post and anchor bolt/steel base plate.

    Largest span, Loaded area, wind topography factor and loading combination will be used for structural member

    design.

    Pergola: 4

    Area : H1

    Dead Load

    Slat Self Weight, qds = 1197 kg/m

    Structural Steel Sefl weight, qdst = 7850 kg/m

    Wind Load

    Basic wind pressure , qz = 1.82 kPa

    (H < 5m)

    Wind pressure coefficient, Cp = 2

    Topography factor for Area A, Sa = 1.82

    Design wind pressure, qw =1.15*Sa*Cp *qz = 7.62 kPa

    (Additional 15% wind load is adopted for design)

    Live Load

    Maintenance Live load on roof deck, ql = 0.75 kPa

    Design for 60 (B) mm x 90 mm (D) Slat, Recycled Plastic Wood

    Design

    This

    Slat

    Plan

    From First Principle,4

    Isx = 1/12*60*90^3= 3645000 mm

    Zsx = Isx / (D/2) = 3645000/(90/2)= 81000 mm

    As = B*D = 60*90= 5400 mm

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    39/81

    v f s

    Maximum span, L = 2100 mm

    Load width for wind load, bw = 60 mm

    Load width for live load, b l =280+60 = 158 mm

    Dead Load

    self weight of slat, wds = 1197*9.81/1000*60/1000*90/1000= 0.063 kN/m

    Live load

    Maintenance live load, wls = 0.75*158/1000= 0.12 kN/m

    Wind load

    Downward wind load, wws = 7.62*60/1000= 0.46 kN/m

    Case 1 : 1.4 DL + 1.6 LL

    Factored UDL on slat , wf1 = 1.4*wds+1.6*wls= 0.28 kN/m

    Case 2 : 1.2 DL + 1.2LL + 1.2WL(download)

    Factored UDL on slat , wf2 = 1.2*wds+1.2*wls+1.2*wws= 0.77 kN/m (Controlled case)

    Case 3 : 1.4 DL + 1.4WL(download)

    Factored UDL on slat , wf3 = 1.4*wds+1.4*wws= 0.73 kN/m

    Use maximum factored UDL for Design, wfd = 0.77 kN/m

    Bending design

    Mf = 1/8*0.77*(2100/1000)^2= 0.42 kNm

    2 2

    fb = Mf / Zs = 0.42*10^6/81000= 5.19 N/mm < 11.9 N/mm

    CHECK OK

    Shear Design

    Vf = 1/2*0.28*2100/1000= 0.29 kN

    f = V / A = 0.29*1000/5400= 0.054 N/mm2

    < 0.6*11.9

    = 7.14 N/mm2

    CHECK OK

    Connection design between 60x90mm slat and 80x50x4mm steel plate

    Design this steel plate connection

    Section

    Design this steel plate connection

    Section

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    40/81

    v

    w

    2

    Load combination : 1.2 DL + 1.2LL + 1.2WL(download) control and is used for design

    Bolt design

    M10 Grade 8.8 Bolt, Ab = 58 mm

    No. of bolt, n = 2

    Factored Shear from slat, Vf = 0.42 kN

    2 2

    Bolt Shear stress, fvb = Vf / (n*Ab) = 3.62 N/mm < 375 N/mm

    CHECK OK

    80 mm(D) x 50 mm(B)x 4 mmsteelplate

    Moment of inertia, I 1/12*4*80^3= 170667 mm4

    Elastic modulus, Z = 170667/(80/2)= 4267 mm3

    Shear Area, A = 80*4= 320 mm2

    Factored Shear from slat, Vf = 0.42 kN

    No. of plate provided per slat, n = 2

    2 2

    Plate shear stress, fvp = Vf / Av / n = 0.66 N/mm < 0.6*220 N/mm

    = 132 N/mm2

    CHECK OK

    Eccentricity, e = 25 mm

    Factored eccentric moment, Me = Vf *e = 0.42*25/1000= 0.01 kNm

    2 2

    Plate bending stress, fbp = Me / Z / n = 0.01*10^6/2/4267= 1.17 N/mm < 220 N/mm

    CHECK OK

    Weld design for 80x50x4mm steel plate and 160x80x17.5kg/m GMS RHS

    Weld length provided, Lw = 80*2= 160 mm

    Weld Moment of inertia, I = 1/12*80^3= 42667 mm3

    Weld Elastic modulus, Zw = 42667/(80/2)= 1067 mm2

    Factored Shear from slat, Vf = 0.42 kN

    Factored Eccentric moment, Me = 0.01 kNm

    Shear Weld stress, fvw = Vf / Lw = 0.42*1000/160= 2.63 N/mm

    Bending weld stress, fbw = Me / Zw = 0.01*10^6/1067= 9.37 N/mm

    Combined weld stress, few = (fbw^2+fvw^2)^1/2 = 9.73 N/mm

    Provide 4 mm fillet weld

    Provided weld strength, pw = 0.7*220*4= 616 N/mm > 9.73 N/mm

    CHECK OK

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    41/81

    Design for 160x80x17.5kg/m GMS RHS supporting slat

    Load combination : 1.2 DL + 1.2LL + 1.2WL(download) control and is used for design

    Design this RHS

    Section Plan

    Design 160x80x17.5kg/m RHS as cantilever beam

    160x80x14.4kg/m GMS RHS

    I = 6120000 mm4

    Z = 76500 mm3A = 1840 mm2

    Length of RHS = 2004 mm

    No. of Point load from slat, n = 13

    Factored Self weight of RHS = 1.2*22.6*9.81/1000= 0.27 kN/m

    Equivalent Factored UDL on RHS, w = 0.42*2*13/(2004/1000)= 5.45 kN/m

    5.72 kN/m

    Cantilever span, L = 1476 mm

    Factored moment, Mf = 1/2*5.72*(1476/1000)^2= 6.23 kNm

    Factored Shear, Vf = 5.72*1476/1000= 8.44 kN

    Bending design2 2

    fb = Mf / Z = 6.23*10^6/76500= 81.44 N/mm < 220 N/mm

    CHECK OK

    Shear design2 2

    fv = Vf / Av = 8.44*1000/1840= 4.59 N/mm < 0.6*220 N/mm

    = 132 N/mm2

    CHECK OK

    Deflection design

    UDL on RHS, wu = 5.45/1.2= 4.54 kN/m

    E = 205000 N/mm2d = wL^4 / 8EI = 7.3 mm < L / 180

    = 11.13 mm

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    42/81

    2

    2

    2

    2

    Design of Bolt joint at 160x80x17.5kg/m vertical RHS post supporting RHS cantilever beam

    Load combination : 1.2 DL + 1.2LL + 1.2WL(download) control and is used for design

    Design this boltjoint

    Loaded Unloaded

    Section Section

    Consider only larger projection is loaded and small projection unload for worst case design.

