structural and spatial determinants of london house prices, vishal kumar© 2013

17
1 GY240 Assessed Project 1 Structural and spatial determinants of London house prices, Vishal Kumar© 2013 Part 1: Introduction and Literature Review The history of land value economics stretches back to Alfred Marshall’s theory (1890) that examines the question of land rent and land value at length. More preeminent is the spatial model that was presented by von Thünen (1826). Alonso (1964) adopted von Thünen’s theory of agricultural land use and applied it to urban regions (Chiaradia, A. et al, 2009), describing cities as having a circular area of residential properties surrounding a central business district (CBD) of a certain radius. The influence of a dwelling unit’s price can be broken down into: its accessibility to work, transport and amenities and structural characteristics, neighborhoods and environmental quality (Muth, 1969). The varying empirical work on this subject has produced and extensive list of attributes that scientists use for specifying their model. Different authors use different approaches to divide the attributes of a house into categories. Malpezzi (2002) identifies structural, locational and neighborhood, contract depending and time specific attributes. Where as, Sirmans et al. (2009) mentions the internal features of a home, external, natural environment features, and public services. With that in mind, this study must be aware of all of these aspects when making the analysis. To that end, this project will consider firstly how specific structural and spatial characteristics affect sale price of London houses by using GIS spatial mapping software and a hedonic regression model, constructed by SPSS Statistic software. Secondly once the mapping and modeling are complete this project will analyze the impact of spatial characteristics relative to structural characteristics of the house on the eventual sale price. Structural determinants Sirmans et al (2009) explain that a substantial part of real estate price variance can be explained with the variables age and floor area. Nationwide house price index report (2011) states that a ‘10% increase in floor space adds 5% to the price of a typical home’. The idea of total floor size being the most influential determinant in house is supported by the hedonic results of So et al (1997) and Wabe (1971), and by the conclusions of Lehner (2011). Increasing the quality of life of a dwelling unit makes it more desirable to potential buyers. By adding a bedroom and bathroom through a loft conversion can add up to 23% on the property value (Nationwide, 2011). Further to this point an addition of one more toilet and central heating into a house increases the price by up to 40.4% and 4.9% respectively (Selim, 2008: 74). Looking at Figure 1 by the Nationwide (2010) report we can identify that in London the value of adding a second bathroom and full central heating increases the gross value by 15.6% and 8.3% respectively. ‘The jump from all houses without central heating to those with full central heating can increase the average value by £572’ (Wabe, 1971: 254). The age is normally used as a proxy for residential depreciation in terms of deterioration and has a negative impact on the price in all cases (Ong and Ho, 2003). This is supported the analysis of So et al (1997) that find a negative relationship with age of house and its price, because older properties tend to be inferior in quality compared to newly completed units (So et al, 1997: 44). However in the case of London ‘Older properties are also typically worth more, with a Jacobean property worth 30% more than one built in the fifties’ as reported in

Upload: vishal-kumar

Post on 06-Aug-2015

58 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Structural and spatial determinants of London house prices, Vishal Kumar© 2013

