structural scheme design guide

Download Structural Scheme Design Guide

If you can't read please download the document

Upload: senselessapprentice

Post on 18-Apr-2015

366 views

Category:

Documents


12 download

DESCRIPTION

structural engineering structures

TRANSCRIPT

Structural Scheme Design Guide

Version 3.0 August 1998

Ove Arup & Partners Arup Research & Development

Structural Scheme Design Guide Version 3.0

August 1998

Ove Arup & Partners Arup Research & Development 13 Fitzroy Street London W1P 6BQ Telephone +44 (0)171 636 1531 Facsimile +44 (0)171 465

Index (1/2)

THE ARUP STRUCTURAL SCHEME DESIGN GUIDECONTENTSVER 3.0 / Aug 1998 4.5.5 4.5.6 4.5.7 4.5.8 Bending strength (during construction) Stiffness Safe load tables References

1. Building Geometry & Anatomy1.1 1.2 1.3 1.4 1.5 Typical grid dimensions Typical sections Typical service zone requirements Car parks References

4.6 Timber4.6.1 4.6.2 4.6.3 4.6.4 4.6.5 4.6.6 4.6.7 4.6.8 4.6.9 Rules of thumb Materials supply Grade stresses Sizing of elements in domestic construction Outline of design rules for timber members Selected timber modification factors Modification factor combinations Deflection Fasteners

2. Guide toCosts2.1 2.2 Comparative European costs for material supply Relative costs of steel subgrades

3. Loads3.1 3.2 3.3 3.4 3.5 Density of materials Dead loading Typical imposed loading Imposed loads on barriers References

4.7 Masonry4.7.1 4.7.2 4.7.3 4.7.4 4.7.5 4.7.6 4.7.7 4.7.8 4.7.9 4.7.10 4.7.11 4.7.12 Rules of thumb Load factors Material factors Modular dimensions Typical unit strengths Masonry compressive strength Sizing external wall panels Flexural strength of masonry Internal non-loadbearing masonry walls Freestanding masonry walls Joints Other issues

4.1 Properties of Structural Materials 4.2 Reinforced Concrete4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 4.2.9 Rules of thumb Load factors Beams Slabs Stiffness Columns Creep and Shrinkage Bar and mesh areas and weights References

4.8 Aluminium4.8.1 4.8.2 4.8.3 4.8.4 Main structural alloys Durability Typical physical properties Design

4.3 Prestressed Concrete4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7 4.3.8 Rules of thumb Common strands Common tendons Equivalent loads Allowable stresses at service loads Ultimate bending strength Shear References

4.9 Stainless Steel4.9.1 4.9.2 4.9.3 4.9.4 4.9.6 4.9.7 Material grades Mechanical properties Physical properties Design strength Availability References

4.4 Steel (Non-Composite)4.1.1 4.4.2 4.4.3 4.4.4 4.4.5 4.4.6 4.4.7 4.4.8 4.4.9 4.4.10 4.4.11 Rules of thumb Load factors Design strength Beam design Columns (and beam columns) Portal Frame sizing Element stiffness Connections Corrosion protection Section properties References

5. Foundations5.1 5.2 5.3 5.4 5.5 General Principles Appropriate foundation solutions Presumed allowable bearing values under vertical, non-eccentric static loading Shallow foundations Piled foundations

6. Water Resistant Basements6.1 6.2 6.3 6.4 6.5 6.6 6.7 Rules of thumb Establish client's requirements/expectations Construction options Waterproofing options Critical points Construction joints Movement joints

4.5 Composite Steel and Concrete4.5.1 4.5.2 4.5.3 4.5.4 Rules of thumb Load factors Bending resistance Shear connectors

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.

Ver 3.0 / Aug 98

Index (2/2)6.8 References

7. Fire7.1 7.2 7.3 7.4 7.5 Minimum periods of fire resistance Fire protection to steel elements Fire protection for r einforced concrete Fire protection for masonry Fire requirements for timber

APPENDIX A Mathematical FormulaeA.1 A.2 A.3 A.4 A.5 A.6 Trigonometric functions Hyperbolic functions Standard indefinite integrals Standard substitutions for integration Geometrical properties of plane sections Conversion factors

APPENDIX B Analysis FormulaeB.1 B.2 B.3 B.4 B.5 B.6 B.7 B.8 Elastic bending formulae Elastic torsion formulae Taut wires, cables or chains Vibration Design formulae for beams cantilever Design formulae for beams - fixed both ends Design formulae for beams - simply supported Design formulae for beams - propped cantilever

APPENDIX C Useful Design DataC.1 C.2 C.3 C.4 C.5 C.6 C.7 C.8 C.9 C.10 C.11 C.12 C.13 C.14 C.15 Road transportation limitations Craneage data - double girder Craneage data - double hoist Standard rail sections Typical bend radii - rolled sections Safe loads for 25 tonne capacity mobile crane Standard durbar plate sections RHS sections - standard lengths CHS Sections - standard lengths Carbon steel plate sections - standard sizes Carbon and carbon manganese wide flats - standard sizes Fasteners - mechanical properties and dimensions of typical bolts Fasteners - clearance for tightening Fasteners - high strength friction grip bolts Staircase dimensions

APPENDIX D Proprietary ComponentsD.1 D.2 D.3 D.4 D.5 Macalloy bars Composite decking [Richard Lees Ltd] [Ward Multideck 60] Purlin systems [Metsec] Precast hollow composite concrete floors [Bison] Heavy duty anchors [ Hilti-Feb 1994]

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.

Ver 3.0 / Aug 98

1. Building Geometry and Anatomy (1/4)

1.1.1

BUILDING GEOMETRY AND ANATOMYTYPICAL GRID DIMENSIONS1Preferred dimensions: Offices & retail Some retail outlets Car parks 6.0, 7.2, 9.0, 10.5, 12, 15m grids 5.5m or 11m grids (to suit shop units) (7.5 or 7.2) x (15 - 16m) grids (to span full bay)

Modular sizes for horizontal coordinating dimensions of spacesDimension/space Range of space (mm) A. Zones for columns and loadbearing walls B. Centres of columns and wall zones C. Spaces between column and wall zones D. Openings in walls (e.g. for windows and doorsteps) Note: The first preference for the multiple of size in each case is 300 from 600 300 or 100 from 1200 300 or 100 from 1200 300 or 100 200 to 1800 300 or 100 Multiples of size (mm)

1.2

TYPICAL SECTIONS1Modular sizes for vertical coordinating dimensions of spacesDimension/space Range of space (mm) Multiples of size (mm) A. Floor to ceiling, floor to floor (and roof) from 3600 to 4800 above 4800 B. Zones for floors and roofs 100 to 600 above 600 C. Changes of floor and roof levels above 2400 D. Openings in walls (e.g. for windows) 300 to 3000 600 300 or 100 300 to 2400 300 600 100 300 300 up to 3600 100

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 / Aug98

1. Building Geometry and Anatomy (2/4)

1.3

TYPICAL SERVICE ZONE REQUIREMENTS2

A B C D E F G H

Specified by structural engineer 50mm deflection and tolerance Approx. 500mm HVAC duct or terminal device 50mm support and tolerance 50 - 150mm sprinkler zone 150mm lighting and ceiling zone Specified by Client / Architect Raised floor - data, telecoms., small power. (Specified by M&E : allow for tolerence & precamber)

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 / Aug98

1. Building Geometry and Anatomy (3/4)

1.4

CAR PARKSBay sizes (UK)3Car type Bay length Standard car Large car Disabled persons Coaches 4.75 5.65 4.75 12.00 Long stay 2.30 2.60 Bay width General 2.40 2.75 3.20 min. 4.00 Short stay 2.50 2.90 Turning circle diameter (m) Between kerbs 13.0 15.0 Approx. 13.5m Between walls 14.0 -

Car geometry - area swept for standard large car3 A

ngled parking3Parking angle Stall width parallel to aisle (m) 90 80 70 60 50 45B

Aisle width (one way) Minimum (m) Preferred (m) 6.00 5.25 4.70 4.20 3.80 3.60

Bin width Minimum (m) 15.50 15.4 15.1 14.4 13.9 13.6 Preferred (m) 15.50 15.4 15.3 14.8 14.2 13.7

2.40 2.45 2.60 2.80 3.2 3.4

6.00 5.25 4.50 3.75 3.50 3.50

B

B

B

B

B

Ramp gradients: recommended maxima3 Straight ramps: Helical ramps: rise # 1.500m rise > 1.500m rise # 3.000m rise > 3.000m 1 in 7 1 in 10 1 in 10 1 in 12

If at the top of a ramp steeper than 1 in 10 the floor or roof is laid to a fall of 1 in 60 or steeper away from the ramp, a transition length should be provided. The transition length length should be at least 3m and its gradient half that of the ramp.

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 / Aug98

1. Building Geometry and Anatomy (4/4) Headroom3 Recommended minimum height: 2.050m through the building. If motorcaravans are to be used, allow approx. 2.300m. Check if there are any specific access requirements e.g. emergency vehicles.

1.5

REFERENCES1. BS 6750 : 1986 Modular coordination in building 2. OVE ARUP & PARTNERS, Building Services Concept Design Guide 3. INSTITUTION OF STRUCTURAL ENGINEERS & INSTITUTION OF HIGHWAYS AND TRANSPORTATION, Design Recommendations for Multi-Storey and Underground Car Parks (1984)

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 / Aug98

3. Loads (1/4)

3.

LOADS

Rev A. 22 Feb 1999, units for load at the end of 3.4 corrected.

3.1

DENSITY OF MATERIALS1,2Material Density (kN/m3) Aluminium Asphalt, paving Blockwork Lightweight Standard Brickwork Concrete Facing Cement Chalk, in lumps Clay (in lumps) Clay (dry) Clay (moist) Clay (wet) Concrete Crushed brick Crushed stone Foamed blocks Glass Gravel, clean Iron Cast Wrought Lead, cast or rolled Limestone Normal Lightweight 27.2 22.6 12.6 21.2 22.8 19.7 14.1 11.0 - 12.6 11.0 18.8 - 22.0 20.4 - 25.1 20.4 - 25.1 24.0 18 - 20 12.6 - 15.7 17.3 - 20.4 13.0 27.4 14.1 - 17.3 70.7 75.4 111.1 25.1 Water Steel Timber (Softwoods) C18 C24 C30 Shale Slate, Welsh Snow Wet compact Fresh Plaster Plasterboard Sand Dry Moist Wet Sandstones Marble Mastic Mortar, cement Mud Oils In bulk In barrels In drums Material Density (kN/m3) 25.5 - 27.8 11.0 18.9 - 20.4 16.5 - 18.8 8.8 5.7 7.1 13.3 8.6 15.7 - 18.8 18.1 - 19.6 18.1 - 20.4 12.6 - 18.8 14.1 - 18.8 28.2 3.1 0.9 78.5 - 3.8 - 4.2 - 4.6 9.8

3.23.2.1 C

DEAD LOADINGGeneral1,3 In the absence of specific details, use the following: Floor finish (screed) 75mm Ceiling boards False ceiling Services: nominal HVAC Demountable lightweight partitions Blockwork partitions External walling: curtain walling and glazing cavity walls (lightweight block/brick) 1.2 kN/m2 on plan 0.4 kN/m2 on plan 0.25kN/m2 0.25kN/m2 0.4kN/m2 1.0 kN/m2 on plan 2.5 kN/m2 on plan

0.5 kN/m2 on elevation 3.5 kN/m2 on elevation

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.1/Feb 99

3. Loads (2/4) 3.2.2 C Specific dead loading Composite construction4Layer Typical Thickness (mm) Screed Normal Lightweight Slab Normal Lightweight 130 50 Typical Dead Load on plan kN/m2 1.2 0.9 2.8 - 3.3 * 2.3 - 2.6 *

The lower value is for a trapezoidal deck (Ribdeck AL), the higher value is for a re-entrant profile (Holorib).