    Bolt design

    Area per bolt, Ab = 157 mm

    No. of bolt provided, n = 4

    For the bolt group,

    Ixx = 10000 mm

    Iyy = 10000 mm

    Ip = Ixx + Iyy = 20000 mm

    Factored Direct Shear for bolt group, Vf = 8.44 kN

    Factored Moment for bolt group, Mf = 6.23 kNm

    Distance of bolt group centroid to one bol (502+502)1/2 = 71 mm

    Factored shear from bending, Vfb = 6.23*10^6*71/20000/1000= 22.12 kN

    For conservative design

    Factored design shear for bolt, Vfd = Vfb + Vf = 22.12+8.44= 30.56 kN

    2 2

    Bolt shear stress, fvb = Vfd / Ab = 30.56*1000/157= 194.65 N/mm < 375 N/mm

    CHECK OK

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    43/81

    I = 6120000 mm4

    Z = 76500 mm3

    A = 1840 mm2

    r = 58 mm

    Effective Height of RHS post, H = 2750 mm

    No of post provided, n = 2

    Case 1 : 1.4DL+1.6LL

    Load widith per RHS post bay, b = 2.1 m

    Load area per RHS post, A = 2.1*2.005=

    No. of slat at roof deck, n =

    Height of RHS post, H =

    4.21 m2

    13

    2.75 m

    Dead load: self weight of slat =

    self weight of 200x100x22.6kg/m RHS =

    Self weight of 160x80x14.4kg/m SHS =

    0.063*2.1*13=

    22.6*9.81/1000*2.005=

    14.4*9.81/1000*2.75*2=

    1.72 kN

    0.44 kN

    0.78 kN

    2.94 kN

    Design of 160x80x17.5kg/m RHS Vertical post

    Design this steelpost

    Each 160x80x17.5kg/m RHS Vertical Post

    Load length per RHS post bay, L = 2.005 m

    Live load : Maintenance live load = 0.75*4.21= 3.16 kN

    DL eccentric moment, Mde= (1.323/3*2.94*1.323/2-0.441/3*2.94*0.441/2)= 0.76 kNm

    LL eccentric moment, Mle= (1.323/3*3.16*1.323/2-0.441/3*3.16*0.441/2)= 0.82 kNm

    w = 1.4DL + 1.6 LL = 9.172 kN

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    44/81

    2

    Axial deisgn

    Pfd = 9.172 kN

    fa = Pfd / A /n= 9.172*1000/1840/2= 2.49 N/mm

    slendereness ratio, = L/r 2750/58= 47.41 2.49N/mm

    CHECK OK

    Bending design

    Eccentric moment, Mfe = (1.323/3*9.172*1.323/2-0.441/3*9.172*0.441/2)/2= 1.19 kNm

    2 2

    fb = Mf e/ Z = 1.19*10^6/76500= 15.56 N/mm < 220 N/mm

    CHECK OK

    Case 2 : 1.2DL+1.2LL+1.2WL(downward)

    1.2DL+1.2LL+1.2WL(downward)

    Section

    Factored Self weight of 2nos. RHS post = 1.2*22.6*9.81/1000*2750/1000*2= 0.95 kN

    Factored Axial compression from RHS beam, Pf = 8.44 kN

    Factored axial compression, Pfd = 9.39 kN

    Factored moment, Mf = 6.23 kNm

    Axial deisgn

    Pfd

    = 9.39 kN

    fa = Pfd / A/n = 9.39*1000/1840/2= 2.55 N/mm2

    slendereness ratio, = L/r 2750/58= 47.41 2.55 N/mm

    CHECK OK

    Bending design

    Mf = 6.23 kNm2 2

    fb = Mf / Z/ n = 6.23*10^6/76500/2= 40.72 N/mm < 220 N/mm

    CHECK OK

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    45/81

    Case 3 : 1.2DL + 1.2LL + 1.2WL (lateral)

    Load widith per RHS post bay, b = 2.1 mLoad length per RHS post bay, L =

    Load area per SHS post, A = 2.1*2.005=

    No. of slat at roof deck, n =

    Height of SHS post, H =

    2.005 m

    4.21 m2

    13

    2.75 m

    Dead load: self weight of slat =

    self weight of 200x100x22.6kg/m RHS =

    Self weight of 160x180x14.4kg/m SHS =

    0.063*2.1*13=

    22.6*9.81/1000*2.005=

    14.4*9.81/1000*2.75*2=

    1.72 kN

    0.44 kN

    0.78 kN

    2.94 kN

    Live load : Maintenance live load = 0.75*4.21= 3.16 kN

    Lateral wind load assessment:

    Area I 500

    Area II 160

    Area III 2750

    Lateral wind load

    Section

    (Lateral wind load)

    Design wind pressure, qw =Sa*Cp *qz = 7.62 kPa

    I- Roof Deck

    II- 160x80x14.4kg/m RHS post-2nos. Of 0.7m long

    III- 160x80x14.4kg/m SHS post -2.75m long

    (1) (2) (3)=(1)*(2)*qw (4) (5)=(3)*(4)Area Project area, A (m) Nos of Projecte Wind shear, SLevel arm, L Moment, M

    b x d Area, n (kN) (m) (kNm)I 0.09 x 2.1 1 1.44 2.75 3.96II 0.5 x 0.1 2 0.76 3.1 2.36III 0.08 x 2.75 2 3.35 1.375 4.61

    5.55 10.93

    Design factored Axial compression, Pf = 1.2DL + 1.2LL= 1.2*2.94+1.2*3.16= 7.32 kN

    Design factored lateral wind shear, Vf = 1.2*S = 1.2*5.55= 6.66 kN

    Design factored bending moment, Mf = 1.2*M = 1.2*10.93= 13.12 kNm

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    46/81

    w

    w

    2

    2

    Axial deisgn

    Pfd = 7.32 kN

    fa = Pfd / A /n= 7.32*1000/1840/2= 1.99 N/mm

    slendereness ratio, = L/r 2750/58= 47.41 1.99N/mm2

    CHECK OK

    Shear design

    Vf = 6.66 kN

    2 2

    fv = Vf / A /n= 6.66*1000/1840/2= 1.81 N/mm > 0.6*220 N/mm

    = 132 N/mm2

    CHECK OK

    Bending design

    Mf = 13.12 kNm

    2 2

    fb = Mf / Z /n= 13.12*10^6/76500/2= 85.75 N/mm < 220 N/mm

    CHECK OK

    Weld Design

    Consider onepost

    Weld length provided, Lw = 2*10+2*80+4*120= 660 mm

    Weld Moment of inertia, I = 2*10*80^2+2*1/12*80^3+4*1/12*120^3+4*80*40^2= 1301333 mm3