  1  

GY240  Assessed  Project  1    Structural  and  spatial  determinants  of  London  house  prices,  Vishal  Kumar©  2013    Part  1:    Introduction  and  Literature  Review    The  history  of  land  value  economics  stretches  back  to  Alfred  Marshall’s  theory  (1890)  that  examines  the  question  of  land  rent  and  land  value  at  length.  More  preeminent  is  the  spatial  model  that  was  presented  by  von  Thünen  (1826).  Alonso  (1964)  adopted  von  Thünen’s  theory  of  agricultural  land  use  and  applied  it  to  urban  regions  (Chiaradia,  A.  et  al,  2009),  describing  cities  as  having  a  circular  area  of  residential  properties  surrounding  a  central  business  district  (CBD)  of  a  certain  radius.   The  influence  of  a  dwelling  unit’s  price  can  be  broken  down  into:  its  accessibility  to  work,  transport  and  amenities  and  structural  characteristics,  neighborhoods  and  environmental  quality  (Muth,  1969).  The  varying  empirical  work  on  this  subject  has  produced  and  extensive  list  of  attributes  that  scientists  use  for  specifying  their  model.  Different  authors  use  different  approaches  to  divide  the  attributes  of  a  house  into  categories.  Malpezzi  (2002)  identifies  structural,  locational  and  neighborhood,  contract  depending  and  time  specific  attributes.  Where  as,  Sirmans  et  al.  (2009)  mentions  the  internal  features  of  a  home,  external,  natural  environment  features,  and  public  services.  With  that  in  mind,  this  study  must  be  aware  of  all  of  these  aspects  when  making  the  analysis.      To  that  end,  this  project  will  consider  firstly  how  specific  structural  and  spatial  characteristics  affect  sale  price  of  London  houses  by  using  GIS  spatial  mapping  software  and  a  hedonic  regression  model,  constructed  by  SPSS  Statistic  software.  Secondly  once  the  mapping  and  modeling  are  complete  this  project  will  analyze  the  impact  of  spatial  characteristics  relative  to  structural  characteristics  of  the  house  on  the  eventual  sale  price.    Structural  determinants      Sirmans  et  al  (2009)  explain  that  a  substantial  part  of  real  estate  price  variance  can  be  explained  with  the  variables  age  and  floor  area.  Nationwide  house  price  index  report  (2011)  states  that  a  ‘10%  increase  in  floor  space  adds  5%  to  the  price  of  a  typical  home’.  The  idea  of  total  floor  size  being  the  most  influential  determinant  in  house  is  supported  by  the  hedonic  results  of  So  et  al  (1997)  and  Wabe  (1971),  and  by  the  conclusions  of  Lehner  (2011).      Increasing  the  quality  of  life  of  a  dwelling  unit  makes  it  more  desirable  to  potential  buyers.  By  adding  a  bedroom  and  bathroom  through  a  loft  conversion  can  add  up  to  23%  on  the  property  value  (Nationwide,  2011).  Further  to  this  point  an  addition  of  one  more  toilet  and  central  heating  into  a  house  increases  the  price  by  up  to  40.4%  and  4.9%  respectively  (Selim,  2008:  74).  Looking  at  Figure  1  by  the  Nationwide  (2010)  report  we  can  identify  that  in  London  the  value  of  adding  a  second  bathroom  and  full  central  heating  increases  the  gross  value  by  15.6%  and  8.3%  respectively.  ‘The  jump  from  all  houses  without  central  heating  to  those  with  full  central  heating  can  increase  the  average  value  by  £572’  (Wabe,  1971:  254).      The  age  is  normally  used  as  a  proxy  for  residential  depreciation  in  terms  of  deterioration  and  has  a  negative  impact  on  the  price  in  all  cases  (Ong  and  Ho,  2003).  This  is  supported  the  analysis  of  So  et  al  (1997)  that  find  a  negative  relationship  with  age  of  house  and  its  price,  because  older  properties  tend  to  be  inferior  in  quality  compared  to  newly  completed  units  (So  et  al,  1997:  44).  However  in  the  case  of  London  ‘Older  properties  are  also  typically  worth  more,  with  a  Jacobean  property  worth  30%  more  than  one  built  in  the  fifties’  as  reported  in  

Page 2: Structural and spatial determinants of London house prices, Vishal Kumar© 2013

  2  

the  Nationwide  (2010)  report.  ‘The  premium  will  reflect  the  rarity  of  such  properties  whose  supply  is  obviously  fixed,  as  well  as  the  prestige  of  owning  a  piece  of  history  in  the  form  of  a  listed  building’  (Nationwide,  2010).  So  the  literature  has  mixed  views  on  this  determinant.  

 Spatial  determinants      Since  the  number  and  nature  of  influences  on  house  prices  are  large,  one  cannot  solely  determine  house  prices  by  the  individual  characteristics  of  the  dwelling  itself  (So  et  al,  1997;  41).  Traditional  location  theory  looks  at  how  house  prices  are  linked  to  accessibility  to  central  locations,  with  land  prices  declining  with  distance  from  the  CBD  (Alonso,  1964)  Accessibility  to  employment  centers  are  jointly  purchased  in  that  paying  higher  prices  are  compensated  with  lower  cost  of  commuting  to  the  CBD  (So  et  al,  1997).  The  most  important  points  of  interest  seem  to  be  public  transport  access  points  and  working  areas.  High  distances  away  from  these  kinds  of  areas  turned  out  to  have  a  significant  negative  impact  to  property  prices  (Lehner,  2011:  22).    This  study  will  explore  role  to  accessibility  and  the  impact  of  open  space,  in  the  form  of  population  density,  on  house  prices  in  London.    Bajic  (1983)  records  the  impact  of  a  new  subway  line  on  house  prices.  Accessibility  to  a  tube  station  causes  reduction  in  time  and  direct  saving  in  commuting  costs,  with  the  effect  of  a  subway  on  market  value  at  $2237  in  the  Spadina  area  (Bajic,  1983:156).  Moreover,  research  by  Baum-­‐Snow  and  Kahn  (2000)  show  that  a  decrease  in  distance  from  3km  to  1km  to  a  rail  way  connections  increases  the  mean  price  of  houses  by  $4972  as  tested  in  5  US  cities  between  1980-­‐1990  (Gibbons  and  Machin,  2008:110).    Finally,  for  every  kilometer  increase  of  distance  between  home  and  station  from  the  London  Underground  and  National  rail  stations  leads  to  a  1-­‐4%  decrease  in  the  household  price  (Gibbons  and  Machin,  2005).      Irwin  (2002)  observes  the  impact  of  open  space  attributes  on  the  impact  of  property  prices.  Population  density  will  be  used  as  a  proxy  for  diminished  open  space  in  this  study.  It  is  clear  from  the  literature  that  the  expectation  of  residential  sales  price  will  decrease  with  the  population  density,  where  a  recorded  decrease  of  up  to  2%  is  visible  from  the  regression  results  (Irwin,  2002:470).      The  literature  review  showed  that  the  floor  area  turned  out  to  have  a  strong  impact  on  the  housing  unit’s  price.  It  is  furthermore  expected  that  older  flats  yield  lower  prices  that  newer  ones,  however  properties  in  London  considered  to  be  rare  of  have  a  very  fixed  number  of  supply  bare  higher  premium  qualities.  Negative  price  impacts  are  also  expected  form  the  distance  to  the  CBD  as  well  as  from  distances  from  other  points  of  interest  such  as  tube  stations,  as  well  with  increased  population  density.        