C

Cladding1Cladding Arrangement Load on Elevation (kN/m2) Cladding sheeting and fixings Steel wall framing only Framing + brick panels and windows Framing + steel sheeting Windows, industrial type Patent glazing: single double Doors - industrial wood Lath + plaster + studding Plate glass / 25mm thick Lead plywood 0.5 0.25 - 0.4 2.4 0.75 0.25 0.3 0.55 0.4 0.5 0.65

C

WallsWall type Concrete walls Composition 225 wall 12mm plaster each face Masonry wall (280 cavity) 102.5 brick 100 lightweight block and plaster Party wall Cavity wall two 102.5 brick leaves plastered both sides Internal wall 100mm lightweight block plastered both sides 102.5mm brick plastered both sides 225mm thick plastered both sides Curtain wall Acoustic wall Partition Glazing + spandrel 265 brick and block Demountable Stud with lath & plaster 1.4 2.75 4.4 1.0 2.5 1 on plan 0.76 Dead load on elevation (kN/m2) 5.4 0.2 2.25 1.15 5.0

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.1/Feb 99

3. Loads (3/4) Roofs1,5 Description Dead load on plan (kN/m2) (Assuming flat)0.29 0.25 0.41, 0.58 0.62 - 0.70 0.48 - 0.55

Bituman roofing felts (3 layers including chipping) Ceiling tray/panels Asphalt (19mm, 25mm) Tiles (clay laid to 100mm gauge) Concrete tiles interlocking

3.3C C C

TYPICAL IMPOSED LOADING2Be generous at scheme design stage Allow for change of use and flexibility of building. Make no allowance for imposed load reductions during the scheme design except when assessing the load on foundations.Use of structure Intensity of distributed loading (kN/m2) Assembly areas Banking hall Bedrooms (hotels, hospitals) Book stores Churches Classrooms Communal kitchens Corridors Domestic, floor Factories (general industrial) File rooms in offices - compactus Garages (cars and light vans) Grandstands (fixed seats) Gymnasia Libraries - reading rooms - mobile racking Plant / motor rooms etc. Museum floors Rooms with mainframe computers Offices, general Shops (not stock rooms) *2

Concentrated load

5.0 3.0 2.0 2.4 for each metre of storage height (min 6.5) 3.0 3.0 3.0 4.0 1.5 5.0 5.0 7.5 2.5 5.0 5.0 4.0 4.8 for each metre of storage height (min 9.6) 7.5 4.0 3.5 2.5 * 4.02

3.6 2.7 1.8 7.0 2.7 2.7 4.5 4.5 1.4 4.5 4.5 9.0 3.6 3.6 4.5 7.0 4.5 4.5 4.5 2.7 3.6

This may increase up to 5.0 kN/m depending on the clients requirements, add 1.0 kN/m for lightweight demountable partitions. Compact filing system (usually over a small proportion of the floor area e.g. adjacent to cores).

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.1/Feb 99

3. Loads (4/4)

3.43.4.1

IMPOSED LOADS ON BARRIERSThe horizontal force F (in kN), normal to and uniformly distributed over any length of 1.5m of a barrier for a car park, required to withstand the impact of a vehicle is given by:

F'

0.5mv 2 *c%*b

where m v c b

Is the gross mass of the vehicle (in kg); is the velocity of the vehicle (in m/s) normal to the barrier; is the ceformation of the vehicle (in mm); is the deflection of the barrier (in mm).

Variables m v c

Mass of vehicles 2500 kg mass of vehicles 4.5 100

Note : where = 0 use F = 150 kN for mass of vehicle = 2500 kg. b

3.5

REFERENCES 1. SCI, Steelwork Design Guide to BS 5950 (Vol. 4) (1991) 2. OVE ARUP & PARTNERS, Metric Handbook (1970) 3. IStructE & ICE, Manual for the design of reinforced concrete building structures ("Green Book") (1985) 4. RICHARD LEES Ltd, Steel Deck Flooring Systems 5. BS 6399 - Parts 1 & 2

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.1/Feb 99

4.1 Properties (1/1)

4.1

PROPERTIES OF STRUCTURAL MATERIALSModulus of elasticity, E (kN/mm2 or GPa) 21 to 33 (at 28 days) 22 to 34 (at 28 days) 205 70 Shear modulus (units of E) 0.42 E 0.42 E 0.38 E 0.37 E Poissons ratio Thermal expansion ( x 10-6 K-1) 7 - 12 7 - 12 12 23

Material

Density

Concrete, fcu=35 Concrete, fcu=40 (e.g. prestressed) Steel Aluminium alloy Stainless steel Aluminium bronze Cast iron Wrought iron Timber C18 (softwoods) C24 C30

0.20 0.20 0.30 0.33

24 24 78.5 27.2

See section 4.9 105 65 - 95 150 - 220 6.0 (min) 7.2 (min) 8.2 (min) 900 x fk (fk in kN/mm2 or GPa) 0.42 E 0.4 E 0.4 E 0.06 E 0.06 E 0.06 E 0.30 0.25 0.25 16 - 19 11 - 13 11 - 12 4-8 (clay) 11-15 (CaSi) 60 9.8 70.7 75.4 ~3.8 ~4.2 ~4.6

Masonry Water

-

-

Note:

The values given for concrete above are typical and vary with age, shrinkage and creep

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.

Ver 3.0 / Aug 98

4.2 Reinforced Concrete (1/14)

4.2

REINFORCED CONCRETESpan/depth ratios for slabs Slabs requiring support from beams1,7

4.2.1 RULES OF THUMB600 550 500

600

One-way One-way solidSlab depth (mm)Live load kN/m Live load kN/m22

550 50010 7.5

Two-way solid Two-way solid

Slab depth (mm)

450 400 350 300 250 200 150 100 4 5 6

450 400 350 300 250 200 150 100 Live load kN/m 2 Live load kN/m 2. 5.02

10 7.5

5 2.5

7

8

9

10

11

12

4

5

6

7

8

9

10

11

12

Slabs requiring support from columns only800

Multiple span (m) Multiple span (m)

Multiple span (m) Multiple span (m)600

Troughed slabs Troughed slabs700

550

Flat slabs Flat slabs102 Live load kN/m2 Live load kN/m

Slab depth (mm)

600 500

100

Slab depth (mm)

Live load kN/m2 Live load kN/m7.5 5.0d

2

10

500 450 400 350 300 250 200 5.0 2.5

7.5

2.

400150

750 mm

300 200 4 5 6 7 8 92

10

11

12

4

5

6

7

8

9

10

11

12

Multiple span (m)

Multiple span (m)

Design assumptions : 3 spans. Loads: 1.5kN/m has been allowed in addition to self-weight for finishes and services. Exposure: mild exposure conditions and 2 2 one hour fire resistance. Materials in-situ: C35 concrete, main steel, fy = 460N/mm , mild steel links, fy = 250 N/mmTHIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.

Ver 3.2 / August 00

4.2 Reinforced Concrete (2/14) Span/depth ratios for beam1000 9001,7

'L' beams, 300 mmwide web L beams, 300mm wide web200 kN/m 100 kN/m 50 kN/m

900 800

'L' beams, 1200 mm wide web L beams, 1200mm wide web200 kN/m 100 kN/m

50 kN/m

Beam depth (mm)

700 600 500 400 300 200 4 5 6 7 8 25 kN/m one layer of reinforcement two layers of reinforcement 9 10 11 12

Beam depth (mm)

800

700 600 500 400 300 200 4 5 6 7

25 kN/m

one layer of reinforcement two layers of reinforcement 8 9 10 11 12 13 14 15 16

Multiple span Multiple span (m)1000 900

Multiple span (m)900

'T' beams, 600 mm wide web T beams, 600mm wide web200 kN/m

100 kN/m800

'T' beams, 2400 mmwide web T beams, 2400mm wide webBeams depth (mm)700 600 500 400 300 200 400 kN/m

200 kN/m

Beam depth (mm)

800 400 kN/m 700 600 500 400 300 200 4 5 6 7

50 kN/m

50 kN/m 100 kN/m

one layer of reinforcement two layers of reinforcement 8 9 10 11 12

one layer of reinforcement two layers of reinforcement 4 5 6 7 8 9 10 11 12 13 14 15 16

Multiple span (m) Multiple span (m)

Multiple span (m) Multiple span (m)

For the depth of a single span look up size at span +2% Design assumptions : Beam self weight (extra over an assumed 200mm depth of slab) allowed for and included. Exposure: mild exposure conditions and one 2 hour fire resistance. Materials in-situ: C35 concrete, main steel, fy = 460N/mm . T beam width = Beam span / 3.5. Loads are Ultimate.

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.

Ver 3.2 / August 00

4.2 Reinforced Concrete (3/14)

Typical column size - also see section 4.2.6 Minimum column dimensions for 'stocky', braced column = clear height / 17.7 Column area where fcu = 35 N/mm and fy = 460 N/mm is as follows (N is axial force in Newtons):1% steel : Area = N/15 2% steel : Area = N/18 3% steel : Area = N/21 Approximate method for allowing for moments: multiply the axial load from the floor immediately above the column being considered) by: 1.25-interior columns 1.50-edge columns 2.00-corner columns but keep the columns to constant size for the top two storeys.2 2

2

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.

Ver 3.2 / August 00

4.2 Reinforced Concrete (4/14) Typical wall thickness At least 200mm thick (usually 300mm) for normal loads - if less than 1000mm high then 150mm thick is usually allowable. Internal walls: Thickness > Height/15 (unrestrained at top) Thickness > Height/30 (restrained at top)2

Minimum size of elements 6 Where different, values for Hong Kong are in brackets. Member Minimum dimension, mm Columns fully exposed width to fire Cover Beams width cover Slabs with plain soffit thickness cover Slabs with ribbed open thickness soffit and no stirrups width of ribs cover 2 Cover to main reinforcement Fire Rating 2h 300 25 (35) 200 50 125 35 115 110 35

4h 450 25 (35) 240 (280) 70 (80) 170 45 (55) 150 150 55

1h 200 20 (25) 200 45 100 35 90 90 35

Nominal cover Conditions of exposure Mild - protected from adverse conditions 25 20 20* 20* Moderate - condensation, soil 35 30 25 Severe - severe rain, occasional freezing 40 30 Very severe - sea water spray, severe freezing, salts 50 40 Extreme - abrasive action, acidic water, vehicles 60 Maximum free water/cement ratio 0.65 0.60 0.55 0.50 3 Minimum cement content (kg/m ) 275 300 325 350 C30 C35 C40 C45 Lowest grade of concrete 1 Cover to all reinforcement *These covers may be reduced to 15mm provided that the nominal maximum size of aggregate does not exceed 15mm. Where concrete is subject to freezing whilst wet, air-entrainment should be used. NOTE : This table relates to normal-weight aggregate of 20mm nominal size.2

20* 20 25 30 50 0.45 400 C50

Reinforcement weights

These values are approximate and should be used only as a check on the total estimated quantity: Pile caps Rafts Beams Slabs Columns Walls 110 - 150 kg/m 3 60 - 70 kg/m 3 125 - 160 kg/m 3 130 - 220 kg/m 3 220 - 300 kg/m 3 40 - 100 kg/m3

Reinforcement availability Standard sizes (mm): 6, 8, 10, 12, 16, 20, 25, 32, 40 Standard lengths: > 12mm diameter: 12 metres < 12mm diameter: from a coil

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.

Ver 3.2 / August 00

4.2 Reinforced Concrete (5/14)

4.2.2 LOAD FACTORS3Partial safety factors for loads (Values in brackets are for H.K.) Load type Load combination (including earth and water Dead, Gk Imposed, Qk Earth and Wind W k loading where present) adverse beneficial adverse beneficial water, En 1. Dead and imposed 1.4 (1.5) 1.0 1.6 (1.7) 0 1.4* 2. Dead and wind 1.4 1.0 1.4* 1.4 3. Dead, wind and imposed 1.2 1.2 1.2 1.2 1.2 1.2 * For pressures arising from accidental head of water at ground level, a partial factor of 1.2 may be used. Note : The HK dead & imposed factors can be reduced to 1.4 & 1.6 provided the procedure outlined in - PNAP 18F is followed. The 'adverse' and 'beneficial' factors should be used so as to produce the most onerous condition.

4.2.3 BEAMS3For high-tensile reinforcement: fy = 460 N/mm 2 For mild steel: fy = 250 N/mm Bending 2 Mu = 0.156 fcubd If: M < Mu no compression steel2

As =

M 0.87 f y 0.8 d

If: M > Mu compression steel required

As ' =

M - 0.15 f cu b d2 0.87 f y (d - d)

As =

Mu + A s' 0.87 f y 0.8 d

where b equals: Simply Continuous Cantilever supported T-Beam bw + L / 5 bw + L / 7.14 bw L-Beam bw + L / 10 bw + L / 14.29 bw and (i) actual flange width, (ii) beam spacing NOTE: If M > 0.4 fcubfhf(d-0.5hf) for flanged beams, then the neutral axis is in the web and the above formulae are not correct.

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.

Ver 3.2 / August 00

4.2 Reinforced Concrete (6/14) Maximum and minimum areas of longitudinal reinforcement for beams Minimum tension reinforcement (fy = 460 N/mm) Rectangular beams with overall dimensions b and h Flanged beams (web in tension) : bw/b < 0.4 bw/b > 0.4 Flanged beams (flange in tension T - beam over a continuous support): L - beam Transverse reinforcement in flanges of flanged beams (may be slab reinforcement) Minimum compression reinforcement: 0.002 bh 0.0018 bwh 0.0013 bwh 0.0026 bwh 0.0020 bwh 0.0015 hf per metre width 0.002 bh 0.002 bwh 0.04 bwh2

Rectangular beam Flanged beam web in compression:

Maximum reinforcement (tension and compression): Normally main bars in beams should be not less than 16mm diameter. Shear3

Minimum provision of links in beams 2 Value of v (N/mm ) Area of shear reinforcement Less than 0.5vc Grade 250 (mild steel) links equal to 0.18% of the horizontal section throughout the beam, except in members of minor structural importance such as lintels 0.5vc 1.5lx then one-way spanning, else M = wlx ly kNm/m 24 Design for bending as for beams (in 2 directions)lx

Continuous one-way spanning: Bending moments and shear forces for one-way slabs End support End span Penultimate support Moment 0 0.086 Fl -0.086 Fl Shear 0.4 F 0.6 F Shear Ultimate shear check at column face Column (inc. head) 300 x 300 Note: For column sizes other than 300 x 300 the slab depth should be multiplied by the factor = (column perimeter/1200)

Interior spans 0.063 Fl -

Interior supports -0.063 Fl 0.5 F

Notes: 1. fcu = 35 N/mm, 2. Dead load factor = 1.4, 3. Live load factor = 1.6, 4. The value of d/h is assumed to be 0.85, 5. The ratio of Veff/V is assumed to be 1.15,

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.