    Weld Elastic modulus, Z = 1301333/(200)= 13013 mm2

    Factored Axial compression, Pf = 7.32 kN

    Factored Shear, Vf = 6.66 kN

    Factored moment, Mf = 13.12 kNm

    Axial Weld stress, faw = Pf / Lw /n = 7.32*1000/660/2= 5.55 N/mm

    Shear Weld stress, fvw = Vf / Lw /n = 6.66*1000/660/2= 5.05 N/mm

    Bending weld stress, fbw = Mf / Zw /n = 13.12*10^6/13013/2= 504.11 N/mm

    For conservative design,

    Combined weld stress, few = fbw+faw+fvw = 504.11+5.05+5.55= 515N/mm

    Provide 6 mm fillet weld

    Provided weld strength, pw = 0.7*220*6= 924 N/mm > 515N/mm

    CHECK OK

    Case 4 : 1.4DL+1.4WL(lateral)

    Design factored Axial compression, Pf = 1.4DL 1.4*2.94= 4.12 kN

    Design factored lateral wind shear, Vf = 1.4*S = 1.4*5.55= 7.77 kN

    Design factored bending moment, Mf = 1.4*M = 1.4*10.93= 15.3 kNm

    Axial deisgn

    Pfd = 4.12 kN

    fa = Pfd / A /n= 4.12*1000/1840/2= 1.12 N/mm

    slendereness ratio, = L/r 2750/58= 47.41 1.12 N/mm2

    CHECK OK

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    47/81

    w

    w

    Shear design

    Vf = 7.77 kN

    2 2

    fv = Vf / A/n = 7.77*1000/1840/2= 2.11 N/mm < 0.6*220 N/mm

    = 132 N/mm2

    CHECK OK

    Bending designMf = 15.3 kNm

    2 2

    fb = Mf / Z/n = 15.3*10^6/76500/2 = 100 N/mm < 220 N/mm

    CHECK OK

    Weld Design

    Weld length provided, Lw = 2*10+2*80+4*120= 660 mm

    Weld Moment of inertia, I = 2*10*80^2+2*1/12*80^3+4*1/12*120^3+4*80*40^2= 1301333 mm3

    Weld Elastic modulus, Z = 1301333/(200)= 13013 mm2

    Factored Axial compression, Pf = 4.12 kN

    Factored Shear, Vf = 7.77 kN

    Factored moment, Mf= 15.3 kNm

    Axial Weld stress, faw = Pf / Lw /n = 4.12*1000/660/2= 3.12 N/mm

    Shear Weld stress, fvw = Vf / Lw /n = 7.77*1000/660/2= 5.89 N/mm

    Bending weld stress, fbw = Mf / Zw /n = 15.3*10^6/13013/2= 587.87 N/mm

    For conservative design,

    Combined weld stress, few = fbw+faw+fvw = 587.87+5.89+3.12= 597N/mm

    Provide 6 mm fillet weld

    Provided weld strength, pw = 0.7*220*6= 924 N/mm > 597N/mm

    CHECK OK

    Case 5 : 1.4DL+1.4WL(downward)

    Load widith per SHS post bay, b = 2.1 m

    Load length per SHS post bay, L = 2.005 m

    Load area per SHS post, A = 2.1*2.005= 4.21 m2No. of slat at roof deck, n = 13Height of SHS post, H = 2.75 m

    Dead load:

    self weight of slat = 0.063*2.1*13= 1.72 kN

    self weight of 200x100x22.6kg/m RHS = 22.6*9.81/1000*2.005= 0.44 kN

    Self weight of 2nos.160 x80x14.4kg/m SHS = 14.4*9.81/1000*2.75*2= 0.78 kN2.94 kN

    1.4DL = 1.4*2.94= 4.116 kN

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    48/81

    w

    w

    2

    Downward wind load :

    Nos. of slat, n = 13

    design wind pressure, qw = 7.62 kPa

    load width per slat, B = 60 mm

    (Section)

    Downward wind load, WLdownward = 60/1000*2.1*13*7.62= 12.48 kN

    Eccentric moment, Me,downward = 12.48*1.935/2= 12.07 kNm

    1.4DL + 1.4 * WLdownward = 23.2 kN

    1.4*Me,downward = 16.898 kNm

    Axial deisgn

    Pfd = 23.2 kN

    fa = Pfd / A /n= 23.2344*1000/1840/2= 6.31 N/mm

    slendereness ratio, = L/r 2750/58= 47.41 6.31N/mm2

    CHECK OK

    Bending design

    Mf = 16.898 kNm

    2 2

    fb = Mf / Z /n= 16.898*10^6/76500/ 2= 110.44 N/mm < 220 N/mm

    CHECK OK

    Weld Design

    Weld length provided, Lw = 2*10+2*80+4*120= 660 mm

    Weld Moment of inertia, I = 2*10*80^2+2*1/12*80^3+4*1/12*120^3+4*80*40^2= 1301333 mm3

    Weld Elastic modulus, Z = 1301333/(200)= 13013 mm2

    Factored Axial c ompression, Pf = 23.2 kN

    Factored moment, Mf = 16.898 kNm

    Axial Weld stress, faw = Pf / Lw /n = 23.2344*1000/660 /2= 17.6 N/mm

    Bending weld stress, fbw = Mf / Zw /n = 16.898*10^6/13013/2 = 649.27 N/mm

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    49/81

    For conservative design,

    Combined weld stress, few = fbw+faw+fvw = 649.27+17.6= 667N/mm

    Provide 6 mm fillet weld

    Provided weld strength, pw = 0.7*220*6= 924 N/mm > 667N/mm

    CHECK OK

    Case 6 : 1.0DL-1.4WL(downward)

    Load widith per SHS post bay, b = 2.1 m

    Load length per SHS post bay, L = 2.005 m

    Load area per SHS post, A = 2.1*2.005= 4.21 m2

    No. of slat at roof deck, n = 13

    Height of SHS post, H = 2.75 m

    Dead load:

    self weight of slat = 0.063*2.1*13= 1.72 kN

    self weight of 200x100x22.6kg/m RHS = 22.6*9.81/1000*2.005= 0.44 kN

    Self weight of 2nos.160 x80x14.4kg/m SHS = 14.4*9.81/1000*2.75*2= 0.78 kN

    2.94 kN

    Live load : Maintenance live load = 0.75*4.21= 3.16 kN

    1.0DL = 1.0*2.94= 2.94 kN

    Downward wind load :

    Nos. of slat, n = 13

    design wind pressure, qw = 7.62 kPa

    load width per slat, B = 60 mm

    (Section)