Figure  1:  Nationwide  (2010)  

Page 3: Structural and spatial determinants of London house prices, Vishal Kumar© 2013

  3  

Part  2:    Description  of  the  Dataset      The  data  set  that  is  used  consists  of  recent  London  sales  transactions  over  a  single  3-­‐month  period  of  2444  properties.  This  section  will  include  tables  and  graphs  to  describe  both  the  dependent  and  independent  variables,  and  will  explain  any  important  information  that  needs  to  be  considered.    Description  of  Dependent  Variable:  Sale  price    The  positive  skewness  at  2.330  of  the  dependent  variable,  sales  price,  stands  out  in  Table  1;  this  is  graphically  depicted  in  figure  2.  The  regression  model  must  be  linear  for  OLS  estimations  (Studenmund,  2011)  therefore  the  ‘sales  price’  variable  cannot  be  considered.    A  transformation  of  the  sales  price  variable  by  taking  the  natural  log  must  be  applied,  this  gives  the  variable  the  properties  of  a  normal  distribution  about  the  mean  as  depicted  in  figure  2  on  the  right  hand  side.  Table  1  now  shows  that  the  skewness  of  the  Log  of  the  price  is  at  0.508,  close  enough  to  be  normal,  and  will  be  used  in  the  regression  model.  

Description  of  the  Independent  Variables    Table  2  provides  insight  of  the  characteristics  of  the  independent  variables  collected  in  the  date;  yellow  highlight  and  green  highlight  depicting  structural  and  spatial  variables  respectively.  The  range  of  the  independent  variables  shows  the  depth  and  relationship  of  the  

Table  1:  Description  of  the  Statistics  -­‐  Dependent   Sale price Log of the price

Valid 2444 2444

Missing 0 0 Mean 159127.3733 11.8625271

Median 135000.0000 11.8130300 Std. Deviation 87968.19503 0.46061353

Skewness 2.330 .508 Std. Error of Skewness .050 .050

Figure  2:  Sale  price  and  log-­‐sale  price  histograms  

Page 4: Structural and spatial determinants of London house prices, Vishal Kumar© 2013

  4  

data.  A  correlation  matrix  using  the  Pearson’s  Correlation  Coefficient  is  also  used  to  show  the  relationship  between  the  independent  variables  with  the  dependent,  showing  the  relative  impact  of  each  variable  on  sales  price.  Table  3  shows  that  floor  size  has  the  biggest  impact  and  is  in  line  with  the  literature.    Table  2:  Description  of  the  Statistics  –  Independent    

 Table  3:  Correlation  Matrix  using  the  Pearson’s  Correlation  Coefficient  

 Description  of  the  Independent  Spatial  Variables  In  order  to  visualize  the  data  of  the  independent  spatial  variables,  GIS  mapping  was  undertaken.  The  area  enclosed  by  Holborn,  Tottenham  Court  Road,  Bank  and  Piccadilly  tube  stations,  defines  the  CBD;  this  is  visualized  in  Figure  4.  Kringing  maps  below  visually  capture  

Variable   Mean   Std.  Deviation   Maximum   Minimum   Range              

Floorm2   87.87   34.507   270   25   245  Bathrooms   71.67   36.169   3   1   2  

Age   1.09   .307   401   0   401  Chnone   .08   .276   1   0   1  

           DistCBD   12549.579   5281.823   25939.974   765.935   25174.039  DistTube   2813.04   2798.593   18351.401   0.00   18351.402  PopDens   43.161   3777.844   717.527   0.118   717.527  

Variables   Lnprice   Floorm2   Bathrooms   Age   chnone   distCBD   distTube   popdens  Lnprice   1   .696   .438   .301   -­‐.210   -­‐.254   -­‐.209   -­‐.036  

Figure  3:  Kringing  Map  showing  the  relationship  between  distance  to  the  CBD  station  and  property  price  

Page 5: Structural and spatial determinants of London house prices, Vishal Kumar© 2013

  5  

the  relationship  of  the  3  spatial  variables  on  house  prices  in  London.  Figure  3  shows  the  relationship  between  distance  to  the  CBD  and  its  affect  on  house  prices.  The  colour  range  from  yellows  to  red  show  the  properties  on  the  map;  where  yellow  is  the  bottom  quartile  of  all  house  prices  and  red  being  the  upper  quartile.  Figure  3  shows  that  the  majority  of  the  red  properties  are  located  within  the  inner  most  circles  of  the  CBD,  where  as  the  majority  of  the  yellow  properties  are  located  within  the  outer  most  layers.  Figure  3  tells  us  that  the  majority  of  the  most  expensive  houses  are  clustered  around  the  CBD.    

