strain effects in thin films and progress in reference beam...

54
Shen / CHESS Aug.5, 2002 Strain Effects in Thin Films and Strain Effects in Thin Films and Progress in Reference Progress in Reference - - Beam Phasing Beam Phasing Qun Shen Cornell High Energy Synchrotron Source (CHESS) and Department of Materials Science & Engineering, Cornell University Direct measurements of a large number of Bragg reflection phases in protein crystallography experiment ! Intro to reference beam diffraction ! Experimental setup & procedures ! Strategies on using measured phases ! Summary Interplay between strain & physical properties in thin films => semiconductor band gap => exchange striction => magnetic anisotropy ! Ave. strain & strain gradients ! Magnetic thin-film Fe/GaAs ! Conclusions

Upload: others

Post on 29-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Shen / CHESS Aug.5, 2002

    Strain Effects in Thin Films and Strain Effects in Thin Films and Progress in ReferenceProgress in Reference--Beam PhasingBeam Phasing

    Qun ShenCornell High Energy Synchrotron Source (CHESS) and

    Department of Materials Science & Engineering, Cornell University

    Direct measurements of a large number of Bragg reflection phases in protein crystallography experiment

    ! Intro to reference beam diffraction ! Experimental setup & procedures ! Strategies on using measured phases ! Summary

    Interplay between strain & physical properties in thin films=> semiconductor band gap=> exchange striction => magnetic anisotropy

    ! Ave. strain & strain gradients ! Magnetic thin-film Fe/GaAs ! Conclusions

  • Shen / CHESS Aug.5, 2002

    Typical CrystallographyTypical Crystallography

    F(H)=|F(H)|eiα(H)

    α(H) = ??

    Crystallization Expression Phasing Data collection |F(H)|

    anomalous signal from heavy-

    atoms

    Incorporating heavy atoms into protein

    structures

    SeMetsubstitution

    heavy-atom buffer

    heavy-atom soak

    Structure

  • Shen / CHESS Aug.5, 2002

    Phasing Proteins w/o Heavy Atoms ?Phasing Proteins w/o Heavy Atoms ?

    |F(H)| & α(H) Crystallization Expression Data collection

    "" ReferenceReference--beam diffraction beam diffraction

    Structure

  • Shen / CHESS Aug.5, 2002

    (a) Conventional oscillation method

    kH

    k0

    ψ

    Reference Beam Diffraction TechniqueReference Beam Diffraction Technique

    (b) Reference-beam diffraction

    kH

    k0

    kGψ

    θGkH-G

    Phase difference: δ = αH-G + αG − αH # Triplet Phase

  • Shen / CHESS Aug.5, 2002

    ReferenceReference--Beam Data CollectionBeam Data Collection

    θ − θG 0 5 10 15 201600

    1700

    1800

    1900

    2000

    ∆ω (in 0.003o steps)

    I (-3

    0 1

    )/(1

    1 1)

    δH= −142±10o

    60000

    70000

    80000

    90000

    100000

    I (2

    2 -3

    )/(1

    1 1)

    δH= 127±15o

    2400

    2600

    2800

    3000

    I (0

    2 -3

    )/(1

    1 1)

    δH= −55±9o

    θ − θG

    RBD data set: RBD data set: II((hklhkl)) vs. vs. θθ−−θθGG

    Analogy to MAD data set: Analogy to MAD data set: II((hklhkl)) vs. vs. λλ

  • Shen / CHESS Aug.5, 2002

    Conventional 3Conventional 3--Beam DiffractionBeam Diffraction

    Lipscomb (1949) Acta Cryst. "Relative phases of diffraction maxima by multiple reflection".

    Weckert & Hummer (1997) Acta Cryst A53, 108-143

    " Tetragonal lysozyme

    " Time-consuming: ~10 min per profile

    " Difficult for protein crystallography

  • Shen / CHESS Aug.5, 2002

    Special Kappa Special Kappa DiffractometerDiffractometer

    θ

    κ

    φ

    ψ

    x-rays

    CCD

    " Compact 50o κ-design" G-reflection alignment with κ-φ" Oscillation axis ψ with DC motor control" Easy incorporation into oscillation setup

  • Shen / CHESS Aug.5, 2002

    RBD Experimental ProcedureRBD Experimental Procedure

  • Shen / CHESS Aug.5, 2002

    PhasePhase--Sensitive XRD TheorySensitive XRD Theory

    Kinematic theory

    " single scattering" commonly used" no phase sensitivity

    Approximate theories

    " double scattering" triplet-phase sensitive" easy for curve-fitting

    Dynamical theory

    " all scattering terms" phase-sensitive" only numerical calc.

    Second-order Born Approximation (2nd BA): Shen (1986) Acta Cryst. A.

    )](cos[)(21)( GGH

    G-HH θνδθθ ++= RF

    FI

    with RG(θ) = reflectivity and νG(θ) = phase shift of G.

