strain energy part 1

20
ENERGY METHOD SOLID MECHANICS II BMCS 3333 Nadlene Razali

Upload: aalijanaab

Post on 03-Jun-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

8/12/2019 Strain Energy Part 1

http://slidepdf.com/reader/full/strain-energy-part-1 1/20

ENERGY METHOD

SOLID MECHANICS II

BMCS 3333

Nadlene Razali

8/12/2019 Strain Energy Part 1

http://slidepdf.com/reader/full/strain-energy-part-1 2/20

8/12/2019 Strain Energy Part 1

http://slidepdf.com/reader/full/strain-energy-part-1 3/20

Previous lessons : relation between force and

deformation using concept of,

Stress

Strain

Concept of Strain energy  : increase in energy

associated with the deformation of the member.

Introduction

8/12/2019 Strain Energy Part 1

http://slidepdf.com/reader/full/strain-energy-part-1 4/20

 Apply energy methods to solve

problems involving deflection

and deformations of the

structures.

Use principle of conservation of

energy to determine stress and

deflection of a member

subjected to impact.

Develop the method of virtual work and Castigliano’s 

theorem  to determine displacement and slope at points

on structural members and mechanical elements.

Introduction

8/12/2019 Strain Energy Part 1

http://slidepdf.com/reader/full/strain-energy-part-1 5/20

• A uniform rod is subjected to a slowly increasing load

• The total work done by the load for a deformation x1, 

work total dx P U 

 x

1

0

11212

121

0

1

 x P kxdxkxU 

 x

• In the case of a linear elastic deformation,

• The elementary work done by the load P as the rod

elongates by a small dx is 

which is equal to the area of width dx under the load-

deformation diagram.

work elementarydx P dU   

External Load

8/12/2019 Strain Energy Part 1

http://slidepdf.com/reader/full/strain-energy-part-1 6/20

Work of a force:

• When a force P  is applied to the bar,

followed by the force P ’, total work done by

both forces is represented by the area of

the entire triangle in graph shown.

Strain energy:

When loads are applied to a body and causes deformation, the

external work done by the loads will be converted into internal

work called strain energy. This is provided no energy is

converted into other forms.

TOTAL WORK = STRAIN ENERGY

Strain Energy

8/12/2019 Strain Energy Part 1

http://slidepdf.com/reader/full/strain-energy-part-1 7/20

• To eliminate the effects of size, evaluate the strain-

energy per unit volume,

densityenergy straind u

 L

dx

 A

 P 

 x

 x

1

1

0

0

 

  

• As the material is unloaded, the stress returns to zero but there is a permanent deformation. Only the strain

energy represented by the triangular area is recovered.

• Remainder of the energy spent in deforming the material

is dissipated as heat.

• The total strain energy density resulting from the

deformation is equal to the area under the curve to  1. 

Strain Energy Density

8/12/2019 Strain Energy Part 1

http://slidepdf.com/reader/full/strain-energy-part-1 8/20

• The strain energy density resulting from

setting  1     R is the modulus of toughness.

• The energy per unit volume required to cause

the material to rupture is related to its ductility

as well as its ultimate strength.

• If the stress remains within the proportional

limit,

 E 

 E d  E u  x

22

21

21

0

1

1  

  

 

• The strain energy density resulting from

setting  1    Y  is the modulus of resilience.

resilienceof modulus E 

u   Y Y   

2

Strain Energy Density

8/12/2019 Strain Energy Part 1

http://slidepdf.com/reader/full/strain-energy-part-1 9/20

Example:

The stress strain diagram shown has been drawn from data obtained

during a tensile test of an aluminum alloy. Using E=72 GPa,

determine:

(a) The modulus of resilience

(b) The modulus of tougnness

Strain Energy Density

8/12/2019 Strain Energy Part 1

http://slidepdf.com/reader/full/strain-energy-part-1 10/20

Solution:

Strain Energy Density

8/12/2019 Strain Energy Part 1

http://slidepdf.com/reader/full/strain-energy-part-1 11/20

• In an element with a nonuniform stress distribution,energystraintotallim

0

dV uU 

dV 

dU 

U u

• For values of u < uY , i.e., below the proportional

limit,

energy strainelasticdV  E 

U    x  2

2

   

• Under axial loading, dx AdV  A P  x    

 L

dx AE 

 P U 

0

2

2

 AE 

 L P 

U  2

2

• For a rod of uniform cross-section,

Elastic Strain Energy for Normal Stresses

8/12/2019 Strain Energy Part 1

http://slidepdf.com/reader/full/strain-energy-part-1 12/20

Example:

Using E = 200 GPa, determine:

(a) Strain energy of steel rod ABC when P = 25 kN

(b) The corresponding strain energy density in portion AB and BC

Elastic Strain Energy for Normal Stresses

8/12/2019 Strain Energy Part 1

http://slidepdf.com/reader/full/strain-energy-part-1 13/20

Solution:

Elastic Strain Energy for Normal Stresses

8/12/2019 Strain Energy Part 1

http://slidepdf.com/reader/full/strain-energy-part-1 14/20

Solution:

Elastic Strain Energy for Normal Stresses

8/12/2019 Strain Energy Part 1

http://slidepdf.com/reader/full/strain-energy-part-1 15/20

11 - 15

 I 

 y M  x  

• For a beam subjected to a bendingload,

    dV  EI 

 y M dV 

 E U    x

2

222

22

 

• Setting dV = dAdx  

dx

 EI 

 M 

dxdA y EI 

 M dxdA

 EI 

 y M U 

 L

 L

 A

 L

 A

 

 

 

 

0

2

0

2

2

2

02

22

2

22

• For an end-loaded cantilever beam,

 EI 

 L P dx

 EI 

 x P U 

 Px M 

 L

62

32

0

22

Elastic Strain Energy in Bending

8/12/2019 Strain Energy Part 1

http://slidepdf.com/reader/full/strain-energy-part-1 16/20

• For a material subjected to plane shearing

stresses,

 xy

 xy xy d u

 

  

0

• For values of   xy within the proportional limit,

GGu

  xy xy xy xy

2

2

212

21

      

• The total strain energy is found from,

dV G

dV uU 

 xy

2

Elastic Strain Energy for Shearing Stresses

8/12/2019 Strain Energy Part 1

http://slidepdf.com/reader/full/strain-energy-part-1 17/20

 J 

T  xy

     

    dV GJ 

T dV 

GU 

  xy

2

222

22

   

• For a shaft subjected to a torsional load,

• Setting dV = dA dx ,

 

 

 

 

 L

 L

 A

 L

 A

dx

GJ 

dxdAGJ 

T dxdA

GJ 

T U 

0

2

0

2

2

2

02

22

2

22  

  

• In the case of a uniform shaft,

GJ  

 LT U 

2

2

Elastic Strain Energy for Shearing Stresses

8/12/2019 Strain Energy Part 1

http://slidepdf.com/reader/full/strain-energy-part-1 18/20

• Previously found strain energy due to uniaxial stress and plane

shearing stress. For a general state of stress,

 zx zx yz  yz  xy xy z  z  y y x xu                21

• With respect to the principal axes for an elastic, isotropic body,

distortiontodue12

1

changevolumetodue6

21

221

222

2

222

accbbad 

cbav

d v

accbbacba

Gu

 E 

vu

uu

 E u

      

   

          

• Basis for the maximum distortion energy failure criteria,

specimentesttensileafor6

2

Guu   Y 

Y d d 

 

Elastic Strain Energy for General Stresses

8/12/2019 Strain Energy Part 1

http://slidepdf.com/reader/full/strain-energy-part-1 19/20

Example:

A torque, TA = 300 N.m exerted on the disk. Using G = 73

GPa, determine the total strain energy required by the

assembly.

Elastic Strain Energy for Shearing Stresses

8/12/2019 Strain Energy Part 1

http://slidepdf.com/reader/full/strain-energy-part-1 20/20

Solution:

 ______________________________________________________________________________________________________ 

Elastic Strain Energy for Normal Stresses