   Figure  5  shows  the  relationship  between  the  distance  from  a  tube  station  and  its  effect  on  property  prices.  Again  the  same  colour  code  is  used  for  properties  in  the  Kringing  map.  The  colour  range  from  green  to  white  shows  the  distance  of  a  property  from  its  nearest  tube  station;  where  green  indicates  closer.  Figure  5  shows  that  nearly  all  of  the  red  properties  are  in  the  green  area,  which  indicates  that  the  majority  of  the  expensive  houses  are  very  close  to  a  tube  station.    However  there  are  some  deviations  from  both  of  these  conclusions  where  a  small  number  of  

Figure  4:  Map  showing  the  CBD  of  London    Source:  Google  Maps  

Figure  5:  Kringing  Map  showing  the  relationship  between  distance  to  a  tube  station  and  property  price  

Page 6: Structural and spatial determinants of London house prices, Vishal Kumar© 2013

  6  

highly  prices  properties  in  the  North  West  and  South  East  of  London  are  based  in  the  outskirts  both  far  away  from  the  CBD  and  from  tube  stations.    

Figure  5  shows  that  only  in  the  most  populated  dense  area  of  London,  west  of  the  CBD,  do  we  see  the  most  expensive  houses  and  no  cheap  houses.  This  is  the  opposite  of  what  the  literature  said.  However  expensive  houses  are  also  found  in  area  with  lower  population  density,  namely  north  of  the  CBD.  We  can  also  see  that  the  majority  of  the  lower  quartile  properties  are  in  the  least  populated  areas.  Figure  5  has  a  complicated  pattern  and  thus  a  conclusive  relationship  cannot  be  drawn  purely  from  mapping  the  data.    The  kringe  maps  are  useful  when  analyzing  the  data  visually,  however  they  don’t  provide  any  information  about  causality  of  these  variables  on  sales  price,  as  is  apparent  in  figure  5.  For  this  we  need  to  construct  a  liner  regression  model  including  all  the  other  relevant  independent  variables  to  show  their  relative  affect  on  property  price.                    

Figure  6:  Kringing  Map  showing  the  relationship  between  Population  density  and  property  price    

Page 7: Structural and spatial determinants of London house prices, Vishal Kumar© 2013

  7  

Part  3:    Hedonic  Regression      Dwelling  units  are  unique  with  varying  qualities  as  described  by  the  literature;  in  order  to  incorporate  these  heterogeneities  into  price  estimations  hedonic  theory  can  be  applied.  Hedonic  pricing  approach  is  valuing  specific  goods  characteristics  depending  on  their  utility  for  potential  buyers  (Lehner,  2011).  Hedonic  pricing  approach  is  typically  used  to  estimate  the  contribution  of  these  individual  characteristics.  Lancaster  (1966)  applied  hedonic  theory  in  the  field  of  real  estate  for  the  first  time  in  the  sixties.  Because  residential  property’s  are  multidimensional  commodities  (So  et  al,  1997),  the  need  to  assess  multiple  factors  are  adherent  to  the  success  of  their  analysis.    The  final  regression  model  will  include  1)  total  floor  area  2)  number  of  bathrooms  3)  age  of  property  4)  whether  or  not  it  has  central  heating  5)  distance  from  the  CBD  6)  distance  from  the  nearest  tube  station  and  7)  local  population  density.  The  regression  models  will  look  like  the  following:  

 

Y  =  βo  +  β1X1i  +  β2X2i  +  …  +  βkXki  +  ϵi    Y  =  dependent  variable  βo  =  constant  term  β  =  regression  coefficients  X  =  independent  variables  ϵ  =  the  error  term    The  following  hypothesis  will  also  be  tested  and  P  values  will  be  used  to  test  the  significance:    H0  :  The  independent  variables  do  not  affect  the  dependent  variable.  H1:  The  independent  variables  do  affect  the  dependent  variable.    The  classical  assumptions  are  the  basic  assumptions  required  to  hold  in  order  for  the  OLS  to  be  considered  the  ‘best’  estimator  available  for  regression  models  (Studenmund,  2011:  93).  If  one  or  more  of  these  assumptions  do  not  hold,  other  estimator  techniques  may  sometimes  be  better  than  OLS.  These  7  assumptions  are  listed  bellow:    

Page 8: Structural and spatial determinants of London house prices, Vishal Kumar© 2013

  8  

The  baseline  model    The  base  line  model  will  include  the  structural  variables  considered  the  most  important  determinants  of  the  house  prices  in  London.  Tables  4  and  5  show  the  results  obtained  from  the  regression  analysis.      The  regression  analysis  provided  the  following  results:    

Table 4: Model Summary Model R R Square Adjusted R

Square Std. Error of the

Estimate 1 .741a .550 .549 .30933958 a. Predictors: (Constant), None central heating system, Number of bathrooms, Age of the house, Total house area in square meters

Table 5: Coefficientsa Model Unstandardized Coefficients Standardized

Coefficients t Sig.