    L+++= )2()1()0( DDDD

    Expanded Distorted-Wave Approach (EDWA): Shen (1999) PRL; Shen (2000) PRB.

    ++−=

    G

    G

    GG2

    G2

    GH 2)2sin(

    12

    cos)(sin

    sin1)(η

    ηητδ

    ητ

    ηηδτη

    AA

    AA

    IG

    with τ = , A=πΓ |FG|t/(λcosθG) and AηG = π(θ−θG)t/d.HG-H FF

    " takes into account phase-independent effect accurately.

  • Shen / CHESS Aug.5, 2002

    Automatic Curve FittingAutomatic Curve Fitting

    " Curve-fit to experimental datausing EDWA, with 4 parameters

    " Distorted-wave approximation(EDWA) is very accuratefor biological crystals

    base I0

    center θ0

    amplitude p

    phase δ

    -80 -40 0 40 80

    0.8

    0.9

    1.0

    1.1

    1.2A=0.12transparent crystal

    δ=180o

    δ=+90o

    δ=0o

    δ=-90o

    Nor

    mal

    ized

    Inte

    nsity

    Normalized Angle ηG

    Comparison of EDWA with dynamical theory

    " So far PC-based program ORIGINis used for automatic curve-fittingto obtain triplet-phase δ.

  • Shen / CHESS Aug.5, 2002

    Experiment ExampleExperiment Example

    Tetragonal Tetragonal lysozyme lysozyme P4P433221122 CHESS C1, CHESS C1, λλ = 1.097 = 1.097 ÅÅ, Q, Q--1 CCD1 CCD

    •• Room temperature measurementsRoom temperature measurements•• Reference reflection G = (1,1,1) Reference reflection G = (1,1,1) •• Typical exposure ~15 sec for Typical exposure ~15 sec for ∆ψ∆ψ=2=2oo. . •• Number of Number of θθ--steps 15 to 21steps 15 to 21•• Typical Typical θθ range ~ 0.05range ~ 0.05oo to 0.1to 0.1oo•• 9090oo rotation rotation ## 86% completeness86% completeness•• Diffraction resolution to ~2.5 Diffraction resolution to ~2.5 ÅÅ

    •• 14914 RBD profiles14914 RBD profiles•• Total time ~ 12 hrsTotal time ~ 12 hrs

    "" 14914 triplet phases14914 triplet phases

  • Shen / CHESS Aug.5, 2002

    MOSFLM Indexing and IntegrationMOSFLM Indexing and Integration

    "" IndexingIndexing

    "" IntegrationIntegration

    "" Scale Scale (no merge)

    "" Sort Sort => IH(θ)

  • Shen / CHESS Aug.5, 2002

    Typical Interference ProfilesTypical Interference Profiles

    P43212 lysozyme

    All profiles shown from same oscillation series

  • Shen / CHESS Aug.5, 2002

    Results: tripletResults: triplet--phase data setphase data set

    • Whole data set:

    14914 phases, 14914 phases, ∆δ∆δmm=61=61oo

    •• With rejection criteria based With rejection criteria based on goodnesson goodness--ofof--fits parameters fits parameters ((σσ, , χχ22, , FFhghg): ):

    7360 phases,7360 phases, ∆δ∆δmm=45=45oo

    $ Error histogram for measuredtriplet-phase data set

    • Whole data set:

  • Shen / CHESS Aug.5, 2002

    Strategies on Using Measured PhasesStrategies on Using Measured Phases

    RBD experiments # measured triplet-phases: δ = αH-G + αG − αH

    " How to deduce individual structure-factor phases: αH = ??

    0 10 20 30 40 50 60 70

    0

    5

    10

    15

    20

    with 1 ref-beam with 2 ref-beams with 3 ref-beams without phase info

    SnB

    Succ

    ess

    Rat

    e (p

    er 1

    000)

    Mean Triplet Phase Error (degrees)

    •• Direct methodsDirect methods: :

    replace guesses based on probability replace guesses based on probability with measured triplet phaseswith measured triplet phases

    Weeks, et al. Weeks, et al. ActaActa CrystCryst. A (2000). . A (2000). ##

    •• Other methods Other methods ?? ??

  • Shen / CHESS Aug.5, 2002

    Unique Recurrence Pattern in RBDUnique Recurrence Pattern in RBD

    G

    H

    H+GH+2GH+3G

    ReferenceReference--beam method:beam method:δ0 = αG + αH-G − αHδ1 = αG + αH − αH+Gδ2 = αG + αH+G − αH+2G

    ……

    N equationsN+2 unknowns

    (hk0)

    "" RBD geometry leads to a RBD geometry leads to a systematic recurrence pattern of systematic recurrence pattern of individual phases:individual phases:

    a) all triplets contain a commona) all triplets contain a common ααGGb) b) ααHH appears in exactly 2 tripletsappears in exactly 2 tripletsc) the two c) the two ααHH--triplets are adjacenttriplets are adjacent