    Downward wind load, WLdownward = 60/1000*2.1*13*7.62= 12.48 kN

    Eccentric moment, Me,downward = 12.48*1.935/2= 12.07 kNm

    1.0DL - 1.4 * WLdownward = 16.6 kN

    1.4*Me,downward = 16.898 kNm

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    50/81

    w

    w

    2

    Axial deisgn

    Pfd = 16.6 kN

    fa = Pfd / A /n= 16.596*1000//2= 4.51 N/mm

    slendereness ratio, = L/r 2750/58= 47.41 4.51N/mm2

    CHECK OK

    Bending design

    Mf = 16.898 kNm

    2 2

    fb = Mf / Z /n= 16.898*10^6/76500/ 2= 110.44 N/mm < 220 N/mm

    CHECK OK

    Weld Design

    Weld length provided, Lw = 2*10+2*80+4*120= 660 mm

    Weld Moment of inertia, I = 2*10*80^2+2*1/12*80^3+4*1/12*120^3+4*80*40^2= 1301333 mm3

    Weld Elastic modulus, Z = 1301333/(200)= 13013 mm2

    Factored Axial compression, Pf = 16.6 kN

    Factored moment, Mf = 16.898 kNm

    Axial Weld stress, faw = Pf / Lw /n = 16.596*1000/660 /2= 12.57 N/mm

    Bending weld stress, fbw = Mf / Zw /n = 16.898*10^6/13013/2 = 649.27 N/mm

    For conservative design,2 2 1/2

    Combined weld stress, few = (fbw +faw ) = (649.27^2+16.596^2)^0.5= 649N/mm

    Provide 6 mm fillet weld

    Provided weld strength, pw = 0.7*220*6= 924 N/mm > 649N/mm

    CHECK OK

    Design of anchor bolt

    Plan

    Consider Case 1 and Case 5 for steelpost,Factored Axial c ompression, Pf = 23.2 kN (Case 5 control)Factored Shear, Vf =

    Factored moment, Mf =7.8 kN

    16.898 kNm(Case 4 control)

    (Case 5 control)

    Anchor bolt design is performed by Hilti's computer program. Please refer next page.

    Provide 8 nos. HIT-RE500/HAS-E M16x125 bolt

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    51/81

    Loading schedule (unfactoredload)

    Item DL LL DL+LL Lateral windUpward/downward

    windAxial (kN) Axial (kN) Axial (kN) Shear (kN) Moment (kNm) Axial (kN)

    Pergola 4

    at Area

    H1 2.94 3.16 6.1 5.55 10.93 12.48

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    52/81

    9. Pergola 5 at Area H2 : Loading assessment and design

    7

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    53/81

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    54/81

    v f s

    Maximum span, L = 1759 mm

    Load width for wind load, bw = 60 mm

    Load width for live load, b l =290+60 = 150 mm

    Dead Load

    self weight of slat, wds = 1197*9.81/1000*60/1000*90/1000= 0.063 kN/m

    Live load

    Maintenance live load, wls = 0.75*150/1000= 0.11 kN/m

    Wind load

    Downward wind load, wws = 7.62*60/1000= 0.46 kN/m

    Case 1 : 1.4 DL + 1.6 LL

    Factored UDL on slat , wf1 = 1.4*wds+1.6*wls= 0.26 kN/m

    Case 2 : 1.2 DL + 1.2LL + 1.2WL(download)

    Factored UDL on slat , wf2 = 1.2*wds+1.2*wls+1.2*wws= 0.76 kN/m (Controlled case)

    Case 3 : 1.4 DL + 1.4WL(download)

    Factored UDL on slat , wf3 = 1.4*wds+1.4*wws= 0.73 kN/m

    Use maximum factored UDL for Design, wfd = 0.76 kN/m

    Bending design

    Mf = 1/8*0.76*(1759/1000)^2= 0.29 kNm

    2 2

    fb = Mf / Zs = 0.29*10^6/81000= 3.58 N/mm < 11.9 N/mm

    CHECK OK

    Shear Design

    Vf = 1/2*0.26*1759/1000= 0.23 kN

    f = V / A = 0.23*1000/5400= 0.043 N/mm2

    < 0.6*11.9

    = 7.14 N/mm2

    CHECK OK

    Connection design between 60x90mm slat and 80x50x4mm steel plate

    Design this steel plate connection

    Section

    Design this steel plate connection

    Section

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    55/81

    v

    w

    2

    Load combination : 1.2 DL + 1.2LL + 1.2WL(download) control and is used for design

    Bolt design

    M10 Grade 8.8 Bolt, Ab = 58 mm

    No. of bolt, n = 2

    Factored Shear from slat, Vf = 0.42 kN

    2 2

    Bolt Shear stress, fvb = Vf / (n*Ab) = 3.62 N/mm < 375 N/mm

    CHECK OK

    80 mm(D) x 50 mm(B)x 4 mmsteelplate

    Moment of inertia, I 1/12*4*80^3= 170667 mm4

    Elastic modulus, Z = 170667/(80/2)= 4267 mm3

    Shear Area, A = 80*4= 320 mm2

    Factored Shear from slat, Vf = 0.42 kN

    No. of plate provided per slat, n = 2

    2 2

    Plate shear stress, fvp = Vf / Av / n = 0.66 N/mm < 0.6*220 N/mm

    = 132 N/mm2

    CHECK OK

    Eccentricity, e = 25 mm

    Factored eccentric moment, Me = Vf *e = 0.42*25/1000= 0.01 kNm

    2 2

    Plate bending stress, fbp = Me / Z / n = 0.01*10^6/2/4267= 1.17 N/mm < 220 N/mm

    CHECK OK

    Weld design for 80x50x4mm steel plate and 160x80x17.5kg/m GMS RHS

    Weld length provided, Lw = 80*2= 160 mm

    Weld Moment of inertia, I = 1/12*80^3= 42667 mm3

    Weld Elastic modulus, Zw = 42667/(80/2)= 1067 mm2

    Factored Shear from slat, Vf = 0.42 kN

    Factored Eccentric moment, Me = 0.01 kNm

    Shear Weld stress, fvw = Vf / Lw = 0.42*1000/160= 2.63 N/mm

    Bending weld stress, fbw = Me / Zw = 0.01*10^6/1067= 9.37 N/mm

    Combined weld stress, few = (fbw^2+fvw^2)^1/2 = 9.73 N/mm

    Provide 4 mm fillet weld

    Provided weld strength, pw = 0.7*220*4= 616 N/mm > 9.73 N/mm

    CHECK OK

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    56/81

    Design for 160x80x17.5kg/m GMS RHS supporting slat

    Load combination : 1.2 DL + 1.2LL + 1.2WL(download) control and is used for design