B Std. Error Beta

1

(Constant) 10.771 .027 402.029 .000

Total house area in square metres

.008 .000 .582 36.882 .000

Number of bathrooms .219 .023 .146 9.416 .000 Age of the house .003 .000 .200 14.492 .000 None central heating system -.158 .023 -.095 -6.870 .000

a. Dependent Variable: Log of the price

 The  standardized  coefficients  are  used  to  depict  the  baseline  model  and  show  the  comparison  between  the  sale  price  and  the  variables  that  determine  it.    

 Analysis  of  the  baseline  model:    Table  4  that  the  structural  determinants  cause  54.90%  of  the  variation  in  house  prices  across  the  London  area.  When  comparing  the  analysis  of  the  individual  independent  variables  we  look  to  the  standardized  coefficients  rather  than  the  unstandardized  coefficient.  This  is  because  the  unstandardized  coefficient  doesn’t  take  into  account  the  differences  in  unit  measurement  of  the  independent  variable.  The  standardized  coefficients  give  the  relative  weighting  of  the  independent  variables  and  we  can  report  that  the  Table  5  shows  the  greatest  contributor  to  house  price  is  the  total  house  area,  with  a  standardized  coefficient  of  0.582.  Increases  in  number  of  bathrooms  and  age  have  positive  effects  on  sale  price  and  no  central  heating  system  reports  a  negative  coefficient  which  means  it  decrease  the  value  of  a  property.    

Structural  model:  Lnprice  =  10.771  +  0.582  floorarea  +  0.146  bathrooms  +  0.200  age  –  0.095  chnone  

 

Page 9: Structural and spatial determinants of London house prices, Vishal Kumar© 2013

  9  

 Table  5  shows  that  all  the  variables  have  a  high  t-­‐statistic  and  p  values  of  0.000,  which  proves  that  all  the  independent  variables  are  significant  with  a  99%  confidence  level.  Moreover,  the  calculated  f-­‐value  of  744.397  shows  that  the  overall  equation  is  statistically  sound  at  the  99%  confidence  level.  Putting  the  two  together  we  can  statistically  say  that  the  Null  hypothesis  can  be  rejected.      The  extended  model:  includes  the  spatial  variables  within  it    The  regression  analysis  provided  the  following  results:    

Table 6: Model Summary Model R R Square Adjusted R

Square Std. Error of the

Estimate 1 .779a .607 .605 .28931951 a. Predictors: (Constant), Population density of the local area , None central heating system, Number of bathrooms, Age of the house, Distance to tube stations, Total house area in square metres, Distance to CBD

 Table 7: Coefficientsa

Model Unstandardized Coefficients Standardized Coefficients

t Sig.

B Std. Error Beta

1

(Constant) 11.057 .036 309.819 .000

Total house area in square metres

.008 .0002 .633 41.466 .000

Number of bathrooms .162 .022 .108 7.329 .000 Age of the house .0014 .0002 .114 8.188 .000 None central heating system -.1475 .0227 -.088 -6.851 .000 Distance to CBD -1.359E-005 .000 -.156 -9.382 .000 Distance to tube stations -1.959E-005 .000 -.119 -8.143 .000 Population density of the local area

.0005 .0003 .038 2.647 .008

a. Dependent Variable: Log of the price  Including  the  remaining  spatial  variable  leads  to  the  extended  model.  The  adjusted  R-­‐squared  value  of  0.605  shows  that  60.50%  of  the  variation  in  sales  price  is  to  be  accounted  by  all  the  7  independent  variables  carried  out  in  this  study.  The  standardized  coefficients  are  used  again  to  illustrate  the  model.  

Analysis  of  the  extended  model:    The  most  significant  fact  to  take  away  from  the  extended  model  is  that  total  floor  area  remains  the  most  influential  independent  variable  on  sales  price.  By  including  the  spatial  variables  we  can  see  that  compared  to  the  structural  determinants  they  provide  a  greater  increase  in  the  price.  Population  density  of  the  local  area  has  the  lowest  effect  on  sales  price,  

Extended  model:  Lnprice  =  11.0572  +  0.633  floorarea  +  0.108  bathrooms  +0.114  age  –  0.088  chnone  –  

0.156  distCBD  –  0.119  distTube  +  0.038  popdens    

Page 10: Structural and spatial determinants of London house prices, Vishal Kumar© 2013