    "" Different from conventional Different from conventional 33--beam measurementsbeam measurements

    Conventional 3Conventional 3--beam:δ1 = αG1 + αH1-G1 − αH1δ2 = αG2 + αH2-G2 − αH2δ3 = αG3 + αH3-G3 − αH3

    ……

    N equations~3N unknowns

    beam:

  • Shen / CHESS Aug.5, 2002

    Recursive RBD Phasing AlgorithmRecursive RBD Phasing Algorithm

    Program: RBD_PhasingProgram: RBD_Phasing

  • Shen / CHESS Aug.5, 2002

    RBD_phasing Using Measured PhasesRBD_phasing Using Measured Phases

    • 191 unique (hk0) phases plus G=(111) phase from PDB 193L as starting phases• using measured data set of 7360 triplet phases with median phase error 45o

    • obtained 1085 individual phases with mean phase error 66o

    • calculated electron density map (z=0) of tetragonal lysozyme

    Based on 7360 measured tripletBased on 7360 measured triplet--phasesphases Based on calculated tripletBased on calculated triplet--phasesphases

  • Shen / CHESS Aug.5, 2002

    Reducing Number of Initial PhasesReducing Number of Initial Phases

    "" LowLow--resolution phases from resolution phases from molecular envelope ?molecular envelope ?

    "" Measurements of three RBD Measurements of three RBD datasets with nondatasets with non--coplanar G'scoplanar G's

    "" Use of symmetry equivalent Use of symmetry equivalent indexing to effectively have indexing to effectively have three RBD datasets ?three RBD datasets ?

    "" In principle, only 4 initial phasesIn principle, only 4 initial phasesare needed to solve a structureare needed to solve a structure

  • Shen / CHESS Aug.5, 2002

    Inverse Beam MeasurementsInverse Beam Measurements

    ReferenceReference--beam coupled beam coupled FriedelFriedel pairs:pairs:H H // G G // HH--G G %% H H // G G // GG--HH

    0 5 10 15 20 25

    0.98

    0.99

    1.00

    1.01

    1.02

    ∆θ (x0.003o)

    (b)

    Inte

    nsity

    (-3,2,-4)/(-2,-3,0) δfit=77

    o

    0.99

    1.00

    1.02

    1.03 (a)

    (3,-2,4)/(2,3,0) δfit=−116

    o

    Inte

    nsity

    Shen, et al. Shen, et al. ActaActa CrystCryst. A (2000).. A (2000).

    1.01

    (230)(230)

  • Shen / CHESS Aug.5, 2002

    Summary onSummary onreferencereference--beam phasingbeam phasing

    !! Where we are nowWhere we are now::

    "" Experimental: Experimental: •• demonstrated RBD technique fordemonstrated RBD technique for

    practical tripletpractical triplet--phase measurements phase measurements •• dedicated dedicated κκ--diffractometer diffractometer •• modified oscillation camera setupmodified oscillation camera setup

    "" Theoretical: Theoretical: •• phasephase--sensitive diffraction theory sensitive diffraction theory •• automatic fits to obtain automatic fits to obtain δδ

    "" Data reduction & usage: Data reduction & usage: •• tested existing tested existing crystallogrcrystallogr. software . software •• developed automatic fitting routinedeveloped automatic fitting routine•• started new phasing algorithmstarted new phasing algorithm

    !! Where we are goingWhere we are going::

    "" Further developments: Further developments: •• automated alignment control automated alignment control •• rejection criteria to selectrejection criteria to select

    reliable measurementsreliable measurements•• dealing with simultaneous beams dealing with simultaneous beams

    and mosaic spread and mosaic spread

    "" Strategies for using phases: Strategies for using phases: •• use with direct methods use with direct methods •• recursive individual phasesrecursive individual phases•• ∆∆II±±HH =>=> analogy to SAD ?analogy to SAD ?

    "" Goal:Goal:•• solve new protein structures solve new protein structures

  • Shen / CHESS Aug.5, 2002

    AcknowledgmentsAcknowledgments

    Andrew Stewart (CHESS)Dan PringleStefan KyciaJim LaIuppa

    Rob Thorne (Cornell, Physics)Ivan Dobrianov Alexei KisselevCraig Caylor

    Marian Szebenyi (MacCHESS) Chris Heaton Bill Miller

    Jun Wang (BSRF)

    Herbert Hauptman (HWI)Chuck WeeksHongliang Xu

    NSF DMR 97NSF DMR 97--1342413424NIH GMNIH GM--46733 46733

  • Shen / CHESS Aug.5, 2002

    Thin Films & NanostructuresThin Films & Nanostructures

    InGaAs InGaAs / / GaAsGaAs Nanostructures: 1-100 nmsemiconductorsmagneticorganic polymers