Ver 3.2 / August 00

4.2 Reinforced Concrete (8/14) Column 300 x 300 Punching shear check at first perimeter for preliminary design (vc = 0.6)

Column 500 x 500 Punching shear check at first perimeter for preliminary design (vc = 0.6)

Notes: 1. fcu = 35 N/mm, 2. Dead load factor = 1.4, 3. Live load factor = 1.6, 4. The value of d/h is assumed to be 0.85, 5. The ratio of Veff/V is assumed to be 1.15,THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.

Ver 3.2 / August 00

4.2 Reinforced Concrete (9/14)

4.2.5 STIFFNESS3Typically require : Total deflection Live Load + creep and < span/250 < span/350 < 20mm

Criterion satisfied if span / effective depth < (Basic x C1 x C2 x C3) Typical multiplers (C1): C1 = 0.8 for flanged beams with bw/b < 0.3 C1 = 10/span(m) for spans beyond 10m C1 = 0.9 for flat slabs (use longer span) NOTE: For two-way slabs on continuous support, use shorter span.4

Basic span/effective depth ratios for rectangular beams Support Rectangular conditions sections Cantilever 7 Simple supported 20 Continuous 26

Tension reinforcement modification factor (C2) fs = service stress in reinforcement2

1.8

Modification factor

1.6

fs = 150 MPa

1.4

fs = 200 MPa

1.2

1

fs = 250 MPa

0.8

fs = 300 MPa

0.6 0 1 2 3 42

5

6

M/bd

Compression reinforcement modification factor (C3)1.6 1.48

Factor

1.36 1.24 1.12 1 0 0.5 1 1.5 2 2.5 3 3.5

100 A's,prov/bd

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.

Ver 3.2 / August 00

4.2 Reinforced Concrete (10/14)

4.2.6 COLUMNSTypical design of columns3

For braced stocky columns use: Ncap = 0.35 fcuAc + 0.67 fyAsc where: fcu Ac fy Asc = characteristic strength of concrete (N/mm) = area of concrete (mm) = yield strength of reinforcement (N/mm) = area of rebars (mm)

Ultimate resistance of braced stocky columns (fcu = 35)Area of section 2 (mm x < 3530 < 4411 < 5294 < 6176 < 7059 3 10 ) 200 x 450 250 x 360 300 x 300 90 200 x 525 250 x 420 300 x 350 105 200 x 615 250 x 490 300 x 410 350 x 350 122.5 200 x 700 250 x 560 300 x 470 350 x 400 140 200 x 800 250 x 640 300 x 540 350 x 460 400 x 400 160 200 x 900 250 x 720 300 x 600 350 x 520 400 x 450 180 200 x1000 250 x 800 300 x 670 350 x 575 400 x 500 200 200 x1200 250 x 960 300 x 800 350 x 690 400 x 600 240 * Note : Scheme design based on 4% rebar should be avoided if possible. Column size & braced, clear storey height limit (mm) p=1% (kN) 1369 1597 1863 2129 2433 2737 3041 3650 p=2% (kN) 1635 1908 2225 2543 2907 3270 3633 4360 p=3% (kN) 1901 2218 2588 2958 3380 3803 4225 5070 p=4%* (kN) 2168 2529 2950 3372 3854 4335 4817 5781

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.

Ver 3.2 / August 00

4.2 Reinforced Concrete (11/14) Column interaction diagrams2

N bhfcu

N h2 fcu

M bh 2 fcu

M h3 fcu

N bhfcu

N h2 fcu

M bh 2 fcuTHIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.

M h3 fcu

Ver 3.2 / August 00

4.2 Reinforced Concrete (12/14)

4.2.7 CREEP & SHRINKAGEShrinkage For normal situations, assume long term shrinkage strain of 300 x 10 Creep For normal situations, assume creep coefficient of = 2 Hence long term E value:E = E28 1+ -6

4.2.8 BAR AND MESH AREAS AND WEIGHTS5 = diameter (mm); p = pitch (mm) Sectional area (mm) per m. width 10 12 16 20 1570 1044 785 628 523 449 393 314 262 2262 1504 1131 905 754 646 566 452 377 4022 2675 2011 1609 1341 1149 1006 804 670 6284 4179 3142 2514 2095 1795 1571 1258 1047

p 50 75 100 125 150 175 200 250 300

6 566 376 283 226 189 162 142 113 94

8 1006 669 503 402 335 287 252 201 168

25 9818 6529 4909 3927 3273 2805 2455 1964 1636

32 16084 10696 8042 6434 5361 4595 4021 3217 2681

40 25132 16713 12566 10053 8377 7180 6283 5026 4189

p 50 75 100 125 150 175 200 250 300

6 4.44 2.96 2.22 1.78 1.48 1.27 1.11 0.89 0.74

8 7.90 5.27 3.95 3.16 2.63 2.26 1.98 1.58 1.32

10 12.32 8.21 6.16 4.93 4.11 3.52 3.08 2.46 2.05

Weight (kg/m) 12 16 17.76 11.84 8.88 7.10 5.92 5.07 4.44 3.55 2.96 31.58 21.05 15.79 12.63 10.53 9.02 7.90 6.32 5.26

20 49.32 32.88 24.66 19.73 16.44 14.09 12.33 9.86 8.22

25 77.08 51.39 38.54 30.83 25.69 22.02 19.27 15.42 12.85

32 126.26 84.17 63.13 50.50 42.09 36.07 31.57 25.25 21.04

40 197.28 131.52 98.64 78.91 65.76 56.36 49.32 39.46 32.88

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.

Ver 3.2 / August 00

4.2 Reinforced Concrete (13/14)

6

8 50 101 151 201 252 302 352 402 453 503 553 604 8 25.1 0.395

Sectional Area (mm ) 10 12 16 79 157 236 314 393 471 550 628 707 785 864 942 10 31.4 0.616 113 226 339 452 566 679 791 905 1018 1131 1244 1357 12 37.7 0.888 201 402 603 804 1006 1207 1408 1609 1810 2011 2212 2413 16 50.2 1.579

2

20 314 628 943 1257 1571 1885 2199 2514 2828 3142 3456 3770 20 62.8 2.466

25 491 982 1473 1964 2455 2945 3436 3927 4418 4909 5400 5891 25 78.5 3.854

32 804 1608 2413 3217 4021 4825 5629 6434 7238 8042 8846 9650 32 100.5 6.313

40 1257 2513 3770 5026 6283 7540 8796 10053 11309 12566 13823 15079 40 125.6 9.864

n 1 28 2 57 3 85 4 113 5 142 6 170 7 198 8 226 9 255 10 283 11 311 12 340 6 Perim. 18.8 (mm/mm) Weight 0.222 (kg/m) n = number of bars

BS Fabric reference A 393 A 252 Square A 193 mesh A 142 A 98 B 1131 B 785 Structural B 503 B 385 mesh B 283 B 196 C 785 C 636 Long C 503 mesh C 385 C 283 Wrapping D 98 mesh D 49 Stock sheet size

Cross wires Nominal Longitudinal wires mass per Nominal Nominal Pitch Area Pitch Area square wire size wire size (mm) (mm) (mm) (mm) metre (kg) (mm) (mm) 10 200 393 10 200 393 6.16 8 200 252 8 200 252 3.95 7 200 193 7 200 193 3.02 6 200 142 6 200 142 2.22 5 200 98 5 200 98 1.54 12 100 1131 8 200 252 10.9 10 100 785 8 200 252 8.14 8 100 503 8 200 252 5.93 7 100 385 7 200 193 4.53 6 100 283 7 200 193 3.73 5 100 196 7 200 193 3.05 10 100 785 6 400 70.8 6.72 9 100 636 6 400 70.8 5.55 8 100 503 5 400 49 4.34 7 100 385 5 400 49 3.41 6 100 283 5 400 49 2.61 5 200 98 5 200 98 1.54 2.5 100 49 2.5 100 49 0.77 Length 4.8m Width 2.4m Sheet area 11.52m

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.

Ver 3.2 / August 00

4.2 Reinforced Concrete (14/14) Shear reinforcement Asv / Sv values for linksNo. of Legs 2 151 3 201 4 302 6 471 314 236 Bar Dia.---Area 8 101 157 10 12 100 125 150 175 200 Link Spacing 225 250 Sv 275 300 325 350 375 400

1.005 0.804 0.670 0.574 0.503 0.447 0.402 0.366 0.335 0.309 0.287 0.268 0.251 1.571 1.257 1.047 0.898 0.785 0.698 0.628 0.571 0.524 0.483 0.449 0.419 0.393 226 2.262 1.810 1.508 1.293 1.131 1.005 0.905 0.823 0.754 0.696 0.646 0.603 0.565 1.508 1.206 1.005 0.862 0.754 0.670 0.603 0.548 0.503 0.464 0.431 0.402 0.377 2.356 1.885 1.571 1.346 1.178 1.047 0.942 0.857 0.785 0.725 0.673 0.628 0.589 339 3.393 2.714 2.262 1.939 1.696 1.508 1.357 1.234 1.131 1.044 0.969 0.905 0.848 2.011 1.608 1.340 1.149 1.005 0.894 0.804 0.731 0.670 0.619 0.574 0.536 0.503 3.142 2.513 2.094 1.795 1.571 1.396 1.257 1.142 1.047 0.967 0.898 0.838 0.785 452 4.524 3.619 3.016 2.585 2.262 2.011 1.810 1.645 1.508 1.392 1.293 1.206 1.131 3.016 2.413 2.011 1.723 1.508 1.340 1.206 1.097 1.005 0.928 0.862 0.804 0.754 4.712 3.770 3.142 2.693 2.356 2.094 1.885 1.714 1.571 1.450 1.346 1.257 1.178 679 6.786 5.429 4.524 3.878 3.393 3.016 2.714 2.468 2.262 2.088 1.939 1.810 1.696

4.2.9 REFERENCES1. REINFORCED CONCRETE COUNCIL, Reinforcing Links Issue IIA, June 1997. 2. IStructE & ICE, Manual for the design of reinforced concrete building structures ("Green book") (1985) 3. BS 8110, Structural use of concrete, Part 1: 1985 Code of practice for design and construction 4. PALLADIAN PUBLICATIONS, Handbook to BS 8110 (1987) 5. OVE ARUP & PARTNERS, Reinforcement detailing manual (1990) 6. Code of Practice for Fire Resisting Construction, HK, 1996. 7. Goodchild C.H, Economic Concrete Frame Elements (1997),

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.

Ver 3.2 / August 00

4.3 Prestressed Concrete (1/6)

4.3

PRESTRESSED CONCRETE

4.3.1 RULES OF THUMBAdvantages of using prestressed concrete ! Increased clear spans ! Thinner slabs ! Lighter structures ! Reduced cracking and deflections ! Reduced storey height ! Rapid construction ! Water tightness Note: use of prestressed concrete does not significantly affect the ultimate limit state (except by virtue of the use of a higher grade of steel).