  10  

however  unlike  the  literature  presumed  the  coefficient  is  marginally  positive,  this  may  prove  that  in  the  London  area  increased  population  may  increase  the  house  price.  All  of  the  variables  as  shown  by  the  p-­‐values  in  table  7  are  statistically  significant  at  the  99%  confidence  level,  backed  up  by  an  F-­‐statistic  of  536.593  as  shown  in  Table  8.           Structural  

Model    Spatial  Model     Fully  extended  

model                                Floor  Area  of  Dwelling  (m2)    

0.0078***       0.0084***  

    (0.0002)       (0.0002)  Number  of  Bathrooms   0.2191***       0.1616**       (0.0259)       (0.241)  Age  of  Property   0.0025***       0.0014***       (0.0002)       (0.0002)  No  Central  Heating  (dummy)  

-­‐0.158***       -­‐0.1475***  

    (0.0238)       (0.00227)                                Distance  to  the  CBD  (meters)  

    -­‐1.806E-­‐5***   -­‐1.739E-­‐5***  

        (0.0000)   (0.0000)  Distance  to  the  nearest    Tube  (meters)  

   

-­‐3.291E-­‐5***   -­‐1.442E-­‐5***  

        (0.0000)   (0.0000)    Population  Density        -­‐0.0012**    0.0005**          (0.0004)    (0.0003)                  Constant   10.7707   12.2279   11.1630       (0.0296)   (0.0398)   (0.0385)  Adjusted  R-­‐squared   0.5489   0.0809   0.605  F  Statistic   744.397***   71.627***   536.593***  Number  of  observations   2444   2444   2444    

                 

Table  8:  Results  of  the  regression,  unstandardized  beta  coefficients  are  reported.  Numbers  in  parentheses  are  robust  standard  errors.      ***  Significantly  different  from  zero  with  99%  confidence    

Page 11: Structural and spatial determinants of London house prices, Vishal Kumar© 2013

  11  

Classical  Assumptions:    

Classical  Assumption  1:  Taking  the  natural  log  to  transform  the  dependent  variable  of  sales  price  shows  that  the  regression  model  is  linear  in  the  coefficients.  This  is  depicted  in  Figure  7  therefore  the  assumption  is  satisfied.          

     

   

Classical  assumption  2:  Econometricians  add  a  stochastic  (random)  error  term  to  regression  equations  to  account  for  variation  in  the  dependent  variable  that  is  not  explained  by  the  model  (Studenmund,  2011:95).  These  error  terms  are  assumed  to  be  drawn  from  a  random  variable  distribution  with  a  mean  of  zero,  to  show  this  Table  9  shows  that  the  mean  the  distribution  is  0.000  therefore  satisfying  this  assumption.            

Classical  assumption  3:  It  is  assumed  that  the  observed  values  of  the  explanatory  variables  are  independent  of  the  values  of  the  error  term,  and  are  not  correlated  to  them  (Studenmund,  2011:  97).  Scatter  plots  with  each  explanatory  variable  against  the  unstandardized  residual  are  provided  

Statistics  Unstandardized  Residual      

N  Valid   2444  Missing   0  

Mean   .0000000  

Figure  7:  P-­‐P  plot  showing  linearity  

Table  9  

Page 12: Structural and spatial determinants of London house prices, Vishal Kumar© 2013

  12  

below,  all  7  graphs  show  that  there  is  no  correlation;  therefore  the  3rd  assumption  may  be  satisfied  proving  that  this  model  is  not  bias.  The  OLS  estimates  have  been  proven  to  only  be  influences  by  the  explanatory  variables.      

     

Figure  8  

Page 13: Structural and spatial determinants of London house prices, Vishal Kumar© 2013

  13  

Classical  Assumption  4:  

Assumption  4  says  that  an  increase  in  error  term  in  one  time  period  does  not  show  up  in  another  time  period  (Studenmund,  2011:  97).  This  assumption  is  only  important  in  the  context  of  a  time  series  between  data.  Because  the  data  for  this  study  is  collected  in  a  single  time  period  of  3  months  this  assumption  can  be  disregarded.      

Classical  assumption  5:  The  variance  or  dispersion  of  the  distribution  from  which  the  observations  are  drawn  must  be  constant,  that  is  to  say  that  the  observations  are  drawn  continually  from  identical  distributions  (Studenmund,  2011:98),  this  is  known  as  homoscedasticity.  If  the  variance  were  increasing  it  is  known  as  heteroscedasticity.  Figure  9  shows  that  the  dispersion  of  observations  are  even  and  random  therefore  this  satisfies  the  assumption  that  the  error  term  has  a  constant  variance.                  