    Basic information:

    sizeshape -- morphologystrain -- internal structure

    Si Si (001)(001)Physical properties:

    semiconductor band gapgrowth kineticsphase transitionsmagnetization……

    Ge Ge / / SiSi

  • Shen / CHESS Aug.5, 2002

    Measured PL energy shiftQuantum confinement

    Quantum Wire Width (nm)

    Ener

    gy S

    hift

    (meV

    ) 2520

    15

    10

    5

    0

    Measured PL energy shiftQuantum confinementMeasured PL energy shiftQuantum confinement

    Quantum Wire Width (nm)

    Ener

    gy S

    hift

    (meV

    ) 2520

    15

    10

    5

    0

    25

    20

    15

    10

    5

    0InGaAs QWR: t = 10nmInGaAs QWR: t = 10nm

    Reed, Tentarelli, Eastman et al. (1995)

    Size, Shape & Strain Effects Size, Shape & Strain Effects on Physical Propertieson Physical Properties

    Example: band gap in semiconductors

    hνhν'

    hνhν'

    ??

  • Shen / CHESS Aug.5, 2002

    Intrinsic and External StrainIntrinsic and External Strain

    Elastic StrainElastic Strain:: {{σσ} = {C} {} = {C} {εε} Hook’s Law} Hook’s Law

    ⇒ ⇒ External: external pressurelattice mismatch

    ⇒ ⇒ Intrinsic: microscopic natureexchange striction

    In general, strain information is not easily available from manysurface probe (AFM, SEM, STM) measurements

  • Shen / CHESS Aug.5, 2002

    Structural CharacterizationStructural Characterization

    Experimental Methods: TEMXRD

    Technical challenges:

    Signal to background ?Particle size broadening ?Strain variation ?1-10nm

    nondestructive

  • Shen / CHESS Aug.5, 2002

    Basic Concepts in XRDBasic Concepts in XRD

    Size EffectSize Effect:

    Real spaceReal space Reciprocal spaceReciprocal space

    L∆Q ~ 1 / L

    ∆Q = independent of |Q|

    Q(220) (440)

    Strain EffectStrain Effect:

    ∆a

    ∆Q ∝ |Q|

    Q(220) (440)

    ∆Q = −|Q| ∆a/a

    ∆θ

    ∆Q = |Q| ∆θ

  • Shen / CHESS Aug.5, 2002

    Advanced XRD TechniquesAdvanced XRD Techniques

    4.005

    4

    3.995

    -0.015 0 0.015Qx [2π/a]

    Qz

    [2π

    /a]⇒ ⇒ Reciprocal space mapping⇒ ⇒ Grazing-incidence diffraction⇒ ⇒ Coherent Grating diffraction⇒ ⇒ Crystal truncation rod (CTR)

  • Shen / CHESS Aug.5, 2002

    Examples of Grating DiffractionExamples of Grating Diffraction

    InGaAs InGaAs QWR QWR / / GaAsGaAs (001)(001) Si Si (001) (001)

    needlesneedles

  • Shen / CHESS Aug.5, 2002

    Average StrainAverage Strain

    tt = 10 nm= 10 nm

    Sample:multiple regionsw/ different QWRs

    ~0.5mm2

    (h, h, 0)

  • Shen / CHESS Aug.5, 2002

    Strain Effects on Strain Effects on Band Gap

    Deformation potentials:

    a = −9.016 eVb = −1.96 eV

    Band-gap change w.r.t. quantum well:

    ( ) ( )2/xxzzzzxx baE εεεε −++=∆

    Band Gap

    Size-dependent strain in QWRs

    Shen et al. (1996) PRB 54, 16381.

  • Shen / CHESS Aug.5, 2002

    Average Strain vs. Strain GradientAverage Strain vs. Strain Gradient

  • Shen / CHESS Aug.5, 2002

    Strain Gradient ExampleStrain Gradient Example

    Shen & Kycia (1997)PRB 55, 15791.

  • Shen / CHESS Aug.5, 2002

    Longitudinal vs. Longitudinal vs. Transverse GradientsTransverse Gradients

    xa

    GradientalLongitudin

    x∂

    ∂:Longitudinal wave

    Transverse wave

    xa

    GradientTransverse

    z∂

    ∂:

    Shen & Kycia (1997)PRB 55, 15791.

  • Shen / CHESS Aug.5, 2002

    Transverse Strain GradientsTransverse Strain Gradients

  • Shen / CHESS Aug.5, 2002

    Simulations Compared with ExperimentsSimulations Compared with Experiments

  • Shen / CHESS Aug.5, 2002

    Information that can be obtainedInformation that can be obtainedfrom crystal gratingsfrom crystal gratings

    =>=> Size and shape information:width, height, period,side-wall slope, ...

    => => Imperfections: inhomogeneities, defects, ...