Maximum length of slab 50m, bonded or unbonded, stressed from both ends. 25m, bonded, stressed from one end only. Mean prestress Typically: P/A . 1 to 2 N/mm Cover Take minimum cover to be 25mm. Allow sufficient cover for (at least) nominal bending reinforcement over the columns, in both directions (typically T16 bars in each direction). Effect of restraint to floor shortening Post-tensioned floors must be able to shorten to enable the prestress to be applied to the floor. Typical span/total depth ratios for a variety of section types of multi-span prestressed floors2

;THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 / Aug 98

4.3 Prestressed Concrete (2/6) [Typical span/total depth ratios for multi-span prestressed floors (cont.)]

;

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 / Aug 98

4.3 Prestressed Concrete (3/6)

4.3.2 COMMON STRANDS4Nominal diameter (mm) Standard 15.2 12.5 11.0 9.3 Super 15.7 12.9 11.3 9.6 8.0 Compact/ Dyform 18.0 15.2 12.7 139 93 71 52 150 100 75 55 38 223 165 112 1.090 0.730 0.557 0.408 1.180 0.785 0.590 0.432 0.298 1.750 1.295 0.890 Steel area (mm2) Mass (kg/m) Nominal tensile strength (N/mm) 1670 1770 1770 1770 1770 1860 1860 1860 1860 1700 1820 1860 Characteristic breaking load (kN) 232 164 125 92 265* 186 139 102 70 380 300 209 Modulus of elasticity (kN/mm2 or GPa) 195 10 195 10 195 10 195 10 195 10 195 10 195 10 195 10 195 10 195 10 195 10 195 10

* 279 also available, details not yet published

4.3.3 COMMON TENDONS1No. strands per duct for 15.7mm "super" strand 1 7 12 15 19 27 37 70% UTS (kN) 186 1299 2226 2783 3525 5009 6864 Internal sheath (mm) 25 65 75 85 95 110 130 250 300 375 315 365 450 375 450 525 175 200 210 245 270 300 630 750 750 900 950 1000 350 390 390 510 610 720 150 250 250 250 250 250 a b c Length (mm) Anchor sizes Jack

N (mm)

Stroke (mm)

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 / Aug 98

4.3 Prestressed Concrete (4/6)

4.3.4 EQUIVALENT LOADS6

4.3.5 ALLOWABLE STRESSES AT SERVICE LOADSIn service Compression beams: 0.33fcu (0.4fcu at supports for indeterminate beams) At transfer bending: 0.5fci compression: 0.4fci 1.0 N/mm2 0.45 %(fci) 0.36 %(fci)

columns: 0.25fcu Tension Class 1: No tension Class 2: 2N/mm2 post-tensioned 3N/mm2 pre-tensioned Class 3: See BS 8110

4.3.6 ULTIMATE BENDING STRENGTH6For rectangular beams or T beams with neutral axis in flange:

fpe fpu

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 / Aug 98

4.3 Prestressed Concrete (5/6)

4.3.7 SHEARRequire that vu < 0.8 %(fcu) and 5N/mm2

Except that inclined tendons may contribute to a reduced effective shear force on the concrete provided the shear zone is not cracked in bending at Mult. Ultimate shear check at column face Column (inc. head) 300 x 300 Note: For column sizes other than 300 x 300, the slab depth should be multiplied by the factor (column perimeter/1200)

Explanation

Information to be used in conjunction with the graph: 1. fcu = 40 N/mm 2. Dead load factor = 1.4 3. Live load factor = 1.6 4. The value of d/h is assumed to be 0.85 5. The ratio of Veff/V is assumed to be 1.15 6. These curves do not take account of elastic distribution effects 7. The maximum shear stress for fcu = 40 N/mm and more is 5 N/mm. For fcu < 40 N/mm the maximum shear stress is 0.8 %fcu For fcu = 35 N/mm increase slab depth by a factor of 1.06 For fcu = 30 N/mm increase slab depth by a factor of 1.14

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 / Aug 98

4.3 Prestressed Concrete (6/6) Column 300 x 300 Punching shear check for preliminary design (vc = 0.75 N/mm)

Column 500 x 500 Punching shear check for preliminary design (vc = 0.75 N/mm)

4.3.8 REFERENCES1. PSC FREYSSINET, The K Range 2. ARUP, Notes on Structures 29, June 1991 3. BRIDON ROPES, Ropes and Lifting Gear 4. BS 5896 : 1980, High tensile steel wire and strand for the prestressing of concrete 5. ARUP, Notes on Structures 18, June 1989 6. PALLADIAN PUBLICATIONS, Handbook to BS 8110 (1987)

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 / Aug 98

4.4 Steel (Non-composite) (1/21)

4.4

STEEL (NON-COMPOSITE)

4.4.1 RULES OF THUMB! Choice of beam systemElement Floor Beams (UBs) (including floor slab) Plate girder Slimfloor (steel only) Castellated UBs* Lattice girders (RSAs)+ Lattice girders (Tubular) Roof trusses (pitch>20O) Space Frames 10-12 25-28 14-17 12-15 15-18 14-15 20-24 6-9m 12-20m up to 35m up to 100m up to 17m up to 60m Typical Span/depth 15-18 Typical Span (m) up to 12m

* Avoid if high point loads; increase Ireq by 1.3 + Precamber by L/250 ! Initial scheming chart One-or-two spans: Read depth directly from chart Multiple spans: Deduct 50mm from depth estimated by chart

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 / Aug 98

4.4 Steel (Non-composite) (2/21)

4.4.1 Rules of thumb (Contd)! Steel grades Generally grade 50 (Fe 510) (S 355)is most economical for quantities over 40 tonnes.Note: Grade 50 not readily available from stockholders. Therefore expect a 6 week additional lead in time. Typically, grade 50B sections cost 5% by weight more than grade 43B --- see section 2.3.

!

Columns Preliminary design based on a concentric axial load (see section 4.4.4). For top storey: Prelim. design axial load = total axial load

+ 4 difference in Y-Y axis load + 2 difference in X-X axis load

For intermediate storey: Prelim. design axial load = total axial load

+ 2 difference in Y-Y axis load + 1 difference in X-X axis load

Typical maximum column sizes for braced frames: - 203 UC for buildings up to 3 storeys high. - 254 UC for buildings up to 5 storeys high. - 305 UC for buildings up to 8 storeys high. - 356 UC for buildings from 8 to 12 storeys high. ! Struts and ties Slenderness limits: - members resisting load other than wind: 8#180 - members resisting self weight and wind only: 8#250 - members normally acting as a tie but subject to load reversal due to wind: 8#350 Minimum CHS sections which satisfy slenderness limits Slenderness Limit 180 250 350 Effective Length (m) 4 76.1 x 3.2 60.6 x 3.2 42.2 x 4.6 6 114.3 x 3.6 76.1 x 3.2 60.3 x 3.2 8 139.7 x 5.0 114.3 x 3.6 76.1 x 3.2 10 168.3 x 5.0 139.7 x 5.0 88.9 x 3.2 12 193.7 x 5.0 139.7 x 5.0 114.3 x 3.6

!

Portal Frames - Hauch length = span / 10 - Haunch depth = rafter depth (same section) - Minimum rafter slope = 2.5O - Rafter depth = span / 60 (approx.) - Stanchion depth = span / 50 (approx. --- not high bay)

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 / Aug 98

4.4 Steel (Non-composite) (3/21)

4.4.2 LOAD FACTORSLoadcase Dead Load adverse 1. Dead + imposed 2. Dead + Wind 3. Dead + imposed + Wind 4. Dead + imposed + notional horizontal* * Notional horizontal load: 1% of factored dead load at each level or 0.5% of factored dead plus live load at each level, whichever is greater 1.4 1.4 1.2 1.4 beneficial 1.0 1.0 1.0 1.4 Imposed Load adverse 1.6 1.2 1.3 beneficial 0 1.0 1.3 1.4 1.2 (1.2) (1.2) (1.2) WindTemperature

4.4.3 DESIGN STRENGTH

Grade BS 4360 : 1986 (BS EN 10025 : 1990) 43 (Fe 430) (S 275)

Thickness (mm)

py (N/mm) 275 265 255 245

Grade BS 4360 : 1986 (BS EN 10025 : 1990) 50 (Fe 510) (S 355)

Thickness (mm)

Py (N/mm) 355 345 340 325

# 16 # 40 # 63< 100

# 16 # 40 # 63< 100

4.4.4 BEAM DESIGNUltimate strength in bending Compression flange restrained Mcx = pySx 1.2 pySx (plastic & compact) Mcx = pySx (semi-compact) Requirement : Mcx $ Mmax Compression flange unrestrained: Mb = pbSx Mcx (see restrained beam)Note : Mb obtained directly from graph (P.5/23)

Requirement : Mb $ mMmax (for beam not loaded between restrained points) where m = 0.57 + 0.33$ + 0.1$2 0.43 $ is positive for single curvature, $ is negative for double curvature. Conservatively, (and for non equal flange beams) m = 1.0

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 / Aug 98

4.4 Steel (Non-composite) (4/21) BENDINGUniversal Beams DbMass (mmmm Kg/m) 914419388 914419343 914305289 914305201 838292226 838292176 762267197 762267147 686254170 686254125 610305238 610305149 610229140 610229101 533210122 53321082 45719198 45719167 45715282 45715252 40617874 40617854 40614046 40614039 35617167 35617145 35612739 35612733 30516554 30516540 30512748 30512737 30510233 30510225 25414643 25414631 25410228 25410222 20313330 20313325 Mcx kNm 4680 4100 3340 2220 2430 1800 1900 1370 1490 1060 1980 1460 1100 794 849 566 592 405 477 301 415 289 245 198 334 213 180 148 232 172 194 149 132 92.4 156 109 97.4 71.6 86.2 71.2 L1 m(1.0)

GRADE 43 L2 m(0.75)

GRADE 50 L4 m(0.35)

L3 m(0.5)

Pv kN 3150 2810 2890 2180 2180 1860 1910 1550 1600 1260 1870 1150 1290 1050 1110 837 847 636 791 564 661 505 458 413 547 401 378 339 395 306 456 361 341 292 313 253 275 243 215 194

Mcx kNm 6020 5270 4280 2840 3110 2320 2440 1760 1910 1360 2540 1550 1410 1020 1090 731 777 523 622 389 536 373 316 255 430 244 232 192 300 222 251 192 170 120 202 125 127 93 111 82

L1 m(1.0)

L2 m(0.75)

L3 m(0.5)

L4 m(0.35)

Pv kN 4100 3660 3760 2840 2840 2420 2490 2010 2080 1640 2440 1500 1670 1360 1440 1080 1100 821 1030 728 853 652 591 533 706 517 488 438 510 395 588 466 440 377 404 327 355 314 278 251

Intermediate masses (kg/m)

3.9 3.8 2.7 2.5 2.5 2.4 2.4 2.2 2.3 2.1 3.0 2.8 2.1 1.9 1.9 1.8 1.8 1.6 1.3 1.2 1.6 1.5 1.2 1.2 1.6 1.5 1.1 1.0 1.6 1.5 1.1 1.1 0.9 0.8 1.4 1.3 0.9 0.8 1.3 1.3

7.7 7.3 5.1 4.7 4.8 4.6 4.6 4.3 4.3 4.0 6.0 5.6 3.9 3.6 3.7 3.3 3.5 3.1 2.5 2.3 3.2 2.9 2.3 2.2 3.1 2.8 2.0 2.0 3.1 2.9 2.3 2.1 1.7 1.5 2.8 2.5 1.7 1.6 2.6 2.4

12.5 12.0 8.2 7.2 7.7 7.0 7.1 6.4 6.9 6.3 10.2 9.0 6.3 5.5 6.1 5.2 5.8 4.9 4.3 3.7 5.1 4.5 3.5 3.3 5.3 4.5 3.3 3.0 5.2 4.7 3.7 3.3 2.7 2.3 4.9 4.2 2.8 2.5 4.4 4.1

11.5 9.7 10.7 9.4 9.9 8.6 9.7 8.3 15.0 13.0 9.0 7.5 8.1 7.0 7.6 6.6 6.3 4.9 7.3 6.2 4.9 4.5 7.7 6.1 4.4 4.1 7.8 6.5 5.5 4.7 3.7 3.2 7.3 5.8 4.0 3.4 6.6 5.9

3.4 3.4 2.4 2.2 2.3 2.1 2.1 2.0 2.0 1.9 2.6 2.5 1.8 1.7 1.7 1.5 1.6 1.4 1.1 1.1 1.4 1.3 1.1 1.0 1.4 1.3 0.9 0.9 1.4 1.3 1.0 0.9 0.8 0.7 1.2 1.2 0.8 0.7 1.1 1.1

6.8 6.7 4.5 4.3 4.3 4.2 4.0 3.7 4.1 3.7 5.3 4.9 3.5 3.3 3.3 3.0 2.9 2.8 2.4 2.1 2.8 2.6 2.1 1.9 2.8 2.4 1.7 1.8 2.8 2.6 2.0 1.8 1.5 1.3 2.5 2.6 1.6 1.4 2.4 1.7

10.8 10.5 7.5 6.4 6.8 5.3 6.2 5.7 6.1 5.6 9.0 7.5 5.6 5.0 5.3 4.6 5.0 4.3 3.8 3.2 4.5 4.1 3.2 3.0 4.5 4.0 2.9 2.8 4.5 4.1 3.2 2.9 2.3 2.1 4.2 4.1 2.5 2.3 3.9 2.8

15.0 14.4 10.1 8.5 9.2 8.2 8.6 7.8 8.4 7.3 13.0 10.3 7.7 6.6 7.3 6.1 7.0 5.8 5.3 4.3 6.3 5.4 4.2 3.9 6.5 5.3 3.8 3.6 6.5 5.6 4.7 4.1 3.3 2.7 5.4 5.6 3.5 3.0 5.4 4.0

253, 224 194 173 152, 140 179 125, 113 109, 101, 92 89, 82, 74 74, 67, 60 67, 60

57, 51

46 42 28 37 25

Universal Columns DbMass (mmmm Kg/m) 356406634 356406235 356368202 356368129 305305283 30530597 254254167 25425473 20320386 20320346 15215237 15215223 Mcx kNm 3490 1240 1050 601 1300 397 641 272 259 137 85 45.4 L1 m(1.0)

GRADE 43 L2 m(0.75)

GRADE 50 L4 m(0.35)

L3 m(0.5)

Pv kN 3320 1120 1000 605 1500 503 883 360 459 245 216 153

Mcx kNm 4520 1620 1370 782 1730 512 834 318 338 159 110 58.6

L1 m(1.0)

L2 m(0.75)

L3 m(0.5)

L4 m(0.35)

Pv kN 4410 1460 1300 788 2000 649 1150 465 598 316 279 198

Intermediate masses (kg/m) 551, 467, 393, & 340, 287 177, 153 240, 198, 158 & 137, 118 132, 107, 89 71, 60, 52 30

8.7 5.0 4.8 4.1 4.8 3.2 3.3 2.3 2.7 2.2 1.8 1.5

12.0 10.5 9.8 14.0 6.8 10.3 6.0 7.0 4.8 4.1 3.3

12.2 11.0 14.0 8.7 8.1 5.6

13.7 8.8

6.8 4.2 3.9 4.8 4.4 4.0 3.0 3.4 2.2 2.7 1.7 2.0

16.0 9.0 8.7 11.5 6.0 8.7 6.2 5.9 5.0 3.5 3.5

15.0 14.0 10.2 10.6 12.0 8.2 6.8 5.6

15.0 12.5 10.8 8.2

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 / Aug 98

4.4 Steel (Non-composite) (5/21)

!