Classical  assumption  6:      Perfect  collinearity  between  2  independent  variables  implies  that  they  are  the  same  variable.  Mulitcollinearity  is  where  more  than  2  variables  are  involved.  If  this  were  the  case  with  the  data  the  regression  would  not  distinguish  between  the  relative  affect  of  one  independent  variable  compared  to  another  on  the  dependent  variable.  The  variance  inflation  factor  is  used  to  detect  for  multicollinearity.    With  all  variables  in  table  10  being  below  1.5  it  shows  that  the  assumption  has  been  satisfied,  no  variable  is  a  perfect  linear  function  of  another                                

Coefficientsa

Model Collinearity Statistics

VIF

1

Total house area in square metres

1.442

Number of bathrooms 1.340 Age of the house 1.195 None central heating system 1.031 Distance to CBD 1.709 Distance to tube stations 1.323 Population density of the local area

1.283

a. Dependent Variable: Log of the price

Table  10:    

Figure  9  

Page 14: Structural and spatial determinants of London house prices, Vishal Kumar© 2013

  14  

Classical  Assumption  7:  The  histogram  in  Figure  10  shows  the  normal  distribution  of  the  error  term,  as  it  is  symmetrical  about  the  mean.  The  application  of  normality  is  not  applied  in  OLS  estimation  but  is  needed  in  hypothesis  testing  (Studenmund,  2011:100),  to  ensure  that  the  t  and  F-­‐statistics  can  be  applicable.  This  assumption  is  satisfied.                                              Conclusion      The  results  have  proven  that  the  influence  on  variation  of  the  structural  variable  relative  to  the  spatial  variable  account  for  54.9%  compared  to  8.09%.  Table  11  show  shows  the  variation  influence  of  each  individual  variable,  total  floor  area  is  undoubtedly  the  biggest  contributor  to  sales  price  accounting  for  48.5%,  with  an  additional  bathroom  accounting  for  19.2%.  Access  to  the  CBD  is  the  highest  spatial  variable  with  an  influence  of  6.5%  on  house  prices.  The  importance  of  the  accessibility  variables  must  not  be  diminished  by  this  result  as  both  standardized  beta  coefficients  of  0.156  for  CBD  and  0.119  for  tube  station  show  a  relatively  large  negative  effect.    However  population  density  seems  to  be  a  fairly  irrelevant  determinant  of  house  prices  through  out  this  study  as  shown  firstly  by  the  Kringing  map  (Figure  6),  the  standardized  beta  coefficient  of  0.038  and  R-­‐squared  change  of  0.001.  Perhaps  another  spatial  determinant  

Variables   R-­‐squared  change  

floorarea   0.485  Bathroom   0.192  Age   0.091  chnone   0.044  DistCBD   0.065  DistTube   0.044  popdens   0.001  

Figure  10  

Table  11  

Page 15: Structural and spatial determinants of London house prices, Vishal Kumar© 2013

  15  

such  as  neighborhood  quality  or  level  of  school  quality  may  have  had  a  more  direct  effect  as  capture  in  the  work  of  Brasington  (1999).      The  hedonic  regression  captured  60.5%  of  the  total  variation  in  property  price  that  leaves  39.5%  unexplained  to  other  factors.  Drawing  upon  the  literature  it  is  clear  to  distinguish  the  omitted  variables  that  could  have  been  chosen  to  further  enhance  this  study  and  the  fit  of  the  model.  Firstly,  Irwin  (2002)  looks  at  the  effect  of  open  space  where  ‘open  space  is  valued  most  for  not  being  developed  on’  (Irwin,  2002:465)  which  may  explain  why  very  expensive  properties  remain  in  North  West  and  South  East  of  London  (Figure  5).  Secondly  as  mentioned  above  Brasington  (1999)  and  also  Gibbons  and  Machin  (2008)  look  quite  deeply  at  the  effect  of  school  on  property  prices,  this  is  an  important  factor  to  consider,  by  reporting  that  there  is  a  ‘3.8%  value  increase  with  an  increase  in  performance  of  target  grades  in  primary  schools  in  London’  (Gibbons  and  Machin,  2008:  109).    Finally,  crime  is  also  a  big  influential  factor  on  property  prices  with  a  10%  decrease  in  values  for  a  one  standard  deviation  increase  in  local  density  crime  damage  (Gibbons  and  Machin,  2008;  Gibbons  2004).  Including  these  discussed  omitted  variables  will  allow  for  a  greater  level  of  research  and  accountability.      Although  the  results  of  the  model  have  been  proven  to  be  statistically  viable  as  well  as  satisfying  the  7  Classical  assumptions  (Studenmund,  2011),  some  light  needs  to  be  brought  on  the  data  and  the  way  it  has  been  collected,  because  the  data  only  captures  one  moment  in  time.  If  the  data  had  been  collected  over  other  regions  and  times  the  results  may  have  been  different,  more  accurate  and  up-­‐to-­‐date  with  future  preferences.  Also,  the  majority  of  houses  collected  by  the  data  were  within  proximity  to  the  CBD.  Thus,  the  reliability  of  the  conclusions,  especially  for  the  spatial  variables  is  questionable.  Hamnett  (2003)  describes  that  ‘where  people  live  isn’t  a  free  choice,  people  are  forced  to  live  within  proximity  due  to  employment  opportunities’.  These  preferences  or  limitations  between  accessibility  and  space  could  lead  to  a  differing  housing  pattern  in  London.  .  Thus,  there  are  many  opportunities  to  expand  this  study  further  and  to  provide  more  explanation  for  house  prices  in  London.      Word  Count:  3991                            