    => => Time-resolved changes e.g. during oxidation, …

    => => Superlattice registry w.r.t. substrate lattice

    => => Strain in nanostructures:average strainstrain variation (gradient)

    => longitudinal ∂ax/∂x=> transverse ∂az/∂x

  • Shen / CHESS Aug.5, 2002

    AntiAnti--ferromagnetic Thin Film ferromagnetic Thin Film ZnZn0.070.07MnMn0.930.93Te / Te / ZnTeZnTe

    ZnTe

    ZnMnTe: fcc1 µm

  • Shen / CHESS Aug.5, 2002

    Three Orthorhombic DomainsThree Orthorhombic Domains

    Interfacial stress => Prefered c-type domainpopulation 3:1:1

  • Shen / CHESS Aug.5, 2002

    Spatial Dependence ofSpatial Dependence ofExchange Constant Exchange Constant JJnn(r)(r)

    Shen, Luo & Furdyna, PRL 75, 2590 (1995).

  • Shen / CHESS Aug.5, 2002

    Fe Thin Film on Fe Thin Film on GaAs GaAs (001)(001)

    Misfit = -1.4% aGaAs= 0.56537 nm

    aFe=0.28664 nmCube on cube epitaxy

    Olivier ThomasU. Marceille

    In-plane uniaxial magnetic anisotropy below 5 nm

    J. Krebs, B. Jonker, G. Prinz, JAP 61 (1987) 2596

    -40-20 0 20 40

    -1,0

    -0,5

    0,0

    0,5

    1,0

    M /

    Ms

    H (Oe )-40-20 0 20 40 -500 0 500

    -1,0

    -0,5

    0,0

    0,5

    1,0

    [110] [100] ]011[

    -500 0 500

    -1,0

    -0,5

    0,0

    0,5

    1,0

    M /

    Ms

    H (Oe )-40-20 0 20 40 -500 0 500

    -1,0

    -0,5

    0,0

    0,5

    1,0

    [110] [100] ]011[[010]

    [100]

    tf = 1.7 nm: [110] easytf = 80 nm: easy

  • Shen / CHESS Aug.5, 2002

    Magnetic AnisotropyMagnetic Anisotropy

    Domain shape anisotropy

    σ σMagnetoelastic coupling

    Magnetocrystalline anisotropy

    Interface-induced effect

  • Shen / CHESS Aug.5, 2002

    Fe / Fe / GaAs GaAs (001) Samples(001) Samples

    Fe thickness from 1.5 to 13 nm

    MBE: GaAs 500 nm bufferAs rich (2x4) surface 1.5 ×10-10 TorrFe: 1 nm/min at RT3 nm Al capping layer

    [110]: defined as unit-cell doubling direction

  • Shen / CHESS Aug.5, 2002

    XX--ray Diffraction Studyray Diffraction Study

    CHESS F3: 8 keVGaAsFe

    ⇒ ⇒ Out-of-plane reflections:(004) and (224)film thicknessout-of-plane lattice const.separate Fe and GaAs peaks

    ⇒ ⇒ In-plane reflections:(220), (400), …in-plane lattice strainin-plane domain size & shapein-plane correlations

    (000) (220)

    (004) (224)

    (002) (222)

  • Shen / CHESS Aug.5, 2002

    Out of Plane ScansOut of Plane Scans

    3.4 3.6 3.8 4.0 4.2 4.41

    10

    102

    103

    104

    105Data: s389_JModel: Lor2AsymSinc Equation: y=y0+A0/(1+((x-x0)/w0)^2)/(1+((x-x0)/w0)^2)+Ac*exp(-((x-xc)/w2)^3-((x-xc)/w1)^2)*(sin((x-xc)/wc)/((x-xc)/wc))^2 y0 3 ±--A0 600000 ±--x0 3.9988 ±--w0 0.0065 ±--Ac 12000 ±--xc 3.8885 ±--wc 0.047 ±--w1 0.36 ±--w2 0.37 ±--

    Inte

    nsity

    (cts

    /1.5

    sec)

    (2, 2, L)1.98 1.99 2.00 2.01 2.02

    3.6

    3.8

    4.0

    4.2

    (H,H)

    L

    (224)(224)

    3.9 nm Fe on GaAs (001)1.5 nm Fe on GaAs (001)

    Thomas, Shen, et al. (2002).