Approximate Mb calculationTable is to used in conjunction with the table on P. 4/23 to calculate approximate Mb.

Effective Length

Example : 533x210x82UB (py = 275 Mpa) with Le compression flange = 6m. From table L4 L3 Mcx From graph Mb = 7.0m = 0.35Mcx = 5.2m = 0.50Mcx = 566 kNm = 0.43Mcx (approx.), for Le = 6m. = 243 kNm

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 / Aug 98

4.4 Steel (Non-composite) (6/21)

Effective lengths of beam compression flangesRotational restraint on planConditions of restraint at the ends of the beams Compression flange laterally restrained; beam fully restrained against torsion Both flanges fully restrained against rotation on plan Both flanges partially restrained against rotation on plan Both flanges free to rotate on plan Compression flange laterally unrestrained; both flanges free to rotate on plan Restraint against torsion provided only by positive connection of bottom flange to supports Restraint against torsion provided only by dead bearing of bottom flange on supports. Loading conditions Normal 0.7L Destabilizing 0.85L

1. Flanges fully restrained on plan

0.85L

1.0L

1.0L

1.2L

1.0L+2D

1.2L+2D

2. Flanges partially restrained on plan

1.2L+2D

1.4L+2D

3. Flanges free to rotate on plan

Lateral torsional buckling - Stress of fabricated girders

T

D

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 / Aug 98

4.4 Steel (Non-composite) (7/21)

Castellated & cellular beamsNon-composite slab

Imposed loading 5+1 kN/m2

d

D

S

S

SECONDARY BEAM SPAN (m)6 Beam Size Diameter Spacing 0/A Depth 9 12 15 18

356 x 171 x 45 300 450 482

457 x 191 x 67 350 525 605

533 x 210 x 92 450 675 728

686 x 254 x 125 550 825 916

838 x 292 x 176 650 975 1116

MAIN BEAM SPAN (m)

6Secondary Beam Span (m)6

9 Beam SizeDia. Spacing O/A Depth

12 Beam SizeDia. Spacing O/A Depth

15 Beam SizeDia. Spacing O/A Depth

18 Beam SizeDia. Spacing O/A Depth

Beam SizeDia. Spacing O/A Depth

457 x 191 x 67 400 600 627

610 x 229 x 125 500 750 828

762 x 267 x 173 700 1000 1078

914 x 305 x 201 914 x 305 x 253 700 1000 1219 700 1000 1235

9

610 x 229 x 101 500 750 819

762 x 267 x 147 500 750 970

914 x 305 x 201 700 1000 1219

914 x 305 x 289 700 1000 1243

12

610 x 229 x 113 500 750 824

838 x 292 x 194 700 1000 1157

914 x 305 x 289 700 1000 1243

15

686 x 254 x 125 550 750 934

914 x 305 x 253 700 1000 1235

18

762 x 267 x 173 700 1000 1078

914 x 305 x 289 700 1000 1243

Assumptions 1. 2. 3. 4. Secondary beam spacing 3m 150mm thick concrete slab of normal weight concrete All beams grade Fe 510 Beams laterally restrained by concrete slab.

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 / Aug 98

4.4 Steel (Non-composite) (8/21)

4.4.5 COLUMNS (AND BEAM COLUMNS)Local capacity check: Py = squash load Buckling check: (minor axis failure) mN Mx m M P % % y y # 1 Pc Mb py Zy Mx My P % % # 1 Py Mcx Mcy

mN is the largest of mx or mLT from the equation in 4.4.4 Mb is obtained from the graph in 4.4.4 ( 1.2 py Zx ) Pc is the buckling capacity from table below Note: For columns in simple construction use m = 1.0; when determining Mb use L = 0.5 H , where H = column height

1 1.1 1.0

Note This graph shows the approximate relationship between axial capacity and effective length. --- see following tables. L1 = Effective length when Pc = Py. L2 = Effective length when Pc = 0.75Py. L3 = Effective length when Pc = 0.50Py. L4 = Effective length when Pc = 0.35Py.

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 / Aug 98

4.4 Steel (Non-composite) (9/21) COMPRESSIONCircular Hollow Sections (CHS) Outside diameter (mm) 88.9 Thickness (mm) Pc max kN GRADE 43 (S275) Ly1 m(1.0)

GRADE 50 (S355) Ly4 m(0.35)

Ly2 m(0.75)

Ly3 m(0.5)

Pc max kN

Ly1 m(1.0)

Ly2 m(0.75)

Ly3 m(0.5)

Ly4 m(0.35)

Intermediate thicknesses * (mm) 4.0 5.0 6.3, 8.0 6.3, 8.0 6.3, 8.0, 10.0 6.3, 8.0, 10.0 8.0, 10.0, 12.5 8.0, 10.0, 12.5 8.0, 10.0, 12.5 10.0, 12.5

3.2 237 0.4 2.3 3.3 4.1 306 0.4 2.1 5.0 363 0.4 2.2 3.2 4.0 469 0.4 2.1 114.3 3.6 344 0.6 3.1 4.3 5.3 444 0.6 2.8 6.3 589 0.6 3.0 4.3 5.2 760 0.6 2.7 139.7 5.0 583 0.7 3.7 5.2 6.4 753 0.7 3.4 10.0 1120 0.7 3.6 5.0 6.2 1440 0.7 3.3 168.3 5.0 707 0.8 4.5 6.3 7.9 912 0.8 4.2 10.0 1370 0.8 4.4 6.1 7.5 1760 0.8 4.0 193.7 5.0 814 1.0 5.2 7.3 9.0 1050 1.0 4.8 12.5 1960 0.9 5.0 7.0 8.6 2530 0.9 4.5 219.1 5.0 924 1.1 6.0 8.3 10.0 1190 1.1 5.4 12.5 2230 1.1 5.7 8.0 9.9 2880 1.1 5.1 244.5 6.3 1300 1.2 6.7 9.3 11.4 1670 1.2 6.0 16.0 3160 1.2 6.5 8.9 11.0 4080 1.2 5.8 273.0 6.3 1450 1.4 7.6 10.3 12.7 1870 1.4 6.8 16.0 3550 1.3 7.2 9.9 12.3 4580 1.3 6.5 323.9 6.3 1730 1.7 8.8 12.3 2230 1.7 8.0 16.0 4260 1.6 8.6 12.0 5500 1.6 7.7 355.6 8.0 2400 1.8 9.7 13.5 3100 1.8 8.7 16.0 4700 1.8 9.5 13.1 6070 1.8 8.5 * Only part of the range is given. For the larger sections thicker tubes may be available. Universal Columns DbMass (mmmmKg/m) 356406634 356406551 356406467 356406393 356406340 356406287 356406235 356368202 356368177 356368153 356368129 305305283 305305240 305305198 305305158 305305137 305305118 30530597 254254167 254254132 254254107 25425489 25425473 20320386 20320371 20320360 20320352 20320346 15215237 15215230 15215223 NOTE: Pc max kN 19800 17200 15200 12800 11000 9690 7950 6840 5980 5180 4380 9190 8090 6690 5320 4620 3970 3390 5630 4470 3620 3010 2560 2920 2410 2090 1830 1620 1300 1060 816 Ly1 m(1.0)

3.0 2.9 3.8 3.7 4.6 4.5 5.6 5.7 6.7 6.3 7.3 7.1 8.2 7.9 9.2 8.9 11.0 10.6 12.0 11.7

3.7 3.6 4.8 4.6 5.8 5.7 7.0 6.7 8.0 7.7 9.1 8.7 10.1 9.7 11.3 10.9 13.5 13.0 -

GRADE 43 Ly2 m(0.75)

GRADE 50 Ly3 m(0.5)

Ly4 m(0.35)

Pc max kN 26300 22800 20200 17000 14700 12600 10300 89000 7780 6750 5700 12300 10500 8710 6930 6010 5160 4380 7330 5820 4710 3920 3300 3800 3140 2700 2360 2090 1680 1360 1050

Ly1 m(1.0)

Ly2 m(0.75)

Ly3 m(0.5)

Ly4 m(0.35)

2.0 2.0 1.9 1.9 1.9 1.8 1.8 1.8 1.7 1.8 1.9 1.5 1.5 1.5 1.4 1.4 1.4 1.3 1.3 1.2 1.2 1.2 1.1 0.9 0.9 0.9 0.9 0.9 0.7 0.7 0.7

5.5 5.4 5.3 5.6 5.6 5.9 5.9 5.6 5.7 5.5 5.7 4.6 4.7 4.7 4.7 4.5 4.5 4.4 3.9 3.9 3.8 3.8 3.7 3.1 3.1 3.0 2.9 2.9 2.1 2.2 2.1

9.2 9.3 9.1 9.5 9.4 9.6 9.6 9.0 8.9 8.9 8.8 7.5 7.7 7.6 7.4 7.3 7.3 7.2 6.3 6.3 6.2 6.2 6.0 5.0 4.9 4.8 4.7 4.7 3.5 3.5 3.4

12.8 12.7 12.3 12.6 12.5 12.7 12.5 11.8 11.7 11.6 11.5 9.9 10.0 9.8 9.7 9.6 9.6 9.4 8.3 8.3 8.1 8.1 7.9 6.6 6.4 6.3 6.2 6.2 4.7 4.6 4.5

1.7 1.7 1.7 1.8 1.9 1.7 1.9 1.6 1.7 1.6 1.5 1.3 1.3 1.3 1.3 1.2 1.2 1.1 1.1 1.1 1.1 1.0 1.0 0.9 0.9 0.9 0.8 0.8 0.6 0.6 0.6

5.1 4.9 4.9 4.8 4.8 5.4 5.4 5.0 5.0 5.0 4.9 3.8 4.2 4.2 4.1 4.1 4.1 4.0 3.6 3.5 3.5 3.5 3.5 2.8 2.7 2.7 2.7 2.7 2.0 2.0 2.0

8.6 8.6 8.3 8.2 8.1 8.5 8.6 8.2 8.1 8.0 8.0 6.4 6.9 6.8 6.7 6.6 6.6 6.5 5.8 5.7 5.6 5.6 5.5 4.5 4.5 4.4 4.4 4.3 3.3 3.2 3.1

11.6 11.6 11.0 10.8 10.7 11.2 11.3 10.5 10.5 10.4 10.3 8.7 8.9 8.8 8.7 8.6 8.6 8.4 7.5 7.4 7.3 7.2 7.0 5.8 5.7 5.6 5.6 5.5 4.2 4.2 4.0

L x . 1.15

Ix Iy

Ly

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 / Aug 98

4.4 Steel (Non-composite) (10/21)

4.4.6 Portal Frame Sizing The following are simple charts for the sizing of pinned base portals. Assumptions : C C CC

wind loading does not control design hinges formed at the eaves (in the stanchion) and near the apex. Moment at the end of the haunch is 0.87M p Stability of sections is not addressed Load W = vertical load on rafter per meter

Horizontal base reaction H = H FR WL

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 / Aug 98

4.4 Steel (Non-composite) (11/21)

Mp required for rafter : Mprafter = Mpr WL2

Mp required for stanchion : M pstanchion = Mpl WL2

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 / Aug 98

4.4 Steel (Non-composite) (12/21)

4.4.7 ELEMENT STIFFNESSServiceability check: unfactored dead + imposed unfactored dead + 0.8 (imposed + wind)

Deflection limits under imposed load:Element Limit L/180 L/360 L/500 L/200 L/500 H/300 H/500

