stochastic modeling

39
1 Stochastic modeling Visualize master equation Walk through stochastic simulation script Ensemble distributions Exact particular trajectories

Upload: lok

Post on 06-Feb-2016

55 views

Category:

Documents


0 download

DESCRIPTION

Stochastic modeling. Walk through stochastic simulation script. Visualize master equation. Exact particular trajectories. Ensemble distributions. Master equations: Dynamics of population fractions. m (copies mRNA). 0 copies. D t. Time. 0. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Stochastic modeling

1

Stochastic modeling

Visualize master equation Walk through stochastic simulation script

Ensemble distributions Exact particular trajectories

Page 2: Stochastic modeling

2

Master equations: Dynamics of population fractions

m (copies mRNA)

0 copies

0 DtTime

Page 3: Stochastic modeling

3

Master equations: Dynamics of population fractions

0 copies

Dt 2Dt0

m (copies mRNA)

Page 4: Stochastic modeling

4

Master equations: Dynamics of population fractions

0 copies

Dt 2Dt0 t t + Dt

βˆ’ [ 𝑅↑ (π‘š , 𝑑 )+𝑅↓ (π‘š ,𝑑 ) ]βˆ† 𝑑 𝑁 (π‘š ,𝑑 )+𝑅↑ (π‘šβˆ’1 ,𝑑 )βˆ† 𝑑 𝑁 (π‘šβˆ’1 ,𝑑 )+𝑅↓ (π‘š+1 ,𝑑 )βˆ† 𝑑 𝑁 (π‘š+1 ,𝑑 )𝑁 (π‘š , 𝑑+βˆ† 𝑑 )=𝑁 (π‘š ,𝑑 )𝑁 (π‘š , 𝑑+βˆ† 𝑑 )βˆ’π‘ (π‘š , 𝑑 )=ΒΏβˆ†π‘ (π‘š ,𝑑 )=ΒΏ

+π’ͺ (βˆ† 𝑑 2 )

m

m - 1

m + 1

Page 5: Stochastic modeling

5

Master equations: Dynamics of population fractions

0 copies

Dt 2Dt0 t t + Dt

βˆ†π‘ (π‘š , 𝑑 )βˆ† 𝑑 𝑁 𝑇𝑂𝑇

=βˆ’ [𝑅↑ (π‘š ,𝑑 )+𝑅↓ (π‘š ,𝑑 ) ] 𝑁 (π‘š , 𝑑 )𝑁 𝑇𝑂𝑇

+𝑅↑ (π‘šβˆ’1 ,𝑑 ) 𝑁 (π‘šβˆ’1 , 𝑑 )𝑁 𝑇𝑂𝑇

+𝑅↓ (π‘š+1 ,𝑑 ) 𝑁 (π‘š+1 , 𝑑 )𝑁𝑇𝑂𝑇

βˆ’ [ 𝑅↑ (π‘š , 𝑑 )+𝑅↓ (π‘š ,𝑑 ) ]βˆ† 𝑑 𝑁 (π‘š ,𝑑 )+𝑅↑ (π‘šβˆ’1 ,𝑑 )βˆ† 𝑑 𝑁 (π‘šβˆ’1 ,𝑑 )+𝑅↓ (π‘š+1 ,𝑑 )βˆ† 𝑑 𝑁 (π‘š+1 ,𝑑 )βˆ†π‘ (π‘š ,𝑑 )=ΒΏ

+π’ͺ (βˆ† 𝑑 )

+π’ͺ (βˆ† 𝑑 2 )

m

m - 1

m + 1

Page 6: Stochastic modeling

6

Master equations: Dynamics of population fractions

0 copies

Dt 2Dt0 t t + Dt

+π’ͺ (βˆ† 𝑑 )

βˆ†π‘ƒ (π‘š ,𝑑 )βˆ† 𝑑 =βˆ’ [𝑅↑ (π‘š , 𝑑 )+𝑅↓ (π‘š , 𝑑 ) ]𝑃 (π‘š ,𝑑 )+𝑅↑ (π‘šβˆ’1 ,𝑑 )𝑃 (π‘šβˆ’1 ,𝑑 )+𝑅↓ (π‘š+1 , 𝑑 ) 𝑃 (π‘š+1 , 𝑑 )

βˆ†π‘ (π‘š , 𝑑 )βˆ† 𝑑 𝑁 𝑇𝑂𝑇

=βˆ’ [𝑅↑ (π‘š ,𝑑 )+𝑅↓ (π‘š ,𝑑 ) ] 𝑁 (π‘š , 𝑑 )𝑁 𝑇𝑂𝑇

+𝑅↑ (π‘šβˆ’1 ,𝑑 ) 𝑁 (π‘šβˆ’1 , 𝑑 )𝑁 𝑇𝑂𝑇

+𝑅↓ (π‘š+1 ,𝑑 ) 𝑁 (π‘š+1 , 𝑑 )𝑁𝑇𝑂𝑇

+π’ͺ (βˆ† 𝑑 )𝑑𝑃 (π‘š , 𝑑 )