  • Shen / CHESS Aug.5, 2002

    InIn--plane Map for plane Map for tt =1.5 nm

    -2.010 -2.005 -2.000 -1.995 -1.990-2.010

    -2.005

    -2.000

    -1.995

    -1.990

    1.990 1.995 2.000 2.005 2.010-2.010

    -2.005

    -2.000

    -1.995

    -1.990

    -2.010 -2.005 -2.000 -1.995 -1.9901.990

    1.995

    2.000

    2.005

    2.010

    1.990 1.995 2.000 2.005 2.0101.990

    1.995

    2.000

    2.005

    2.0101.000

    1.641

    2.692

    4.417

    7.248

    11.89

    19.51

    32.02

    52.53

    86.19

    141.4

    232.0

    380.7

    624.7

    1025

    1682

    2759

    4528

    7429

    1.219E4

    2.000E4

    -0.010 -0.005 0.000 0.005 0.010-4.010

    -4.005

    -4.000

    -3.995

    -3.990

    -0.010 -0.005 0.000 0.005 0.0103.990

    3.995

    4.000

    4.005

    4.010

    3.990 3.995 4.000 4.005 4.010-0.010

    -0.005

    0.000

    0.005

    0.0101.000

    1.585

    2.512

    3.981

    6.310

    10.00

    15.85

    25.12

    39.81

    63.10

    100.0

    158.5

    251.2

    398.1

    631.0

    1000

    1585

    2512

    3981

    6310

    10000

    -4.010 -4.005 -4.000 -3.995 -3.990-0.010

    -0.005

    0.000

    0.005

    0.010

    MBE95: 1.5 nmFe/GaAs (001)

    [100]

    [010]

    =1.5 nmL

    1-10

  • Shen / CHESS Aug.5, 2002

    InIn--plane Map for plane Map for tt =13 nm=13 nm

    -4.02 -4.00 -3.98 -3.96 -3.94-0.04

    -0.02

    0.00

    0.02

    0.04

    4.000

    6.533

    10.67

    17.42

    28.46

    46.48

    75.90

    124.0

    202.5

    330.6

    540.0

    -0.04 -0.02 0.00 0.02 0.043.94

    3.96

    3.98

    4.00

    4.02

    4.000

    6.533

    10.67

    17.42

    28.46

    46.48

    75.90

    124.0

    202.5

    330.6

    540.0

    -2.02 -2.01 -2.00 -1.99 -1.98 -1.97 -1.96-2.02

    -2.01

    -2.00

    -1.99

    -1.98

    -1.97

    -1.96

    4.000

    7.483

    14.00

    26.19

    48.99

    91.65

    171.5

    320.8

    600.0

    1123

    2100

    -2.02 -2.01 -2.00 -1.99 -1.98 -1.97 -1.961.96

    1.97

    1.98

    1.99

    2.00

    2.01

    2.02

    4.000

    7.875

    15.50

    30.53

    60.10

    118.3

    233.0

    458.6

    903.0

    1778

    3500

    -0.04 -0.02 0.00 0.02 0.04-4.02

    -4.00

    -3.98

    -3.96

    -3.94

    4.000

    6.602

    10.90

    17.98

    29.68

    48.99

    80.86

    133.5

    220.3

    363.5

    600.0

    3.94 3.96 3.98 4.00 4.02-0.04

    -0.02

    0.00

    0.02

    0.04

    4.000

    6.602

    10.90

    17.98

    29.68

    48.99

    80.86

    133.5

    220.3

    363.5

    600.0

    1.96 1.97 1.98 1.99 2.00 2.01 2.021.96

    1.97

    1.98

    1.99

    2.00

    2.01

    2.02

    4.000

    7.483

    14.00

    26.19

    48.99

    91.65

    171.5

    320.8

    600.0

    1123

    2100

    1.96 1.97 1.98 1.99 2.00 2.01 2.02-2.02

    -2.01

    -2.00

    -1.99

    -1.98

    -1.97

    -1.96

    4.000

    7.875

    15.50

    30.53

    60.10

    118.3

    233.0

    458.6

    903.0

    1778

    3500

    MBE241: 13 nmFe/GaAs (001)

    L 110

    [100]

    [010]

  • Shen / CHESS Aug.5, 2002

    In In- -plane plane θ θ- -scans

    scans

    23.423.5

    23.623.7

    23.823.9

    24.024.1

    1 10

    102

    103

    104

    105

    Data: s2203_K

    Model: G

    auLor2 Equation: y=y0+A0*exp(-(0.5*((x-x0)/w

    0)^2))+Ac/(1+((x-xc)/w

    c)^2)/(1+((x-xc)/wc)^2)

    y05.61822

    ±0.13778A0

    105671.65136±296.8045

    x023.7534

    ±0w

    00.00111

    ±2.8769E-6Ac

    31508.56867±58.37348

    xc23.7534

    ±0w

    c0.01935

    ±0.00002

    Intensity (cts/1.5sec)

    θ (degrees)

    23.423.5

    23.623.7

    23.823.9

    24.024.1

    1 10

    102

    103

    104

    105

    106

    Data: s2230_K

    Model: G

    auLor2 Equation: y=y0+A0*exp(-(0.5*((x-x0)/w

    0)^2))+Ac/(1+((x-xc)/w

    c)^2)/(1+((x-xc)/wc)^2)

    y07

    ±0A0

    195136.1448±438.86x0

    23.75699±0

    w0

    0.00103±2.3244E-6

    Ac68598.327±182.35018

    xc23.75699

    ±0w

    c0.00866

    ±0.00001

    Intensity (cts/1.5sec)

    θ (deg)