! Cantilever ! Beam supporting plaster or brittle finish ! Beams supporting masonry ! Other beams ! Crane beams ! Columns ! Columns in multi-storey construction with movement sensitivecladding. Portal frames

! Lateral at eaves ! Vertical at apex* Depends on cladding system

H/100 - H/300 * L/250 - L/500 *

Load case

Minimum I to satisfy deflection limit L/200W

L/360 2.29 WL

L/500 3.18 WL

1.27 WL

2.03 PL

3.66 PL

5.08 PL

P

3.46 PL

6.23 PL

8.66 PL

P/2 P/2

Note:

For castellated beams, assume a 30% increase in deflection due to presence of web openings. L in metres; W, P in kN; I in cm4

4.4.8 CONNECTIONSBolted ! Assume S 275 fittings. ! Simple connections - use grade 8.8, 20mm diameter bolts fin plates} t = 8mm for UBs < 457mm deep partial depth end plates} t = 10mm for UBs > 457mm deep web cleats} ! Moment connections -use grade 8.8, 20mm or 24mm diameter. Assume end plate thickness equal to bolt diameter (25 thick with M24) ! Holding down bolts - assume grade 4.6 where possible. Standard sizes: M16 x 300 M20 x 450, 600 M24 x 450, 600 M30 x 450, 600 M36 x 450, 600, 750 See Appendices C12, C13, C14 for more information on bolts and fastening. When carrying out design, it is important to consult new SCI/BCSA guidelines (Ref 3.4.5)

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 / Aug 98

4.4 Steel (Non-composite) (13/21) BoltsShear Value Dia of Bolt mm Tensile Stress Area mm2 kN Tensile Cap Single Shear kN 12 16 20 22 24 27 30 84.3 157 245 303 353 459 561 37.9 70.7 110 136 159 207 252 31.6 58.9 91.9 114 132 172 210 Double Shear kN 63.2 118 184 227 265 344 421 27.6 36.8 46.0 50.6 55.2 62.1 69.0 33.1 44.2 55.2 60.7 66.2 74.5 82.8 38.6 51.5 64.4 70.8 77.3 86.9 96.6 44.2 58.9 73.6 81.0 88.3 99.4 110 49.7 66.2 82.8 91.1 99.4 112 124 55.2 73.6 92.0 101 110 124 138 69.0 92.0 115 126 138 155 172 110 138 152 166 186 207 147 184 202 221 248 276 230 253 276 310 345 373 414 33.0 44.0 55.0 60.5 66.0 74.2 82.5 39.6 52.8 66.0 72.6 79.2 89.1 99.0 46.2 61.6 77.0 84.7 92.4 104 116 52.8 70.4 88.0 96.8 106 119 132 59.4 79.2 99.0 109 119 134 148 66.0 88.0 110 121 132 148 165 110 138 151 165 186 206 132 165 182 198 223 248 220 242 264 297 330 330 371 412 495 5 6 7 8 9 10 12.5 15 20 25 30 5 6 7 8 9 10 12.5 15 20 25 30

Bearing Value of plate at 460N/mm2 and end distance equal to 2xbolt diameter Thickness in mm of Plate Passed Through

Bearing Value of plate at 550N/mm2 and end distance equal to 2xbolt diameter Thickness in mm of Plate Passed Through

Slip Value Dia of Bolt mm Proof Load of Bolt kN kN Tensile Cap Single Shear kN 12 16 20 22 24 27 30 49.4 92.1 144 177 207 234 286 44.5 82.9 130 159 186 211 257 24.5 45.6 71.3 87.6 102 116 142 Double Shear kN 48.9 91.2 143 175 205 232 283 49.5 66.0 82.5 90.7 99 111 124 5

Bearing Value of Plate at 825N/mm2 and end distance equal to 3xbolt diameter Thickness in mm of Plate Passed Through 6 7 8 9 10 12.5 15 20 25 30 5

Bearing Value of Plate at 1065N/mm2 and end distance equal to 2xbolt diameter Thickness in mm of Plate Passed Though 6 7 8 9 10 12.5 15 20 25 30

79.2 99.0 109 119 134 148

92.4 116 127 139 156 173

132 145 158 178 198

148 163 178 200 223

182 198 223 248

248 278 309

-

-

-

-

63.9 85.2 106 117 128 144 160

102 128 141 153 173 192

149 164 179 201 224

187 204 230 256

230 259 288

-

-

-

-

-

-

-

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 / Aug 98

4.4 Steel (Non-composite) (14/21) Welded Use 6mm fillet where possible. Relative costs: 6mm fillet in downhand position 6mm fillet in vertical position 6mm fillet in overhead position 1.0 2.0 3.0

For each additional run multiply above by 1.75. Note: 6mm weld 8mm weld 10mm weld 1 run 2 runs 3 runs 6.0 12.0 10.0 20.0 9.0 18.0 5.0 10.0

Single V butt weld in 10mm plate Double V butt weld in 20mm plate Single U butt weld in 20mm plate Double U butt weld in 40mm plate Single J butt weld in 20mm plate Double J butt weld in 40mm plate Single level butt weld in 10mm plate Double level butt weld in 20mm plate

For each 5mm of plate thickness multiply above by 4.0.

Weld design Fillet welds - Grade 43 (Fe 430) (S 275) steel, Grade E43 ElectrodesLeg length mm 3.0 4.0 5.0 6.0 8.0 10.0 Throat thickness mm 2.1 2.8 3.5 4.2 5.6 7.0 Capacity at 215 N/mm kN/mm 0.452 0.602 0.753 0.903 1.2 1.51 Leg length mm 12.0 15.0 18.0 20.0 22.0 25.0 Throat thickness mm 8.4 10.5 12.6 14.0 15.4 17.5 Capacity at 215 N/mm kN/mm 1.81 2.26 2.71 3.01 3.31 3.76

Fillet welds - Grade 50 (Fe 510) (S 355) steel, Grade E51 ElectrodesLeg length mm 3.0 4.0 5.0 6.0 8.0 10.0 Throat thickness mm 2.1 2.8 3.5 4.2 5.6 7.0 Capacity at 255 N/mm kN/mm 0.535 0.714 0.893 1.07 1.43 1.79 Leg length mm 12.0 15.0 18.0 20.0 22.0 25.0 Throat thickness mm 8.4 10.5 12.6 14.0 15.4 17.5 Capacity at 255 N/mm kN/mm 2.14 2.68 3.21 3.57 3.93 4.46

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 / Aug 98

4.4 Steel (Non-composite) (15/21)

4.4.9 Corrosion protectionNotes : Define the environment correctly. The information given is typical. There are many alternatives depending on the individual situations. Avoid specifying too many schemes for any one job. The table takes no account of fire resistance. For further details, see Structural Guidance Note 5.1 (1992)

Environment External Internal All Controlled (e.g. office) Cavity and perimeter Uncontrolled (e.g. warehouses) Specials (e.g. swimming pools kitchens)

Typical protection solution E-2 (three coat scheme) Do nothing Galvanise to BS729 Zinc rich primer to BS 4652 1-2

External scheme E-2 Preparation Primer Barrier Undercoat Finish Blast clean to Sa 2.5 of BS7079 Pt A1 Zinc rich epoxy 75m DFT

Internal scheme I-2

2 pack epoxy zinc phosphate primer 50m DFT

Two pack Epoxy Micaceous Iron Oxide 75m DFT Silicone Alkyd Enamel 35m DFT Silicone Alkyd Enamel 35m DFT Acrylated rubber undrecoat 40m DFT Acrylated rubber finish 25m DFT

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 / Aug 98

4.4 Steel (Non-composite) (16/21)

SECTION PROPERTIESUniversal Beams (1 of 2)x

y

x

y

PROPERTIESDesignation Moment ofAxis x-x cm4 719300 625200 504800 436400 376300 325900 339700 279200 246000 239800 205200 168800 170300 150400 136300 118000 207700 151500 124700 111700 98500 87380 75820 76180 66800 61650 55330 47520 45770 41140 37090 33430 29410 36250 32470 28600 25450 21370 Axis y-y cm4 45440 39160 15610 13300 1240 9433 11360 9066 7791 8175 6850 5462 6630 5784 5183 4383 15850 11400 9308 4499 3932 3434 2915 3388 2939 2696 2389 2004 2347 2093 1871 1674 1452 1144 1013 879 795 645

Radius Of GyrationAxis x-x cm 38.1 37.8 37.0 36.8 36.3 35.6 34.3 33.6 33.1 30.9 30.5 30.0 28.0 27.8 27.6 27.2 26.1 25.8 25.6 25.0 24.9 24.6 24.2 22.1 21.9 21.8 21.7 21.3 19.1 19.0 18.8 18.7 18.5 18.6 18.5 18.3 18.3 17.9 Axis y-y cm 9.58 9.46 6.50 6.42 6.27 6.06 6.27 6.06 5.90 5.71 5.58 5.39 5.53 5.46 5.39 5.24 7.22 7.08 6.99 5.03 4.97 4.88 4.75 4.66 4.60 4.57 4.50 4.38 4.33 4.28 4.23 4.20 4.12 3.31 3.26 3.21 3.24 3.11

Elastic ModulusAxis x-x cm3 15630 13720 10900 9503 8268 7217 7985 6641 5892 6232 5385 4478 4916 4375 3987 3481 6564 4907 4093 3619 3219 2878 2518 2798 2476 2297 2076 1799 1959 1775 1612 1462 1297 1559 1408 1251 1119 950 Axis y-y cm3 2161 1871 1015 871 739 622 773 620 534 610 514 412 518 455 409 346 1018 742 611 391 343 301 256 320 279 257 228 192 243 218 196 176 153 149 133 116 104 84.6

Plastic ModulusAxis x-x cm3 17670 15470 12590 10940 9533 8372 9155 7640 6806 7164 6195 5169 5631 5001 4558 3994 7462 5515 4575 4139 3673 3287 2887 3203 2827 2619 2366 2058 2234 2020 1832 1659 1472 1802 1624 1442 1283 1096 Axis y-y cm3 3342 2890 1603 1371 1163 983 1212 974 841 959 807 648 811 710 638 542 1576 1143 938 611 535 470 401 500 435 400 356 300 379 339 304 273 237 236 209 183 163 133

Buck.Para.

Tors. Index

Warp. Const

Tors. Const

Area

Serial Size mm 914x419

Mass per Metre 388 343 289 253 224 201 226 194 176 197 173 147 170 152 140 125 238 179 149 140 125 113 101 122 109 101 92 82 98 89 82 74 67 82 74 67 60 52

u

x

H dm6 88.8 75.7 31.2 26.4 22.1 18.4 19.3 15.2 13.0 11.3 9.39 7.40 7.42 6.43 5.72 4.80 14.3 10.0 8.10 3.98 3.45 2.99 2.51 2.32 1.99 1.82 1.60 1.33 1.18 1.04 0.923 0.820 0.706 0.570 0.500 0.430 0.387 0.311

J cm4 1739 1193 930 626 422 294 514 306 221 404 267 160 308 220 169 116 790 340 201 216 154 112 77.6 179 126 102 76.3 51.5 121 91.3 69.2 52.2 37.1 89.5 66.8 47.6 33.5 21.4

A cm2 495 437 369 323 286 257 289 247 224 251 220 188 217 194 178 159 304 228 190 178 159 144 129 156 139 129 118 105 125 114 105 95.1 85.5 105 95.1 85.3 75.8 66.6

0.884 0.883 0.866 0.866 0.861 0.853 0.870 0.862 0.856 0.869 0.864 0.857 0.872 0.871 0.868 0.862 0.886 0.886 0.886 0.875 0.873 0.869 0.863 0.876 0.875 0.874 0.871 0.864 0.881 0.879 0.877 0.876 0.872 0.872 0.870 0.867 0.869 0.859

26.7 30.1 31.9 36.2 41.3 46.7 35.0 41.6 46.5 33.2 38.1 45.1 31.8 35.5 38.7 43.9 21.1 27.5 32.5 30.6 34.1 37.9 42.9 27.6 30.9 33.1 36.4 41.6 25.8 28.2 30.9 33.8 37.9 27.3 30.0 33.5 37.6 43.9

914x305

838x292

762x267

686x254

610x305

610x229

533x210

457x191

457x152

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 / Aug 98

4.4 Steel (Non-composite) (17/21)

Universal Beams (2 of 2)

y

x

x

y

PROPERTIESDesignation Second Moment of AreaAxis x-x cm4 27430 24330 21540 18670 15670 12410 19540 16060 14160 12080 10100 8192 11690 9935 8551 9507 8159 7162 6501 5439 4364 6554 5547 4428 4013 3420 2853 2888 2349 2091 1357 838 477 Axis y-y cm4 1551 1365 1201 1019 540 410 1362 1106 968 810 358 280 1061 896 766 460 389 337 194 158 119 677 571 448 178 149 119 384 309 163 138 90.4 56.2

Radius Of Gyration

Elastic Modulus

Plastic Modulus

Buck.Para.