    Design this RHS

    Section Plan

    Design 160x80x17.5kg/m RHS as cantilever beam

    160x80x17.5kg/m GMS RHS

    I = 6120000 mm4

    Z = 76500 mm3A = 1840 mm2

    Length of RHS = 2100 mm

    No. of Point load from slat, n = 14

    Factored Self weight of RHS = 1.2*22.6*9.81/1000= 0.27 kN/m

    Equivalent Factored UDL on RHS, w = 0.42*2*14/(2100/1000)= 5.6 kN/m

    5.87 kN/m

    Cantilever span, L = 1764 mm

    Factored moment, Mf = 1/2*5.87*(1764/1000)^2= 9.13 kNm

    Factored Shear, Vf = 5.87*1764/1000= 10.35 kN

    Bending design2 2

    fb = Mf / Z = 9.13*10^6/76500= 119.35 N/mm < 220 N/mm

    CHECK OK

    Shear design2 2

    fv = Vf / Av = 10.35*1000/1840= 5.63 N/mm < 0.6*220 N/mm

    = 132 N/mm2

    CHECK OK

    Deflection design

    UDL on RHS, wu = 5.6/1.2= 4.67 kN/m

    E = 205000 N/mm2d = wL^4 / 8EI = 9.05 mm < L / 180

    = 11.67 mm

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    57/81

    2

    2

    2

    2

    Design of Bolt joint at 160x80x17.5kg/m vertical RHS post supporting RHS cantilever beam

    Load combination : 1.2 DL + 1.2LL + 1.2WL(download) control and is used for design

    Design this boltjoint

    Loaded Unloaded

    Section Section

    Consider only larger projection is loaded and small projection unload for worst case design.

    Bolt design

    Area per bolt, Ab = 157 mm

    No. of bolt provided, n = 4

    For the bolt group,

    Ixx = 10000 mm

    Iyy = 10000 mm

    Ip = Ixx + Iyy = 20000 mm

    Factored Direct Shear for bolt group, Vf = 10.35 kN

    Factored Moment for bolt group, Mf = 9.13 kNm

    Distance of bolt group centroid to one bol (502+502)1/2 = 71 mm

    Factored shear from bending, Vfb = 9.13*10^6*71/20000/1000= 32.41 kN

    For conservative design

    Factored design shear for bolt, Vfd = Vfb + Vf = 32.41+10.35= 42.76 kN

    2 2

    Bolt shear stress, fvb = Vfd / Ab = 42.76*1000/157= 272.36 N/mm < 375 N/mm

    CHECK OK

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    58/81

    Design of 160x80x17.5kg/m RHS Vertical post

    Design this steelpost

    Each 160x80x14.4kg/m RHS Vertical Post

    I = 6120000 mm4

    Z = 76500 mm3

    A = 1840 mm2

    r = 58 mm

    Effective Height of RHS post, H = 2750 mm

    No of post provided, n =

    Case 1 : 1.4DL+1.6LL

    Load widith per RHS post bay, b =

    2

    1.758 mLoad length per RHS post bay, L =

    Load area per RHS post, A = 1.758*2.1=

    No. of slat at roof deck, n =

    Height of RHS post, H =

    2.1 m

    3.69 m2

    8

    2.75 m

    Dead load: self weight of slat =

    self weight of 200x100x22.6kg/m RHS =

    Self weight of 160x80x14.4kg/m SHS =

    0.063*1.758*8=

    22.6*9.81/1000*2.1=

    14.4*9.81/1000*2.75*2=

    1.55 kN

    0.47 kN

    0.78 kN

    2.8 kN

    Live load : Maintenance live load = 0.75*3.69= 2.77 kN

    DL eccentric moment, Mde= (1.323/3*2.8*1.323/2-0.441/3*2.8*0.441/2)= 0.73 kNm

    LL eccentric moment, Mle= (1.323/3*2.77*1.323/2-0.441/3*2.77*0.441/2)= 0.72 kNm

    w = 1.4DL + 1.6 LL = 8.352 kN

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    59/81

    2

    Axial deisgn

    Pfd = 8.352 kN

    fa = Pfd / A /n= 8.352*1000/1840/2= 2.27 N/mm

    slendereness ratio, = L/r 2750/58= 47.41 2.27N/mm

    CHECK OK

    Bending design

    Eccentric moment, Mfe = (1.323/3*8.352*1.323/2-0.441/3*8.352*0.441/2)/2= 1.08 kNm

    2 2

    fb = Mf e/ Z = 1.08*10^6/76500= 14.12 N/mm < 220 N/mm

    CHECK OK

    Case 2 : 1.2DL+1.2LL+1.2WL(downward)

    1.2DL+1.2LL+1.2WL(downward)

    Section

    Factored Self weight of 2nos. RHS post = 1.2*22.6*9.81/1000*2750/1000*2= 0.95 kN

    Factored Axial compression from RHS beam, Pf = 10.35 kN

    Factored axial compression, Pfd = 11.3 kN

    Factored moment, Mf = 9.13 kNm

    Axial deisgn

    Pfd

    = 11.3 kN

    fa = Pfd / A/n = 11.3*1000/1840/2= 3.07 N/mm2

    slendereness ratio, = L/r 2750/58= 47.41 3.07 N/mm

    CHECK OK

    Bending design

    Mf = 9.13 kNm2 2

    fb = Mf / Z/ n = 9.13*10^6/76500/2= 59.67 N/mm < 220 N/mm

    CHECK OK

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    60/81

    Case 3 : 1.2DL + 1.2LL + 1.2WL (lateral)

    Load widith per RHS post bay, b = 1.759 mLoad length per RHS post bay, L =

    Load area per SHS post, A = 1.759*2.1=

    No. of slat at roof deck, n =

    Height of SHS post, H =

    2.1 m

    3.69 m2

    14

    2.75 m

    Dead load: self weight of slat =

    self weight of 200x100x22.6kg/m RHS =

    Self weight of 160x180x14.4kg/m SHS =

    0.063*1.759*14=

    22.6*9.81/1000*2.1=

    14.4*9.81/1000*2.75*2=

    1.55 kN

    0.47 kN

    0.78 kN

    2.8 kN

    Live load : Maintenance live load = 0.75*3.69= 2.77 kN

    Lateral wind load assessment:

    Area I 500

    Area II 160

    Area III 2750

    Lateral wind load

    Section

    (Lateral wind load)

    Design wind pressure, qw =Sa*Cp *qz = 7.62 kPa

    I- Roof Deck

    II- 160x80x14.4kg/m RHS post-2nos. Of 0.7m long

    III- 160x80x14.4kg/m SHS post -2.75m long

    (1) (2) (3)=(1)*(2)*qw (4) (5)=(3)*(4)Area Project area, A (m) Nos of Projecte Wind shear, SLevel arm, L Moment, M

    b x d Area, n (kN) (m) (kNm)I 0.09 x 1.759 1 1.21 2.75 3.33II 0.5 x 0.1 2 0.76 3.1 2.36III 0.08 x 2.75 2 3.35 1.375 4.61

