strain energy - beams - materials - engineering reference with worked examples

Upload: garapati-murarji

Post on 03-Apr-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 Strain Energy - Beams - Materials - Engineering Reference With Worked Examples

    1/5

    5/5/12 Strain Energy - Beams - Materials - Engineering Reference with Worked Examples

    1/5www.codecogs.com/reference/engineering/materials/beams/strain_energy.php

    Contents

    1. Strain Energy Due To

    Bending.

    2. Application To Impact

    3. Deflection By Calculus

    4. Page Comments

    Strain energy due to bending and deflection calculated using C alculus

    Engineering Materials Beams

    Strain Energy

    Strain Energy Due To Bending.

    Consider a short length of beam under the action of a Bending Moment M. If f is the Bending Stress on an element of the cross

    sect ion of area at a distance y from the Neutral Axis, then the Strain energy of the length is given by:-

    (1)

    (2)

    (3)

    (4)

    (5)

    For the whole beam

    (6)

    The product EI is called the flexural Rigidity of the beam

    Example 1

    A simply supported beam of length l carries a concentrated load W at distances of a and b from the two ends. Find expressions

    for the total strain energy of the beam and the deflection under load.

    The integration for strain energy can only be applied over a length of beam for which a continuous expression for M can be

    obtained. This usually implies a separate integration for each section between two concentrated loads or reactions.

    For the section AB.

    (7)

    (8)

    (9)

    (10)

    Similarly by taking a variable X measured from C

    (11)

    Total

    (12)

    (13)

    But if is the deflection under the load, the strain energy must be equal to the work done by the load if it is gradually applied.

    (14)

    (15)

  • 7/28/2019 Strain Energy - Beams - Materials - Engineering Reference With Worked Examples

    2/5

    5/5/12 Strain Energy - Beams - Materials - Engineering Reference with Worked Examples

    2/5www.codecogs.com/reference/engineering/materials/beams/strain_energy.php

    For a Central Load

    (16)

    Hence

    (17)

    It should be noted that this method of finding deflection is limited to cases where only one concentrated load is applied ( i.e.

    doing work)and then only gives the deflection under the load A. For a more general application of strain energy to deflection see

    Castigliano's Theorem. This can be found under Engineering Materials Curved Beams.

    Example 2

    Compare the strain energy of a beam, simply supported at its ends and loaded with a uniformly distributed load, with that of the

    same beam centrally loaded and having the same value of maximum bending moment. (U.L.)

    If l is the span and EI the Flexural Rigidity, then for a uniformly distributed load w, the end reactions are and at a distance x

    from one end:-

    (18)

    Using Equation (6)

    (19)

    (20)

    (21)

    (22)

    Using Equation (13) fro a central load W

    (23)

    The Maximum Bending Stress and for a given beam depends upon the maximum Bending Moment. ( See Engineering

    materials Shear Force and Bending Moments)

    Equating maximum Bending Moments:-

    (24)

    (25)

    Using Equations (22) and (23), the ratio

    (26)

    (27)

    Using Equation (25)

    (28)

    Application To Impact

    Example 3

    A concentrated load W is gradually applied to a horizontal beam simply supported at its ends, produces a deflection y at the

    load point. If this falls through a distance h onto the beam find an expression for the maximum deflection produced.

    In a given beam, for a load W, y = 0.2 in. and the maximum stress is 4 tons/sq.in.. Find the greatest height from which a load of

    0.1 W can be dropped without exceeding the elastic limit of 18 tons/sq.in. (U.L.)

    The loss ofPotential Energy by the load = The gain in Strain Energy by the beam

    i.e.

  • 7/28/2019 Strain Energy - Beams - Materials - Engineering Reference With Worked Examples

    3/5

    5/5/12 Strain Energy - Beams - Materials - Engineering Reference with Worked Examples

    3/5www.codecogs.com/reference/engineering/materials/beams/strain_energy.php

    (29)

    where is the maximum deflection caused by dropping the load W onto the beam and P is the equivalent gradually applied

    load which would produce the same deflection.