𝑑𝑑

m

m - 1

m + 1

Page 7: Stochastic modeling

Ensemble distributions Exact particular trajectories

7

Stochastic modeling

Visualize master equation Walk through stochastic simulation script

Page 8: Stochastic modeling

8

Walk-through of stochastic simulation script

1. Specify system chemistry2. Use current state vector to calculate time to next event3. Use current state vector to choose type of next event

Page 9: Stochastic modeling

9

Walk-through of stochastic simulation script

1. Specify system chemistry2. Use current state vector to calculate time to next event3. Use current state vector to choose type of next event

Page 10: Stochastic modeling

10

Specifying system

Type of event Rate Parameters Change to mRNA #

Change to protein #

Transcription kr kr +1 0

mRNA degradation

grx(1) gr -1 0

Protein synthesis kpx(1) kp 0 +1

Protein degradation

gpx(2) gp 0 -1

π‘₯=[π‘₯ (1 ) ΒΏ copies of mRNAπ‘₯ (2 ) ΒΏ copies of protein ]System variables:

System processes:

Page 11: Stochastic modeling

11

Specifying system

Type of event Rate Parameters Change to mRNA #

Change to protein #

Transcription kr kr +1 0

mRNA degradation

grx(1) gr -1 0

Protein synthesis kpx(1) kp 0 +1

Protein degradation

gpx(2) gp 0 -1

System variables:

System processes:

π‘₯=[π‘₯ (1 ) ΒΏ copies of mRNAπ‘₯ (2 ) ΒΏ copies of protein ]

Page 12: Stochastic modeling

12

Specifying system

Type of event Rate Parameters Change to mRNA #

Change to protein #

Transcription kr kr +1 0

mRNA degradation

grx(1) gr -1 0

Protein synthesis kpx(1) kp 0 +1

Protein degradation

gpx(2) gp 0 -1

System variables:

System processes:

π‘₯=[π‘₯ (1 ) ΒΏ copies of mRNAπ‘₯ (2 ) ΒΏ copies of protein ]

Page 13: Stochastic modeling

13

Specifying system

Type of event Rate Parameters Change to mRNA #

Change to protein #

Transcription kr kr +1 0

mRNA degradation

grx(1) gr -1 0

Protein synthesis kpx(1) kp 0 +1

Protein degradation

gpx(2) gp 0 -1

System variables:

System processes:

π‘₯=[π‘₯ (1 ) ΒΏ copies of mRNAπ‘₯ (2 ) ΒΏ copies of protein ]

Page 14: Stochastic modeling

14

Walk-through of stochastic simulation script

1. Specify system chemistry2. Use current state vector to calculate time to next event3. Use current state vector to choose type of next event

Page 15: Stochastic modeling

15

Calculate average firing rates for each independent channel

Type of event Rate Parameters Change to mRNA #

Change to protein #

Transcription kr kr +1 0

mRNA degradation

grx(1) gr -1 0

Protein synthesis kpx(1) kp 0 +1

Protein degradation

gpx(2) gp 0 -1

a1

a2

a3

a4

System variables:

System processes:

π‘₯=[π‘₯ (1 ) ΒΏ copies of mRNAπ‘₯ (2 ) ΒΏ copies of protein ]