    23.023.2

    23.423.6

    23.824.0

    24.224.4

    10

    102

    103

    Data: s479_K

    Model: G

    aussAmp

    Equation: y=y0+A*exp(-0.5*((x-xc)/w

    )^2) y0

    10±0

    xc23.66996±0.00037

    w0.09096±0.00035

    A3204.40878±17.98515

    Intensity (cts/1.5sec)

    θ (deg)

    23.023.2

    23.423.6

    23.824.0

    24.224.4

    10

    102

    103

    Data: s486_K

    Model: G

    auLor2 Equation: y=y0+A0*exp(-(0.5*((x-x0)/w

    0)^2))+Ac/(1+((x-xc)/w

    c)^2)/(1+((x-xc)/wc)^2)

    y023.87539

    ±0.89751A0

    1885.8887 ±10.801x0

    23.62667±0.00064

    w0

    0.13935±0.00057

    Ac0

    ±0

    Intensity (cts/1.5sec)

    θ (deg)

    t=13 nm

    23.423.5

    23.623.7

    23.823.9

    24.024.1

    10

    102

    103

    104

    105

    Data: s3159_K

    Model: G

    auLor2 Equation: y=y0+A0*exp(-(0.5*((x-x0)/w

    0)^2))+Ac/(1+((x-xc)/w

    c)^2)/(1+((x-xc)/wc)^2)

    y011.60655±0.34096

    A0202459.67 ±260.568

    x023.75092±3.1039E-6

    w0

    0.00171±1.235E-6

    Ac378.60334±2.7471

    xc23.75085

    ±0w

    c0.0946

    ±0.00067

    Intensity (cts/1.5sec)

    θ (deg)

    23.423.5

    23.623.7

    23.823.9

    24.024.1

    10

    102

    103

    104

    105

    Data: s3187_K

    Model: G

    auLor2 Equation: y=y0+A0*exp(-(0.5*((x-x0)/w

    0)^2))+Ac/(1+((x-xc)/w

    c)^2)/(1+((x-xc)/wc)^2)

    y08.44063

    ±0.21856A0

    228182.445 ±273.82x0

    23.75053 ±1.9045E-6w

    00.00173

    ±1.1586E-6Ac

    646.88472 ±5.3003xc

    23.75085±0

    wc

    0.05205±0.00032

    Intensity (cts/1.5sec)

    θ (deg)

    t=3.9 nmt=1.5 nm

    (220)

    (220)

  • Shen / CHESS Aug.5, 2002

    InIn--plane plane θθ--22θθ scansscans

    (220)

    (220)

    47.3 47.4 47.5 47.6 47.710

    102

    103

    104

    105

    106 Data: s2229_LModel: GauLor2 Equation: y=y0+A0*exp(-(0.5*((x-x0)/w0)^2))+Ac/(1+((x-xc)/wc)^2)/(1+((x-xc)/wc)^2) y0 7 ±0A0 459449.89±1024409475.7x0 47.50531±529.59952w0 0.00617±4.59E-6Ac 68598.32722±0xc 47.5112±0.00022wc 0.02642±0.00002

    Inte

    nsity

    (cts

    /1.5

    sec)

    2θ (deg)

    47.0 47.2 47.4 47.6 47.8 48.01

    10

    102

    103

    104

    105Data: s2204_LModel: GauLor2 Equation: y=y0+A0*exp(-(0.5*((x-x0)/w0)^2))+Ac/(1+((x-xc)/wc)^2)/(1+((x-xc)/wc)^2) y0 3.59184 ±0.15614A0 111477 ±304.x0 47.50427 ±4.5607E-6w0 0.00465 ±9.4459E-6Ac 31509 ±0xc 47.50986 ±0.00002wc 0.01125 ±0.00003

    Inte

    nsity

    (cts

    /1.5

    sec)

    2θ (degrees)

    47.2 47.3 47.4 47.5 47.6 47.7 47.81

    10

    102

    103

    104

    105Data: s3161_LModel: GauLor2 Equation: y=y0+A0*exp(-(0.5*((x-x0)/w0)^2))+Ac/(1+((x-xc)/wc)^2)/(1+((x-xc)/wc)^2) y0 4.13499±0A0 230000 ±0x0 47.496 ±0w0 0.00628±0Ac 891.84698±7.24xc 47.43448±0.00017wc 0.07069±0.00047

    Inte

    nsity

    (cts

    /1.5

    sec)

    2θ (deg)

    23.5 23.6 23.7 23.8 23.9 24.01

    10

    102

    103

    104

    105Data: s3186_LModel: GauLor2 Equation: y=y0+A0*exp(-(0.5*((x-x0)/w0)^2))+Ac/(1+((x-xc)/wc)^2)/(1+((x-xc)/wc)^2) y0 8 ±0A0 226359.939 ±259.69236x0 23.75124 ±9.7241E-7w0 0.00355 ±2.0367E-6Ac 414.44966 ±6.81267xc 23.73112 ±0.00023wc 0.03332 ±0.00042

    Inte

    nsity

    (cts

    /1.5

    sec)