    5.32 10.3

    Design factored Axial compression, Pf = 1.2DL + 1.2LL= 1.2*2.8+1.2*2.77= 6.68 kN

    Design factored lateral wind shear, Vf = 1.2*S = 1.2*5.32= 6.38 kN

    Design factored bending moment, Mf = 1.2*M = 1.2*10.3= 12.36 kNm

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    61/81

    w

    w

    2

    2

    Axial deisgn

    Pfd = 6.68 kN

    fa = Pfd / A /n= 6.68*1000/1840/2= 1.82 N/mm

    slendereness ratio, = L/r 2750/58= 47.41 1.82N/mm2

    CHECK OK

    Shear design

    Vf = 6.38 kN

    2 2

    fv = Vf / A /n= 6.38*1000/1840/2= 1.73 N/mm > 0.6*220 N/mm

    = 132 N/mm2

    CHECK OK

    Bending design

    Mf = 12.36 kNm

    2 2

    fb = Mf / Z /n= 12.36*10^6/76500/2= 80.78 N/mm < 220 N/mm

    CHECK OK

    Weld Design

    Consider onepost

    Weld length provided, Lw = 2*10+2*80+4*120= 660 mm

    Weld Moment of inertia, I = 2*10*80^2+2*1/12*80^3+4*1/12*120^3+4*80*40^2= 1301333 mm3

    Weld Elastic modulus, Z = 1301333/(200)= 13013 mm2

    Factored Axial compression, Pf = 6.68 kN

    Factored Shear, Vf = 6.38 kN

    Factored moment, Mf = 12.36 kNm

    Axial Weld stress, faw = Pf / Lw /n = 6.68*1000/660/2= 5.06 N/mm

    Shear Weld stress, fvw = Vf / Lw /n = 6.38*1000/660/2= 4.83 N/mm

    Bending weld stress, fbw = Mf / Zw /n = 12.36*10^6/13013/2= 474.91 N/mm

    For conservative design,

    Combined weld stress, few = fbw+faw+fvw = 474.91+4.83+5.06= 485N/mm

    Provide 6 mm fillet weld

    Provided weld strength, pw = 0.7*220*6= 924 N/mm > 485N/mm

    CHECK OK

    Case 4 : 1.4DL+1.4WL(lateral)

    Design factored Axial compression, Pf = 1.4DL 1.4*2.8= 3.92 kN

    Design factored lateral wind shear, Vf = 1.4*S = 1.4*5.32= 7.45 kN

    Design factored bending moment, Mf = 1.4*M = 1.4*10.3= 14.42 kNm

    Axial deisgn

    Pfd = 3.92 kN

    fa = Pfd / A /n= 3.92*1000/1840/2= 1.07 N/mm

    slendereness ratio, = L/r 2750/58= 47.41 1.07 N/mm2

    CHECK OK

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    62/81

    w

    w

    Shear design

    Vf = 7.45 kN

    2 2

    fv = Vf / A/n = 7.45*1000/1840/2= 2.02 N/mm < 0.6*220 N/mm

    = 132 N/mm2

    CHECK OK

    Bending designMf = 14.42 kNm

    2 2

    fb = Mf / Z/n = 14.42*10^6/76500/2 = 94.25 N/mm < 220 N/mm

    CHECK OK

    Weld Design

    Weld length provided, Lw = 2*10+2*80+4*120= 660 mm

    Weld Moment of inertia, I = 2*10*80^2+2*1/12*80^3+4*1/12*120^3+4*80*40^2= 1301333 mm3

    Weld Elastic modulus, Z = 1301333/(200)= 13013 mm2

    Factored Axial compression, Pf = 3.92 kN

    Factored Shear, Vf = 7.45 kN

    Factored moment, Mf= 14.42 kNm

    Axial Weld stress, faw = Pf / Lw /n = 3.92*1000/660/2= 2.97 N/mm

    Shear Weld stress, fvw = Vf / Lw /n = 7.45*1000/660/2= 5.64 N/mm

    Bending weld stress, fbw = Mf / Zw /n = 14.42*10^6/13013/2= 554.06 N/mm

    For conservative design,

    Combined weld stress, few = fbw+faw+fvw = 554.06+5.64+2.97= 563N/mm

    Provide 6 mm fillet weld

    Provided weld strength, pw = 0.7*220*6= 924 N/mm > 563N/mm

    CHECK OK

    Case 5 : 1.4DL+1.4WL(downward)

    Load widith per SHS post bay, b = 1.759 m

    Load length per SHS post bay, L = 2.1 m

    Load area per SHS post, A = 1.759*2.1= 3.69 m2No. of slat at roof deck, n = 14Height of SHS post, H = 2.75 m

    Dead load:

    self weight of slat = 0.063*1.759*14= 1.55 kN

    self weight of 200x100x22.6kg/m RHS = 22.6*9.81/1000*2.1= 0.47 kN

    Self weight of 2nos.160 x80x14.4kg/m SHS = 14.4*9.81/1000*2.75*2= 0.78 kN2.8 kN

    1.4DL = 1.4*2.8= 3.92 kN

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    63/81

    w

    w

    2

    Downward wind load :

    Nos. of slat, n = 14

    design wind pressure, qw = 7.62 kPa

    load width per slat, B = 60 mm

    (Section)

    Downward wind load, WLdownward = 60/1000*1.759*14*7.62= 11.26 kN

    Eccentric moment, Me,downward = 11.26*1.935/2= 10.89 kNm

    1.4DL + 1.4 * WLdownward = 21.3 kN

    1.4*Me,downward = 15.246 kNm

    Axial deisgn

    Pfd = 21.3 kN

    fa = Pfd / A /n= 21.252*1000/1840/2= 5.78 N/mm

    slendereness ratio, = L/r 2750/58= 47.41 5.78N/mm2

    CHECK OK

    Bending design

    Mf = 15.246 kNm

    2 2

    fb = Mf / Z /n= 15.246*10^6/76500/ 2= 99.65 N/mm < 220 N/mm

    CHECK OK

    Weld Design

    Weld length provided, Lw = 2*10+2*80+4*120= 660 mm

    Weld Moment of inertia, I = 2*10*80^2+2*1/12*80^3+4*1/12*120^3+4*80*40^2= 1301333 mm3

    Weld Elastic modulus, Z = 1301333/(200)= 13013 mm2

    Factored Axial c ompression, Pf = 21.3 kN

    Factored moment, Mf = 15.246 kNm

    Axial Weld stress, faw = Pf / Lw /n = 21.252*1000/660 /2= 16.1 N/mm

    Bending weld stress, fbw = Mf / Zw /n = 15.246*10^6/13013/2 = 585.8 N/mm

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    64/81

    For conservative design,

    Combined weld stress, few = fbw+faw+fvw = 585.8+16.1= 602N/mm

    Provide 6 mm fillet weld

    Provided weld strength, pw = 0.7*220*6= 924 N/mm > 602N/mm

    CHECK OK

    Case 6 : 1.0DL-1.4WL(downward)