Page 16: Structural and spatial determinants of London house prices, Vishal Kumar© 2013

  16  

Bibliography    Alonso,  W.  (1964)  The  Historic  and  the  Structural  Theories  of  Urban  Form:  Their  Implications  for  Urban  Renewal,  Land  Economics  Vol.  4  No.  2,  227-­‐231    Bajic  V.(1983),  The  effects  of  a  new  subway  line  on  Housing  prices  in  Metropolitan  Toronto,  Urban  Studies  Vol.  20  No.  2,  147  -­‐158    Ball  M.  (1973)  Recent  Empirical  Work  on  the  Determinants  of  Relative  House  Prices,  Urban  Studies,  Vol.  10,  213  –  233    Brasington,  D.  M.  (1999).  Which  measures  of  school  quality  does  the  housing  market  value?.  Journal  of  real  estate  research,  18(3),  395-­‐413.    Chiaradia  et  al  (2009)  UCL  Residential  Property  Value  Patterns  in  London    Gibbons,  S.  &  Machin,  S.  (2005)  ‘Valuing  rail  access  using  transport  innovations’  Journal  of  Urban  Economics,  Vol.  57  (1):  148-­‐169.    Gibbons,  S  &  Machin,  S.  (2008)  ‘Valuing  School  Quality,  Better  Transport,  and  Lower  Crime:  Evidence  from  House  Prices’,  Oxford  Review  of  Economic  Policy,  Vol.  24  No.  1,  99-­‐119.    Hammnet,  C  (2003).  ‘  Unequal  City:  London  in  the  Global  Arena’    Irwin,  E.  G,  (2002)  The  Effects  of  Open  Space  on  Residential  Property  Values,  Land  Economics  Vol.  78,  No.  4,  465-­‐480    Lancaster,  K.  J.  (1966)  A  new  approach  to  consumer  theory,  Journal  of  Political  Economy,  74  (3)  132–157.    Lehner,  M.  (2011).  Modelling  housing  prices  in  Singapore  applying  spatial  hedonic  regression.  Master  of  Science  thesis,  Insitute  for  Transport  Planning  and  Systems,  ETH  Zurich.    Löchl,  M.  (2010)  Application  of  spatial  analysis  methods  for  understanding  geographic  variation  of  prices,  Ph.D.  Thesis,  ETH  Zurich    Malpezzi,  S.  (2002)  Hedonic  pricing  models:  A  selective  and  applied  review,  in  T.  O’Sullivan  and  K.  Gibb  (eds.)  Housing  Economics  and  Public  Policy,  Blackwell  Science,  Oxford.    Marshall,  A.  (1890).  Principles  of  economics:  an  introductory  volume.    Muth,  R.  F.  1969.  Cities  and  Housing.  Chicago,  IL:  University  of  Chicago  Press.    Nationwide  (2011)  House  Price  Index,  Retrieved  January  7th  2014  from  http://www.nationwide.co.uk/hpi/historical/WhataddsvaluespecialreportOct11.pdf    

Page 17: Structural and spatial determinants of London house prices, Vishal Kumar© 2013

  17  

Nationwide  (2010)  What  Adds  Value,  Retrieved  January  7th  2014  from  http://www.regenerate.co.uk/House%20prices_what_adds_value.pdf    

 Ong,  S.  E.  and  K.  H.  D.  a.  Ho  (2003)  A  constant-­‐quality  price  index  for  resale  public  housing  flats  in  Singapore,  Urban  Studies,  40  (13)  2705–2729.    Selim,  S.  (2008)  Determinants  of  House  prices  in  Turkey:  A  Hedonic  Regression  Model,  Doğuş  Üniversitesi  Dergisi,  Vol.  9  No.  1,  65-­‐76    Sirmans,  S.  G.,  D.  A.  Macpherson  and  E.  N.  Zietz  (2009)  The  composition  of  hedonic  pricing  models,  13  (1)  1–44.    Studenmund,  A.H.,  (2011)  Using  Econometrics,  A  Practical  Guide,  4th  Ed,  Longman    So  H.  M.,  Tse  R.  and  Ganesan  S.  (1997)  Estimating  the  influence  of  transport  on  house  prices:  evidence  from  Hong  Kong,  Journal  of  Property  Valuation  and  Investment,  Vol.  15  No.1,  40–47    Wabe,  S.  (1971)  ‘A  Study  of  House  Prices  as  a  means  of  Establishing  the  Value  of  Journey  Time,  the  Rate  of  Time  Preference  and  the  Valuation  of  some  Aspects  of  Environment  in  the  London  Metropolitan  Region’  Applied  Economics,  Vol.  3,  247-­‐255