    θ−2θ (deg)

    23.3 23.4 23.5 23.6 23.7 23.8 23.9 24.01

    10

    102

    103

    Data: s485_LModel: GauLor2 Equation: y=y0+A0*exp(-(0.5*((x-x0)/w0)^2))+Ac/(1+((x-xc)/wc)^2)/(1+((x-xc)/wc)^2)

    y0 3.40615 ±0.2869A0 3821.005 ±57.92237x0 23.74339 ±0.00007w0 0.00139 ±0.00001Ac 1985.57358 ±10.09136xc 23.61601 ±0.0001wc 0.05731 ±0.00024

    Inte

    nsity

    (cts

    /1.5

    sec)

    θ−2θ (deg)

    23.3 23.4 23.5 23.6 23.7 23.8 23.9 24.01

    10

    102

    103

    Data: s478_LModel: GauLor2 Equation: y=y0+A0*exp(-(0.5*((x-x0)/w0)^2))+Ac/(1+((x-xc)/wc)^2)/(1+((x-xc)/wc)^2)

    y0 0 ±0A0 3388.50902 ±0x0 23.7455 ±0w0 0.00141 ±0Ac 3450 ±14.24131xc 23.669 ±0.00004wc 0.055 ±0.00015

    Inte

    nsity

    (cts

    /1.5

    sec)

    θ−2θ (deg)

    t =13 nmt =3.9 nmt =1.5 nm

  • Shen / CHESS Aug.5, 2002

    AnisotropicAnisotropicDomain & Strain RelaxationDomain & Strain Relaxation

  • Shen / CHESS Aug.5, 2002

    Magnetic Free EnergyMagnetic Free Energy

    [010]

    [100]

    M

    φ-40-20 0 20 40

    -1,0

    -0,5

    0,0

    0,5

    1,0

    M /

    Ms

    H (Oe )-40-20 0 20 40 -500 0 500

    -1,0

    -0,5

    0,0

    0,5

    1,0

    ∫=SM

    m dMHf0

    Magnetic free energy density:

    φ = angle between magnetization and [100] K1= 48 kJ m-3 is the cubic anisotropy energy of Fe B2 = 7620 kJ m-3 is the magneto-elastic coupling coefficient of Feε6 = shear strain measured in x-ray diffraction experiment

    φεπφφ 2sin2

    )4

    (sin2sin4

    62221 Bt

    KKf um +−+=

    => additional Ku/t term that favors [110] easy: Ku = 1 10-4 J m-2

  • Shen / CHESS Aug.5, 2002

    (MOKE data from André Guivarch, Université de Rennes) Comparison with MOKEComparison with MOKE

    t =3.9 nmt =1.5 nm t =13 nm

  • Shen / CHESS Aug.5, 2002

    Conclusions on Fe / Conclusions on Fe / GaAsGaAs

    ⇒⇒ Considerable strain and shape anisotropies do exist Considerable strain and shape anisotropies do exist in these Fe thin filmsin these Fe thin films

    ⇒⇒ The interfacial effect, The interfacial effect, KKuu / / tt term, is the principal term, is the principal contributor to the observed UMA for thin Fe filmscontributor to the observed UMA for thin Fe films

    ⇒⇒ The strain anisotropy is the main factor responsible The strain anisotropy is the main factor responsible for the reversal of UMA at thicker Fe filmsfor the reversal of UMA at thicker Fe films

  • Shen / CHESS Aug.5, 2002

    AcknowledgmentsAcknowledgments

    CollaboratorsCollaboratorsin Thinin Thin--film & Nanostructure Researchfilm & Nanostructure Research

    Stefan Kycia (CHESS / LNLS) Kit Umbach, So Tanaka, Jack Blakely (MSE, Cornell)

    Jason Reed, Eric Tentarelli, Lester Eastman (EE, Cornell)

    Hong Luo, Jacek Furdyna (U. Notre Dame)

    Richard Mirin (NIST, Boulder)

    Ulli Pietsch, Nora Darowski (U. Potsdam, Germany)

    Olivier Thomas (U. Aix-Marseille III, France)André Guivarch (U. de Rennes, France)

    Strain Effects in Thin Films and Progress in Reference-Beam PhasingTypical CrystallographyPhasing Proteins w/o Heavy Atoms ?Reference Beam Diffraction TechniqueReference-Beam Data CollectionConventional 3-Beam DiffractionSpecial Kappa DiffractometerRBD Experimental ProcedurePhase-Sensitive XRD TheoryAutomatic Curve FittingExperiment ExampleMOSFLM Indexing and IntegrationTypical Interference ProfilesResults: triplet-phase data setStrategies on Using Measured PhasesUnique Recurrence Pattern in RBDRecursive RBD Phasing AlgorithmRBD_phasing Using Measured PhasesReducing Number of Initial PhasesInverse Beam MeasurementsSummary onreference-beam phasingAcknowledgments