Tors. Index

Warp. Const

Tors. Const

Area

Serial Size mm 406x178

Mass per Metre kg 74 67 60 54 46 39 67 57 51 45 39 33 54 46 40 48 42 37 33 28 25 43 37 31 28 25 22 30 25 23 19 16 13

Axis x-x cm 17.0 16.9 16.8 16.5 16.3 15.9 15.1 14.9 14.8 14.6 14.3 14.0 13.1 13.0 12.9 12.5 12.4 12.3 12.5 12.2 11.8 10.9 10.8 10.5 10.5 10.3 10.0 8.72 8.54 8.49 7.49 6.40 5.33

Axis y-y cm 4.03 3.99 3.97 3.86 3.03 2.89 3.99 3.91 3.87 3.77 2.69 2.59 3.94 3.90 3.85 2.75 2.70 2.67 2.15 2.08 1.96 3.51 3.47 3.35 2.2l 2.15 2.06 3.18 3.10 2.37 2.39 2.10 1.83

Axis x-x cm3 1329 1189 1060 927 779 625 1073 896 796 686 573 470 752 647 563 613 532 471 416 352 286 505 433 352 308 266 225 279 231 206 153 110 75.1

Axis y-y cm3 173 153 135 115 75.9 57.8 157 129 113 94.7 56.8 44.7 127 108 92.8 73.5 62.6 54.6 37.9 30.9 23.5 92.0 78.0 61.3 34.9 29.2 23.5 57.4 46.3 32.1 27.2 20.3 14.7

Axis x-x cm3 1509 1346 1195 1051 889 718 1213 1009 895 773 654 539 843 722 626 706 612 540 481 408 336 568 435 395 354 307 260 313 259 232 171 124 85.0

Axis y-y cm3 268 237 209 178 119 90.7 243 198 174 146 88.9 70.2 195 166 142 116 98.4 85.6 60.0 49.2 37.8 141 119 94.2 54.8 46.1 37.3 88.0 71.2 49.5 41.9 31.4 22.7

u

x

H dm6

J cm4

A cm2

0.880 0.880 0.881 0.872 0.870 0.859 0.886 0.883 0.882 0.875 0.872 0.864 0.891 0.891 0.888 0.874 0.872 0.871 0.866 0.859 0.844 0.890 0.889 0.879 0.873 0.865 0.854 0.882 0.876 0.890 0.889 0.889 0.893

27.5 30.5 33.8 38.4 38.8 47.6 24.4 28.9 32.2 37.0 35.2 42.3 23.7 27.2 31.0 23.3 26.5 29.6 31.6 36.9 44.1 21.1 24.3 29.5 27.4 31.3 36.1 21.5 25.5 22.5 22.6 19.5 16.2

0.610 0.533 0.465 0.391 0.207 0.155 0.413 0.330 0.287 0.237 0.105 0.0810 0.234 0.195 0.165 0.101 0.0843 0.0724 0.0442 0.0355 0.0265 0.103 0.0857 0.0660 0.0279 0.0230 0.0182 0.0373 0.0295 0.0153 0.00998 0.00473 0.00200

63.7 46.1 33.0 22.9 19.2 10.5 55.7 33.1 23.6 15.7 14.9 8.65 34.3 22.2 14.9 31.5 21.1 14.9 12.2 7.69 4.57 24.0 15.4 8.65 9.68 6.52 4.23 10.2 6.05 6.87 4.37 3.61 2.92

95.3 85.5 76.1 68.6 59.0 49.2 85.5 72.2 64.6 57.0 49.4 41.8 68.2 58.8 51.6 60.9 53.4 47.4 41.8 36.4 31.2 55.0 47.4 39.9 36.3 32.3 28.3 38.0 32.2 29.0 24.2 20.5 16.8

406x140

356x171

356x127

305x165

305x127

305x102

254x146

254x102

203x133

203x102 178x102 152x89 127x76

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 / Aug 98

4.4 Steel (Non-composite) (18/21)

Universal Columns

y

x

x

y

PROPERTIESDesignation Second Moment of AreaAxis x-x cm4 275000 227000 183100 146700 122500 99930 79150 172500 66330 57110 48640 40300 78800 64150 50860 38690 32770 27610 22200 29920 22550 17500 14280 11370 9461 7634 6103 5254 4565 2213 1748 1258 Axis y-y cm4 98190 82670 67930 55370 46850 38680 31040 68090 23630 20450 17510 14580 24540 20220 16240 12500 10650 9006 7272 9792 7506 5894 4835 3880 3114 2530 2047 1767 1539 706 560 402

Radius Of Gyration

Elastic Modulus

Plastic Modulus

Buck.Para.

Tors. Index

Warp. Const

Tors. Const

Area

Serial Size mm 356x406

Mass per Metre kg 634 551 467 393 340 287 235 477 202 177 153 129 283 240 198 158 137 118 97 167 132 10 7 89 73 86 71 60 52 46 37 30 23

Axis x-x cm 18.5 18.0 17.5 17.1 16.8 16.5 16.2 16.9 16.0 15.9 15.8 15.6 14.8 14.5 14.2 13.9 13.7 13.6 13.4 11.9 11.6 11.3 11.2 11.1 9.27 9.16 8.96 8.90 8.81 6.84 6.75 6.51

Axis y-y cm 11.0 10.9 10.7 10.5 10.4 10.3 10.2 10.6 9.57 9.52 9.46 9.39 8.25 8.14 8.02 7.89 7.82 7.76 7.68 6.79 6.67 6.57 6.52 6.46 5.32 5.28 5.19 5.16 5.12 3.87 3.82 3.68

Axis x-x cm3 11590 9964 8388 7001 6029 5077 4155 8078 3541 3101 2687 2266 4314 3639 2993 2365 2045 1756 1443 2070 1632 1312 1097 895 851 707 582 510 449 274 222 165

Axis y-y cm3 4631 3951 3295 2721 2325 1939 1572 3209 1262 1099 946 792 1525 1272 1034 805 690 587 477 740 575 456 378 306 298 245 199 173 151 91.5 73.3 52.7

Axis x-x cm3 14240 12080 10010 8225 6997 5814 4691 9704 3978 3455 2970 2485 5101 4243 3438 2675 2293 1952 1589 2418 1872 1484 1225 990 979 801 654 567 497 309 248 184

Axis y-y cm3 7112 6057 5040 4154 3543 2949 2386 4981 1917 1667 1433 1198 2337 1945 1577 1225 1049 892 724 1131 877 695 574 463 455 373 303 263 230 140 112 80.5

u

x

H dm6

J cm4

A cm2

0.843 0.841 0.839 0.837 0.836 0.835 0.834 0.815 0.843 0.844 0.844 0.843 0.855 0.854 0.854 0.852 0.851 0.851 0.850 0.852 0.850 0.848 0.849 0.849 0.849 0.852 0.847 0.848 0.846 0.848 0.848 0.837

5.46 6.06 6.86 7.87 8.85 10.2 12.1 6.90 13.4 15.0 17.0 19.8 7.65 8.74 10.2 12.5 14.2 16.2 19.3 8.49 10.3 12.4 14.5 17.3 10.2 11.9 14.1 15.8 17.7 13.3 16.0 20.5

38.8 31.1 24.3 18.9 15.5 12.3 9.55 23.8 7.14 6.07 5.10 4.17 6.33 5.01 3.86 2.85 2.38 1.97 1.55 1.62 1.18 0.893 0.714 0.558 0.317 0.249 0.195 0.166 0.142 0.0399 0.0307 0.0213

13730 9232 5817 3545 2340 1441 813 5705 561 382 252 154 2034 1270 735 376 249 160 91.1 625 321 173 103 57.5 138 81.0 46.9 31.9 22.2 19.3 10.6 4.82

808 702 595 501 433 366 300 607 258 226 196 165 360 305 252 201 174 150 123 212 169 137 114 92.9 110 90.9 76.0 66.4 58.8 47.3 38.4 29.7

COLCORE 356x368

305x305

254x254

203x203

152x152

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 / Aug 98

4.4 Steel (Non-composite) (19/21)

Circular Hollow SectionsDIMENSIONS AND PROPERTIESDesignation Mass Per Metre kg37.0 46.7 57.8 71.5 90.2 111 135 41.4 52.3 64.9 80.3 101 125 153 49.3 62.3 77.4 96.0 121 150 184 68.6 85.2 106 134 166 204 97.8 121 154 191 235 295 110 137 174 216 266 335 411 123 153 194 241 298 376 462 565

Area

Outside Dia. D(mm)244.5

Thickness t mm6.3 8.0 10.0 12.5 I6.0 20.0@ 25.0+@ 6.3 8.0 10.0 12.5 16.0 20.0 @ 25.0 @ 6.3 8.0 10.0 12.5 16.0 20.0@ 25.0@ 8.0 10.0 12.5 16.0 20.0 @ 25.0 @

Ratio For Local Buck. D/t38.8 30.6 24.5 19.6 15.3 12.2 9.78 43.3 34.1 27.3 21.8 17.l 13.6 10.9 51.4 40.5 32.4 25.9 20.2 16.2 13.0 44.5 35.6 28.4 22.2 17.8 14.2 40.6 32.5 25.4 20.3 16.3 12.7 45.7 36.6 28.6 22.9 18.3 14.3 11.4 50.8 40.6 31.7 25.4 20.3 15.9 12.7 10.2

Second Moment of Area I cm43346 4160 5073 6147 7533 8957 10520 4696 5852 7154 8697 10710 12800 15130 7929 9910 12160 14850 18390 22140 26400 13200 16220 19850 24660 29790 35680 24480 30030 37450 45430 54700 66430 35090 43140 53960 65680 79420 97010 114900 48520 59760 74910 91430 110900 136100 162200 190900

Radius Of Gyration r cm8.42 8.37 8.30 8.21 8.10 7.97 7.81 9.43 9.37 9.31 9.22 9.10 8.97 8.81 11.2 11.2 11.1 11.0 10.9 10.8 10.6 12.3 12.2 12.1 12.0 11.9 11.7 14.0 13.9 l3.8 13.7 13.5 13.3 15.8 15.7 15.6 15.5 15.3 15.1 14.8 17.6 17.5 17.4 17.3 17.1 16.9 16.6 16.3

Elastic Modulus Z cm3274 340 415 503 616 733 860 344 429 524 637 784 938 1108 490 612 751 917 1136 1367 1630 742 912 1117 1387 1676 2007 1205 1478 1843 2236 2692 3269 1536 1888 2361 2874 3475 4246 5031 1910 2353 2949 3600 4367 5360 6385 75l5

Plastic Modulus S cm3358 448 550 673 837 1011 1210 448 562 692 849 1058 1283 1543 636 799 986 1213 1518 1850 2239 967 1195 1472 1847 2255 2738 1572 1940 2440 2989 3642 4497 1998 2470 3113 3822 4671 5791 6977 2480 3070 3874 4766 5837 7261 8782 10530

Tors. Const

Surf. Area Per Metre m20.768 0.768 0.768 0.768 0.768 0.768 0.768 0.858 0.858 0.858 0.858 0.858 0.858 0.858 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.12 1.12 1.12 1.12 1.12 1.12 1.28 1.28 1.28 1.28 1.28 1.28 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1. 60 1.60 1.60 1.60 1.60 1.60 1.60 1.60

A cm247.1 59.4 73.7 91.1 115 141 172 52.8 66.6 82.6 102 129 159 195 62.9 79.4 98.6 122 155 191 235 87.4 109 135 171 211 260 125 155 196 243 300 376 140 175 222 275 339 427 524 156 195 247 307 379 479 588 719

J cm46692 8320 10150 12290 15070 17910 21040 9392 11700 14310 17390 21420 25600 30260 15860 19820 24320 29700 36780 44280 52800 26400 32440 39700 49320 59580 71360 48960 60060 74900 90860 109400 132900 70180 86280 107900 131400 158800 194000 229800 97040 119500 149800 182900 221800 272200 324400 381800

C cm3548 680 830 1006 1232 1466 1720 688 858 1048 1274 1568 1876 2216 980 1224 1502 1834 2272 2734 3260 1484 1824 2234 2774 3352 4014 2410 2956 3686 4472 5384 6538 3072 3776 4722 5748 6950 8492 10060 3820 4706 5898 7200 8734 10720 12770 15030

u u

273.0

u u

323.9

u u u u u u u

355.6

406.4

10.0 12.5 16.0 20.0 @ 25.0 @ 32.0 @ 10.0 12.5 16.0 20.0@ 25.0@ 32.0 @ 40.0@ 10.0 12.5 16.0 20.0@ 25.0@ 32.0@ 40.0@ 50.0@

457.0

u u u u

508.0

u u u u u

+ @ u

Sections marked thus are not ncluded in BS4848: Part 2 Sections marked thus are seamless and rolled in grade 50B only Check availability of section

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 / Aug 98

4.4 Steel (Non-composite) (20/21)

Rectangular Hollow SectionsDIMENSIONS AND PROPERTIESDesignation Mass Per Metre Area Ratios for Local Buck. Second Moment of Area Radius Of Gyration Elastic Modulus Plastic Modulus Tors. Const Surf. Area