    Load widith per SHS post bay, b = 1.759 m

    Load length per SHS post bay, L = 2.1 m

    Load area per SHS post, A = 1.759*2.1= 3.69 m2

    No. of slat at roof deck, n = 14

    Height of SHS post, H = 2.75 m

    Dead load:

    self weight of slat = 0.063*1.759*14= 1.55 kN

    self weight of 200x100x22.6kg/m RHS = 22.6*9.81/1000*2.1= 0.47 kN

    Self weight of 2nos.160 x80x14.4kg/m SHS = 14.4*9.81/1000*2.75*2= 0.78 kN

    2.8 kN

    Live load : Maintenance live load = 0.75*3.69= 2.77 kN

    1.0DL = 1.0*2.8= 2.8 kN

    Downward wind load :

    Nos. of slat, n = 14

    design wind pressure, qw = 7.62 kPa

    load width per slat, B = 60 mm

    (Section)

    Downward wind load, WLdownward = 60/1000*1.759*14*7.62= 11.26 kN

    Eccentric moment, Me,downward = 11.26*1.935/2= 10.89 kNm

    1.0DL - 1.4 * WLdownward = 15.2 kN

    1.4*Me,downward = 15.246 kNm

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    65/81

    w

    w

    2

    Axial deisgn

    Pfd = 15.2 kN

    fa = Pfd / A /n= 15.18*1000//2= 4.13 N/mm

    slendereness ratio, = L/r 2750/58= 47.41 4.13N/mm2

    CHECK OK

    Bending design

    Mf = 15.246 kNm

    2 2

    fb = Mf / Z /n= 15.246*10^6/76500/ 2= 99.65 N/mm < 220 N/mm

    CHECK OK

    Weld Design

    Weld length provided, Lw = 2*10+2*80+4*120= 660 mm

    Weld Moment of inertia, I = 2*10*80^2+2*1/12*80^3+4*1/12*120^3+4*80*40^2= 1301333 mm3

    Weld Elastic modulus, Z = 1301333/(200)= 13013 mm2

    Factored Axial compression, Pf = 15.2 kN

    Factored moment, Mf = 15.246 kNm

    Axial Weld stress, faw = Pf / Lw /n = 15.18*1000/660 /2= 11.5 N/mm

    Bending weld stress, fbw = Mf / Zw /n = 15.246*10^6/13013/2 = 585.8 N/mm

    For conservative design,2 2 1/2

    Combined weld stress, few = (fbw +faw ) = (585.8^2+15.18^2)^0.5= 586N/mm

    Provide 6 mm fillet weld

    Provided weld strength, pw = 0.7*220*6= 924 N/mm > 586N/mm

    CHECK OK

    Design of anchor bolt

    Plan

    Consider Case 1 and Case 5 for steelpost,Factored Axial c ompression, Pf = 21.3 kN (Case 5 control)Factored Shear, Vf =

    Factored moment, Mf =7.5 kN

    15.246 kNm(Case 4 control)

    (Case 5 control)

    Anchor bolt design is performed by Hilti's computer program. Please refer next page.

    Provide 8 nos. HIT-RE500/HAS-E M16x125 bolt

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    66/81

    Loading schedule (unfactoredload)

    Item DL LL DL+LL Lateral windUpward/downward

    windAxial (kN) Axial (kN) Axial (kN) Shear (kN) Moment (kNm) Axial (kN)

    Pergola 5

    at Area

    H2 2.8 2.77 5.57 5.32 10.3 11.26

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    67/81

    10. Loading Schedule and Anchor Bolt Design

    8

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    68/81

    Loading schedule (unfactoredload)

    Item DL LL DL+LL Lateral windUpward/downward

    wind

    Axial (kN) Axial (kN) Axial (kN) Shear (kN) Moment (kNm) Axial (kN)

    Pergola 1 at

    Area C 3.01 3.56 6.57 3.95 7.39 7.68

    Item DL LL DL+LL Lateral wind

    Upward/downward

    windAxial (kN) Axial (kN) Axial (kN) Shear (kN) Moment (kNm) Axial (kN)

    Pergola 2 at

    Area D 3.69 4.43 8.12 6.85 13.35 17.74

    Item DL LL DL+LL Lateral windUpward/downward

    wind

    Axial (kN) Axial (kN) Axial (kN) Shear (kN) Moment (kNm) Axial (kN)

    Pergola 3 at

    Area H1 2.94 3.16 6.1 5.55 10.93 12.48

    Item DL LL DL+LL Lateral windUpward/downward

    wind

    Axial (kN) Axial (kN) Axial (kN) Shear (kN) Moment (kNm) Axial (kN)

    Pergola 4 at

    Area H2 2.8 2.77 5.57 5.32 10.3 11.26

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    69/81

    Pergola Area Axial (kN) Shear (kN) Moment (kNm)

    2 C 13.6 5.53 10.402

    3 D 32.1 9.59 24.02

    4 H1 23.2 7.77 16.90

    5 H2 21.3 7.45 15.25

    FactoredAnchorbolt design load

    Control case

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    70/81

    User application

    PROFIS Anchor 1.8.0

    http://www.hilti.com/

    Specifier's comments:

    Company:

    Specifier:

    Address:

    Phone/Fax: - / -

    E-Mail:

    Page 1 of 5

    Project:

    Contract No.:

    Responsible:

    Location/Date: - / 23/9/2009

    Anchor type and size: HIT-RE 500 + HAS-E (5.8)-M16

    Effective embedment depth: hef

    = 125 mm

    Material: 5.8

    Approval No.:

    Issued/Valid: - / -

    Proof: Engineering judgement SOFA - after ETAG testing

    Stand-off installation: eb

    = 0 mm (no stand-off) ; t = 12 mm

    Anchor plate: S235 (ST37) ; ; lx x ly x t = 400 x 400 x 12 mm

    Base material: uncracked concrete C25/30, fcc = 30.00 N/mm ; h = 350 mm

    Reinforcement: reinforcement spacing >= 150 mm

    no longitudinal edge reinforcement

    Anchor

    Geometry [mm]

    plan viewy

    section A zx

    t=12

    hef=125

    lx = 400x

    section B zy

    h = 350

    >10hef

    300

    section A

    >10hef

    ly

    = 400

    Loading

    Resulting loads [kN, kNm]Design loads [kN, kNm]

    N 32.10

    Vx 0.00

    Vy 9.59

    Mx -24.02

    My 0.00

    Mz 0.00

    Eccentricity (structural section) [mm]

    ex = 0; ey = 0

    Input data and results must be checked for agreement with the existing conditions and for plausibility!