    But a gradually applied load of W would produce a deflection of y and hence by proportion :-

    (30)

    or

    (31)

    Substituting in equation(29)

    (32)

    or

    (33)

    (34)

    The Energy equation for dropping 0.1W is:-

    (35)

    But the equivalent gradually applied load and hence the deflection is proportional to the maximum stress i.e.

    (36)

    (37)

    Substituting in equation (34)

    (38)

    (39)

    Thus

    (40)

    Deflection By Calculus

    In "Bending Stress" equation (3) it the general equation on bending was written. From this it can be seen that:-

    (41)

    And that in terms of the co-ordinates x and y

    (42)

    The sign depends upon the convention for axes. For beams met with in normal

    engineering practice the slope is everywhere very small and may be neglected in

    comparison to 1 in the denominator.

    Taking y as positive upwards, under the action of a positive Bending Moment, the

    curvature of the beam is shown in the diagram. It can be seen that dy/dx is

    increasing as x increases.

    Hence

    (43)

    or

    (44)

    Thus provided that M can be expressed as a function of x equation(43) can be integrated to give the slope dy/dx and the deflection y

    can be found for any value of x. Two constants of integration will be involved and these can be found by substituting known values of

    slope or deflection at particular points. A mathematical expression is thus obtained for the form of the deflected beam. ( Also known

    as The Elastic Line

  • 7/28/2019 Strain Energy - Beams - Materials - Engineering Reference With Worked Examples

    4/5

    5/5/12 Strain Energy - Beams - Materials - Engineering Reference with Worked Examples

    4/5www.codecogs.com/reference/engineering/materials/beams/strain_energy.php

    Notes on Application

    Take the X axis through the level of the supports.

    Take the origin at one end of the beam or at a point of zero slope.

    For built in or fixed end beams or when the deflection is a maximum. the slope dy/dx=0

    For points on the X axis( Usually the supports) the deflection y = 0

    For those working in Imperial Units.

    It is convenient to use the following units

    E in lb./sq.in. ( or tons/sq.in.

    I in

    y in in.

    M in lb.ft (or tons-ft.)

    x in ft.

    After the integration, one side of the Equation has units and the other side has units . Hence in numerical

    questions, the right hand side has to be multiplied by 144. After the second integration ELy has units and the corresponding

    right-hand side must be multiplied by 1728

    It is possible to differentiate equation (43) and in which case:-

    (45)

    (46)

    (See the paragraph on the relationship between F M and w in Engineering Materials Shearing Force and Bending Moment.)

    These forms are of use in some cases although generally the Bending Moment relationship is the most convenient.

    Example 4

    Obtain expressions for the maximum slope and deflection of a cantilever of length l carrying (a) a concentrate4d load W at its

    free end and (b) a uniformly distributed load w along its whole length.

    (a) If the origin is taken through the free end and the X axis through the fixed end then at a distance x from the origin:-

    (47)

    And using equation (43)

    (48)

    Integrating:-

    (49)

    but

    (50)

    (51)

    Integrating again:-

    (52)

    At x = l y = 0

    (53)

    The slope and deflection at the free end ( Where they are at a maximum) are given by the values of dy/dx and y when x = 0

    (54)

    And the deflection (Note the negative sign indicating downwards)

    b)

    (55)

    Integrating

  • 7/28/2019 Strain Energy - Beams - Materials - Engineering Reference With Worked Examples

    5/5

    5/5/12 Strain Energy - Beams - Materials - Engineering Reference with Worked Examples

    5/5www.codecogs.com/reference/engineering/materials/beams/strain_energy.php

    Last Modified: 2009-07-19 19:33:56 Page Rendered: 2012-05-05 08:04:59

    Page Comments

    You must login to leave a messge

    (56)

    When x = l dy/dx = 0

    (57)

    Integrating again:-

    (58)

    When x = l y = 0

    (59)

    Putting x = 0

    The Maximum Deflection

    The Maximum Deflection