Size D B mm

Thickness

Axis A x-x d/t b/t cm4 kg cm2

Axis y-y cm4

Axis x-x cm

Axis y-y cm

Axis x-x cm3

Axis y-y cm3

Axis x-x cm3

Axis y-y cm3 J cm4 C cm3 m2

kg

150x100

5.0 6.3 8.0 10.0 12.5 5.0 6.3 8.0 10.0 12.5 5.0 6.3 8.0 10.0 12.5 16.0 5.0+ 6.0+ 6.3 + 8.0+ 10.0+ 12.5+ 5.0+ 6.3 8.0 10.0 12.5 16.0 6.3 8.0 10.0 12.5 16.0 8.0 10.0 12.5 16.0 8.0+ 10.0 12.5 16.0 8.0+ 10.0+ 12.5+ 16.0+ 10.0 12.5 16.0 20.0@

18.7 23.3 29.1 35.7 43.6 18.0 22.3 27.9 34.2 41.6 22.7 28.3 35.4 43.6 53.4 66.4 24.2 28.9 30.3 37.9 46.7 57.3 30.5 38.2 48.0 59.3 73.0 91.5 48.1 60.5 75.0 92.6 117 73.1 90.7 112 142 85.7 106 132 167 85.7 106 132 167 122 152 192 237

23.9 29.7 37.1 45.5 55.5 22.9 28.5 35.5 43.5 53.0 28.9 36.0 45.1 55.5 68.0 84.5 30.9 36.8 38.5 48.3 59.5 73.0 38.9 48.6 61.1 75.5 93.0 117 61.2 77.1 95.5 118 149 93.1 116 143 181 109 136 168 213 109 136 168 213 156 193 245 302

27.0 20.8 15.7 12.0 9.00 29.0 22.4 17.0 13.0 9.80 37.0 28.7 22.0 17.0 13.0 9.50 37.0 30.3 28.7 22.0 17.0 13.0 47.0 36.7 28.2 22.0 17.0 12.6 44.6 34.5 27.0 21.0 15.7 47.0 37.0 29.0 22.0 53.2 42.0 33.0 25.1 59.5 47.0 37.0 28.2 47.0 37.0 28.2 22.0

17.0 12.9 9.50 7.00 5.00 13.0 9.70 7.00 5.00 3.40 17.0 12.9 9.50 7.00 5.00 3.25 21.0 17.0 16.0 12.0 9.00 6.60 27.0 20.8 15.7 12.0 9.00 6.38 28.7 22.0 17.0 13.0 9.50 22.0 17.0 13.0 9.50 28.2 22.0 17.0 12.6 22.0 17.0 13.0 9.50 27.0 21.0 15.7 12.0

747 910 1106 1312 1532 753 917 1113 1318 1536 1509 1851 2269 2718 3218 3808 1699 2000 2087 2564 3079 3658 3382 4178 5167 6259 7518 9089 7880 9798 11940 14460 17700 19710 24140 29410 36300 30270 37180 45470 56420 34270 42110 51510 63930 54120 66360 82670 100100

396 479 577 678 781 251 302 361 419 476 509 618 747 881 1022 1175 767 899 937 1140 1356 1589 1535 1886 2317 2784 3310 3943 4216 5219 6331 7619 9239 6695 8138 9820 11950 12200 14900 18100 22250 8170 9945 12020 14670 24560 29970 37080 44550

5.59 5.53 5.46 5.37 5.25 5.74 5.68 5.60 5.50 5.38 7.23 7.17 7.09 7.00 6.88 6.71 7.42 7.37 7.36 7.28 7.19 7.08 9.33 9.27 9.19 9.10 8.99 8.83 11.3 11.3 11.2 11.1 10.9 14.5 14.5 14.3 14.2 16.7 16.6 16.5 16.3 17.7 17.6 17.5 17.3 18.7 18.5 18.4 18.2

4.07 4.02 3.94 3.86 3.75 3.31 3.26 3.19 3.10 3.00 4.20 4.14 4.07 3.98 3.88 3.73 4.98 4.94 4.93 4.86 4.77 4.67 6.28 6.23 6.16 6.07 5.97 5.82 8.30 8.23 8.14 8.04 7.89 8.48 8.39 8.29 8.14 10.6 10.5 10.4 10.2 8.65 8.57 8.46 8.31 12.6 12.5 12.3 12.1

99.5 121 147 175 204 94.1 115 139 165 192 151 185 227 272 322 381 170 200 209 256 308 366 271 334 413 501 601 727 525 653 796 964 1180 985 1207 1471 1815 1345 1653 2021 2508 1371 1684 2060 2557 2165 2655 3307 4006

79.1 95.9 115 136 156 62.8 75.6 90.2 105 119 102 124 149 176 204 235 128 150 156 190 226 265 205 252 309 371 441 526 422 522 633 762 924 669 814 982 1195 976 1192 1448 1780 817 994 1202 1467 1638 1998 2472 2970

121 148 183 220 263 117 144 177 213 254 186 231 286 346 417 505 206 244 255 316 384 464 326 405 505 618 751 924 627 785 964 1179 1462 1210 1492 1831 2285 1630 2013 2478 3103 1716 2119 2609 3267 2609 3218 4042 4942

90.8 111 137 164 194 71.7 87.7 107 127 150 115 1473 1802 2154 2541 2988 144 171 178 220 266 319 229 284 353 430 520 635 475 593 726 886 1094 746 916 1120 1388 1086 1338 1642 2047 900 1106 1354 1683 1834 2257 2825 3442

806 985 1202 1431 1680 599 729 882 1041 1206 1202 1473 1802 2154 2541 2988 1646 1940 2025 2491 2997 3567 3275 4049 5014 6082 7317 8863 8468 10550 12890 15650 19230 15720 19240 23410 28840 27060 33250 40670 50480 21100 25840 31480 38830 52400 64310 80220 97310

127 153 184 215 246 106 127 151 175 199 172 208 251 296 342 393 210 245 256 310 367 429 337 413 506 606 717 851 681 840 1016 1217 1469 1135 1377 1657 2011 1629 1986 2407 2948 1430 1738 2097 2554 2696 3282 4046 4845

0.489 0.486 0.483 0.479 0.473 0.469 0. 466 0. 463 0.459 0.453 0.589 0.586 0.583 0.579 0.573 0.566 0.629 0.627 0.626 0.623 0.619 0.613 0.789 0. 786 0. 783 0.779 0.773 0.766 0. 986 0. 983 0.979 0. 973 0.966 1.18 1.18 1.17 1.17 1.38 1.38 1.37 1.37 1.38 1.38 1.37 1.37 1.58 1.57 1.57 1.56

160x80

200x100

200x120

250x150

300x200

400x200

450x250

500x200

500x300

+ @ u

Sections marked thus are not ncluded in BS4848: Part 2 Sections marked thus are seamless and rolled in grade 50B only Check availability of section

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 / Aug 98

4.4 Steel (Non-composite) (21/21)

4.4.11 References4. 5. 6. 7. 8. SCI, Guide to BS 5950: Part 1: 1990, Volume 1 ARBED, Structural shapes, 1990 Simple Connections, Volume 1: Design Rules, SCI/BCSA Simple Connections, Volume 2: Practical Applications Moment Connections, SCI BCSA

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 / Aug 98

4.5 Composite Steel and Concrete (1/11)

4.54.5.1

COMPOSITE STEEL AND CONCRETERULES OF THUMB Typical starting point Overall concrete depth 130mm (Grade 30) Depth of profiled decking 60mm Size beam with Z = ( Z for non-composite beam ) x F where F = 1.6 - 2.0 Typical maximum slab spans (m) Figures based on:1

"Ribdeck AL" (Richard Lees Ltd) 2 Imposed load of 4+1 kN/m (unfactored) 2 (including floor, ceiling and services = 6.7 kN/m ) Unpropped For other profiles see section D2

Decking gauge

Slab depth (mm)

Lightweight concrete Simply Supported

Normal Weight Concrete Simply Supported 2.78 2.66 3.02 2.89

Continuous 3.11 3.22 3.73 3.62

Continuous 3.03 3.00 3.55 3.41

0.9 (A142 mesh) 1.2 (A193 mesh)

130 150 130 150

2.95 2.88 3.20 3.08

Design assumes 60 minute fire resistance, provided that the slab is continious (decking need not be)

Choice of beam systemLikely span range (m) Scheme As primary beams As secondary beams Economic and practical maximum ratios of span to structural depth Accommodation of major services. Maximum xsectional area for 15m span m 1.7 1.9 0.9 5.3 3.6 5.0 2.8 1.5 1.3 3.0 2.5 1.5 1.0 Estimated unit cost index for fabricated and erected steelwork

Simple construction with rolled sections Fabricated sections Haunched Beams Parallel Beam approach Castellated sections Stub girders Composite trusses Slimfloor Slimdek

6-10.5

8-18

20 28 15 25 25 (support) 32(midspan) 21 30 17 20 13 16 12 16 20 14 18

1.0 1.3 with reinforced openings 1.2 1.3 0.9 1.3 1.4 1.5

Above 12 Above 12 Spans up to 10.5 N/A 10-15 Above 12 -

Above 12 Above 12 Ribs up to 15 up to 16 N/A Above 12 4.5 to 9 5 to 7

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AOND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.1 / Oct 00

4.5 Composite Steel and Concrete (2/11) 4.5.1 RULES OF THUMB (CONTD) Preferred beam layout Inefficient2

Efficient

For maximum structural efficiency:Primary beams

Secondary beams

L secondary = 4/3 L primary

2.4-3.0m spacing

Initial scheming chart Universal beams, 125mm concrete slab (Dotted Line on upper graph indicates that a 150mm slab may be required).

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AOND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.1 / Oct 00

4.5 Composite Steel and Concrete (3/11) 4.5.1 RULES OF THUMB (CONTD) Fabricated beams Castellated cellular beams (not very good for point loads): Span/depth < 20 Castellated beams, hole = 0.67D centres = 0.72D Cellular beams holes diameter = 0.6D - 0.8D centres = 1.1 -1.5 diameter Haunched beams (use as part of frame action): D = midspan depth Span/depth 35 (span/depth including slab = 26 28) Maximum overall depth at haunch = 2D Haunch length typically 7 - 10% of span Tapered beams: D = midspan depth Span/depth 15 - 25 Depth at support = 0.5D or maximum taper of 6 degrees

Openings in beams (non-seismic applications) Geometrical constraints : - Limit unstiffened openings to 0.6D depth by 1.5D length - Limit stiffened openings to 0.7D depth by 2D length - Space > D apart - Ideally positioned between L/5 and L/3 from support for beams with UDL - Position > D from any point load - Position > 2D (or L/10) from support - Openings should ideally be located mid-height. If not, the depths of the upper and lower sections of web should not differ by more than a factor of 2.

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AOND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.1 / Oct 00

4.5 Composite Steel and Concrete (4/11) 4.5.2 LOAD FACTORS As for non-composite steel (see section 4.4.2) 4.5.3 BENDING RESISTANCE (composite condition) Approximate moment resistance calculation3

P.N.A.

0.45fcu

yP

Rc P.N.A. Py yp

Ds- D p P.N.A.

Rc yp

RC Py y IN SLAB pCase (c)

D

yp IN STEEL FLANGECase (b)

yp IN STEEL WEBCase(c)

THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AOND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.1 / Oct 00

4.5 Composite Steel and Concrete (5/11)

Bending Resistance Formulae (Assuming 100% interaction) Rs = pyA Rc = 0.45 fcu (Ds - Dp)Be

Be = 0.25 L beam spacing

CASE (a) : Rc > Rs (P.N.A. in concrete slab)

CASE (b) : Rs > Rc > Rw (P.N.A. in steel flange)

D Rs Mpc = Rs + Ds Rc 2Mpc

Ds - Dp 2

where T = flange thickness Rf = axial capacity of one steel flange CASE (c) : Rc < Rw (P.N.A. lies in web)

Ds + Dp (Rs - Rc )2 T D = Rs + Rc 2 2 4 Rf

Mpc

2 Ds + Dp + D Rc D = Ms + Rc 2 Rw 4

where Ms = plastic capacity of steel section Rw = axial resistance of web only

4.5.4

SHEAR CONNECTORS

4

Design strength of headed studs in normal weight concrete (kN)Dimensions of stud shear connectors (mm) Diameter Nominal height 100 100 100 75 75 65 As-welded height 95 95 95 70 70 60 Design strength of concrete (N/mm) 25 30 35 40

25 22 19 19 16 13

117 95 76 66 56 35

123 101 80 70 59 38

129 106 83 73 62 39

134 111 87 77 66 42

For concrete of characteristic strength greater than 40 N/mm use the values for 40 N/mm. For connectors of heights greater than tabulated use the values for the greatest height tabulated. rcon rprofile = 0.9 for lightweight concrete = 1.0 for normal weight concrete = N h ba Dp = no studs/trough = stud height = average trough width = depth profile