    PROFIS Anchor ( c ) 2003 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

    http://www.hilti.com/http://www.hilti.com/http://www.hilti.com/
  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    71/81

    NRk,s

    [kN] M,sh

    [kN] Nh[kN]

    72.15 1.500 48.10 26.00

    Rd,p Sd

    Rk,c

    User application

    PROFIS Anchor 1.8.0

    http://www.hilti.com/

    Company: Page 2 of 5Specifier: Project:Address:

    Phone/Fax: - / -

    E-Mail:

    Contract No.:

    Responsible:

    Location/Date: - / 23/9/2009

    Load case (Design loads):

    Anchor reactions [kN]

    Tension force: (+Tension -Pressure)

    Anchor

    1Tension force

    26.00Shear force

    1.202 26.00 1.203 26.00 1.20

    4 11.98 1.20

    5 11.98 1.20

    6 0.00 1.207 0.00 1.20

    8 0.00 1.20

    max. concrete compressive strain [ : 0.18

    max. concrete compressive stress [N/mm : 4.86

    resulting tension force [kN]: 102.00

    resulting compression force [kN]: 69.87

    Tension load

    Design values [kN]

    Proof Load Capacity UtilisationN[%] Status

    Steel failure 26.00 48.10 54 OKPull-out failure 26.00 37.99 68 OK

    Concrete cone failure 101.97 121.65 84 OK

    Steel failure

    NRd,s Sd

    Pull-out failure

    NRk,p

    [kN]

    62.42

    c

    1.095

    M,p

    1.800

    Nh

    [kN]

    37.99

    Nh[kN]

    26.00

    Concrete cone failure2

    Ac,N [mm ]0 2

    Ac,N [mm ] ccr,N [mm] scr,N [mm]

    212500.0 62500.0 125 250

    ec1,N ec2,N re,N s,N ucr,N1.000 0.835 1.000 1.000 1.400

    N0

    [kN] M,c NRd,c [kN] NSd [kN]

    55.11 1.800 121.65 101.97

    Input data and results must be checked for agreement with the existing conditions and for plausibility!

    PROFIS Anchor ( c ) 2003 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

    http://www.hilti.com/http://www.hilti.com/http://www.hilti.com/
  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    72/81

    Input data and results must be checked for agreement with the existing conditions and for plausibility!

    PROFIS Anchor ( c ) 2003 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

    Rk,c V [kN] Sd

    Rk,c

    User application

    PROFIS Anchor 1.8.0

    http://www.hilti.com/

    Company: Page 3 of 5Specifier: Project:Address:

    Phone/Fax: - / -

    E-Mail:

    Contract No.:

    Responsible:

    Location/Date: - / 23/9/2009

    Shear load

    Design values [kN]

    Proof Load Capacity UtilisationV[%] Status

    Steel failure (without lever

    arm)

    Pryout failure

    1.20

    1.20

    34.60

    61.73

    3

    2

    OK

    OKConcrete edge failure in

    direction y+

    9.59 134.07 7 OK

    Steel failure (without lever arm)h

    [kN] Vh[kN]VRk,s [kN]

    43.25

    M,s

    1.250

    VRd,s

    34.60

    Sd

    1.20

    Pryout failure2

    Ac,N

    [mm ]

    300000.0

    0 2

    Ac,N

    [mm ]

    62500.0ccr,N

    [mm]

    125s

    cr,N[mm] k-factor

    250 2.000

    s,N ec1,N ec2,N re,N ucr,N1.000 1.000 1.000 1.000 1.400

    N0

    [kN]

    55.11

    M,c,p

    1.500

    h

    Rd,c1

    61.73

    Vh[kN]

    1.20

    Concrete edge failure in direction y+

    lf [mm] dnom [mm] c1 [mm] A [mm2] A

    0[mm

    2]c,V c,V

    125 16 650 787500.0 1901250.0

    s,V h,V ,V ec,V ucr,V1.000 1.407 1.000 1.000 1.400

    V0

    [kN] M,c VRd,c [kN] VSd [kN]

    246.47 1.500 134.07 9.59

    Combined tension and shear loads

    N VUtilisation

    N,V[%] Status

    0.838 0.072 - 76 OK

    N + V

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    73/81

    Input data and results must be checked for agreement with the existing conditions and for plausibility!

    PROFIS Anchor ( c ) 2003 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

    Sk

    Sk

    User application

    PROFIS Anchor 1.8.0

    http://www.hilti.com/

    Company: Page 4 of 5Specifier: Project:Address:

    Phone/Fax: - / -

    E-Mail:

    Contract No.:

    Responsible:

    Location/Date: - / 23/9/2009

    Displacements

    The displacement of the highest loaded anchor should be calculated according to the relevant approval. The displacement due to

    hole tolerances can be neglected, because this method assumes filled holes (Hilti Dynamic Set). The characteristic loads of the

    highest loaded anchor are

    Nh

    = 20.19 [kN]

    Vh

    = 2.37 [kN]

    The acceptable anchor displacements depend on the fastened construction and must be defined by the designer!

    Proof of the transmission of the anchor loads to the supports

    Transmission of the anchor loads into the concrete

    Checking the transfer of loads into the base is required in accordance with ETAG Section 7.1!

    Shear resistance of base materialShear resistance of the base material must be checked according to relevant approval or Eurocode 2/ BS8110 etc.

    Warnings

    An even load distribution of the shear load is assumed, e.g. by using the Hilti Dynamic Set.

    The compliance with current standards (e.g. EC3) is the responsibility of the user

    Dry hole and standard cleaning are assumed! Temperature influence is neglected!

    Fastening meets the design criteria!

    http://www.hilti.com/http://www.hilti.com/http://www.hilti.com/
  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    74/81

    Input data and results must be checked for agreement with the existing conditions and for plausibility!

    PROFIS Anchor ( c ) 2003 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

    -200 200

    200

    200200

    -200

    -200 -200

    1

    2-150 -150 4 -150 0 7 0

    0 -150 5 150 0 8 150150

    150

    3 150 -150 6 -150 150

    User application

    PROFIS Anchor 1.8.0

    http://www.hilti.com/

    Company: Page 5 of 5Specifier: Project:Address:

    Phone/Fax: - / -

    E-Mail:

    Contract No.:

    Responsible:

    Location/Date: - / 23/9/2009

    Anchorplate, steel: S235 (ST37)

    Section type: Square hollow section - 150 x 150 x 10,0 (150 x 150 x 10)

    Hole diameter df= 18 mm

    Recommended plate thickness: not calculated

    y

    6 7 8

    x

    4 5

    1 2 3

    50.0 50.0

    200.0 200.0

    Coordinates Anchor [mm]

    Anchor x y Anchor x y Anchor x y

    Anchorplate [mm]

    x y

    http://www.hilti.com/http://www.hilti.com/http://www.hilti.com/
  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    75/81

    Appendix A - Wind Topography Analysis

    9

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    76/81

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    77/81

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    78/81

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    79/81

    Appendix B - Reference Design Intent Drawing

    10

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    80/81

    Appendix C - Recycled Plastic Wood Test Report

    1

  • 7/24/2019 Structural_design_calculation_for_WPC_pergola.pdf

    81/81