Page 16: Stochastic modeling

Adding time-rates for individual channels

16

a1

a2

a3

a4

a0

Page 17: Stochastic modeling

Reaction channel firings in a population

17

a0

a0

a0

a0

a0

βˆ† 𝑑 βˆ† 𝑃 π΄π‘π‘Œ 𝐸𝑉𝐸𝑁𝑇 β‰…π‘Ž0βˆ† 𝑑

Page 18: Stochastic modeling

a0

a0

a0

a0

a0

βˆ† 𝑑

18

Reaction channel firings in a population

βˆ† 𝑃 π΄π‘π‘Œ 𝐸𝑉𝐸𝑁𝑇 β‰…π‘Ž0βˆ† 𝑑

Page 19: Stochastic modeling

a0

a0

a0

a0

a0

βˆ† 𝑑

19

βˆ† 𝑃 π΄π‘π‘Œ 𝐸𝑉𝐸𝑁𝑇 β‰…π‘Ž0βˆ† 𝑑

Reaction channel firings in a population

Page 20: Stochastic modeling

20

a0

a0

a0

a0

a0

Reaction channel firings in a population

βˆ† 𝑃 π΄π‘π‘Œ 𝐸𝑉𝐸𝑁𝑇 β‰…π‘Ž0βˆ† π‘‘βˆ† 𝑑 1 π‘‹βˆ† 𝑑 2 𝑋

Page 21: Stochastic modeling

21

a0

a0

a0

a0

a0

Reaction channel firings in a population

βˆ† 𝑃 π΄π‘π‘Œ 𝐸𝑉𝐸𝑁𝑇 β‰…π‘Ž0βˆ† π‘‘βˆ† 𝑑 1 π‘‹βˆ† 𝑑 2 𝑋

Page 22: Stochastic modeling

22

a0

a0

a0

a0

a0

βˆ† π‘‘πΏπ‘‚π‘πΊβˆ† 𝑑𝐿𝑂𝑁𝐺𝐸𝑅

Reaction channel firings in a population

Page 23: Stochastic modeling

a0

a0

a0

a0

23

a0

a0

a0

a0

a0

βˆ† π‘‘π•π„π‘π˜ 𝑆𝐻𝑂𝑅𝑇

βˆ† 𝑑 𝐴𝐿𝑆𝑂 π•π„π‘π˜π‘†π»π‘‚π‘…π‘‡

Reaction channel firings in a populationZoomed in time scale

Dice represent shorter time intervals than before

βˆ† 𝑃 π΄π‘π‘Œ 𝐸𝑉𝐸𝑁𝑇 β‰…π‘Ž0βˆ† 𝑑

Page 24: Stochastic modeling

Reaction channel firings in a population

24

a0

a0

a0

a0

a0

βˆ† 𝑑𝑆𝐻𝑂𝑅𝑇 βˆ† 𝑃 π΄π‘π‘Œ 𝐸𝑉𝐸𝑁𝑇 β‰…π‘Ž0βˆ† π‘‘βˆ† 𝑑𝐿𝑂𝑁𝐺

Page 25: Stochastic modeling

25

Draw duration from exponential distribution

βˆ† 𝑃 π΄π‘π‘Œ 𝐸𝑉𝐸𝑁𝑇 β‰…π‘Ž0βˆ† 𝑑

Page 26: Stochastic modeling

26

Draw duration from exponential distribution

βˆ† 𝑃 π΄π‘π‘Œ 𝐸𝑉𝐸𝑁𝑇 β‰…π‘Ž0βˆ† 𝑑

Page 27: Stochastic modeling

27

Draw duration from exponential distribution

βˆ† 𝑃 π΄π‘π‘Œ 𝐸𝑉𝐸𝑁𝑇 β‰…π‘Ž0βˆ† 𝑑

Page 28: Stochastic modeling

28

Draw duration from exponential distribution

βˆ† 𝑃 π΄π‘π‘Œ 𝐸𝑉𝐸𝑁𝑇 β‰…π‘Ž0βˆ† 𝑑

Page 29: Stochastic modeling

29

Draw duration from exponential distribution

Page 30: Stochastic modeling

30

Draw duration from exponential distribution

Page 31: Stochastic modeling

31

Draw duration from exponential distribution

Page 32: Stochastic modeling

32

Draw duration from exponential distribution

Page 33: Stochastic modeling

33

Draw duration until next event from exponential distribution

𝜏=𝑑0 ln( 1𝑅1 )

𝑅1=ΒΏ 0 1

𝑑 0≔ ⟨𝜏 ⟩

Page 34: Stochastic modeling

34

Draw duration from exponential distribution

𝜏=𝑑0 ln( 1𝑅1 )

𝑅1=ΒΏ 0 1

𝑑 0≔ ⟨𝜏 ⟩

Page 35: Stochastic modeling

𝜏=𝑑0 ln( 1𝑅1 )

𝑅1=ΒΏ 0 1

35

𝜏=1.4 𝑑0

Draw duration from exponential distribution

ΒΏ1.4 /π‘Ž0

Page 36: Stochastic modeling

36

Walk-through of stochastic simulation script

1. Specify system chemistry2. Use current state vector to calculate time to next event3. Use current state vector to choose type of next event

Page 37: Stochastic modeling

37

Choose which event to perform

a1

a2

a3

a4

0

1

Type of event Rate Parameters Change to mRNA #

Change to protein #

Transcription kr kr +1 0

mRNA degradation

grx(1) gr -1 0

Protein synthesis kpx(1) kp 0 +1

Protein degradation

gpx(2) gp 0 -1

Page 38: Stochastic modeling

38

Walk-through of stochastic simulation script

1. Specify system chemistry2. Use current state vector to calculate time to next event3. Use current state vector to choose type of next event

Page 39: Stochastic modeling

39

Walk-through of stochastic simulation script

1. Specify system chemistry2. Use current state vector to calculate time to next event3. Use current state vector to choose type of next event

t

mRNA

Protein