stochastic block models for random graphs (and some...

30
Stochastic block models for random graphs (and some variants) Catherine MATIAS CNRS, Laboratoire Statistique & Génome, Évry http://stat.genopole.cnrs.fr/cmatias

Upload: nguyenngoc

Post on 27-Jun-2019

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Stochastic block models for random graphs (and some variants)cmatias.perso.math.cnrs.fr/Docs/matias_statlearn_2013.pdf · Stochastic block models for random graphs (and ... (2) :173–183,2008

Stochastic block models for random graphs (andsome variants)

Catherine MATIAS

CNRS, Laboratoire Statistique & Génome, Évry

http://stat.genopole.cnrs.fr/∼cmatias

Page 2: Stochastic block models for random graphs (and some variants)cmatias.perso.math.cnrs.fr/Docs/matias_statlearn_2013.pdf · Stochastic block models for random graphs (and ... (2) :173–183,2008

Outline

Stochastic block models (and variants)

Parameter estimation and node clustering

Convergence results

Page 3: Stochastic block models for random graphs (and some variants)cmatias.perso.math.cnrs.fr/Docs/matias_statlearn_2013.pdf · Stochastic block models for random graphs (and ... (2) :173–183,2008

Data: Biological networksDifferent networks types

I Protein-protein interaction networks (PPI),I Metabolic networksI Genes co-expression networksI Genes regulation networksI . . .

Some challenges

I Analyse big data sets, noisy data,I Identify structures (topological patterns, cliques, nodes groups,

etc),I Compare networks between different species,I Modelling evolution of these networks,I . . .

Page 4: Stochastic block models for random graphs (and some variants)cmatias.perso.math.cnrs.fr/Docs/matias_statlearn_2013.pdf · Stochastic block models for random graphs (and ... (2) :173–183,2008

Some models for biological networks

Some existing models, advantages and drawbacks

I Erdös-Rényi, simple and mathematically well-understood, toohomogeneous;

I Models based on degree distribution, scale-free property, onlya partial descriptor of the graph, greedy numerical simulationswith fixed-degrees models ;

I Generative processes (like preferential attachment), dynamicmodel, depends on parameters (initialisation, stop, . . . ), canwe caracterize the result?

I Exponential random graph : see previous talk from Nial Friel !I . . .

We would like to cluster the nodes into groups.

Page 5: Stochastic block models for random graphs (and some variants)cmatias.perso.math.cnrs.fr/Docs/matias_statlearn_2013.pdf · Stochastic block models for random graphs (and ... (2) :173–183,2008

Mixture models approach

Idea: probability model based clusteringAssume that the nodes of the graph belong to unobserved groups,that describe their connectivity to the other nodes.

Advantages

I Induces heterogeneity in the data, keeping it simple,I Clustering of the nodes groups induced by the model,I Model encompasses the community detection framework.

Page 6: Stochastic block models for random graphs (and some variants)cmatias.perso.math.cnrs.fr/Docs/matias_statlearn_2013.pdf · Stochastic block models for random graphs (and ... (2) :173–183,2008

Stochastic block model (binary graphs)

1 2

3

4

5

6

7

84

5

6

7

8

θ••

9

10

θ••

θ••

θ••

θ••

n = 10, Z5• = 1

X12 = 1, X15 = 0

Binary case

I Q groups (=colors •••).I {Zi}1≤i≤n i.i.d. vectors Zi = (Zi1, . . . , ZiQ) ∼M(1,π), with

π = (π1, . . . , πQ) groups proportions. Zi not observed(latent).

I Observations: presence/absence of an edge {Xij}1≤i<j≤n,I Conditional on {Zi}’s, the r.v. Xij are independent B(θZiZj ).

Page 7: Stochastic block models for random graphs (and some variants)cmatias.perso.math.cnrs.fr/Docs/matias_statlearn_2013.pdf · Stochastic block models for random graphs (and ... (2) :173–183,2008

Stochastic block model (weighted graphs)

1 2

3

4

5

6

7

84

5

6

7

8

θ••

9

10

θ••

θ••

θ••

θ••

n = 10, Z5• = 1

X12 ∈ R, X15 = 0

Weighted case

I Observations: weights Xij , where Xij = 0 or Xij ∈ Rs \ {0},I Conditional on the {Zi}’s, the random variables Xij are

independent with distribution

µZiZj (·) = pZiZjf(·, θZiZj ) + (1− pZiZj )δ0(·)

(Assumption: f has continuous cdf at zero).

Page 8: Stochastic block models for random graphs (and some variants)cmatias.perso.math.cnrs.fr/Docs/matias_statlearn_2013.pdf · Stochastic block models for random graphs (and ... (2) :173–183,2008

SBM clustering vs other clusterings

SBM clustering

I Nodes clustering induced by the model reflects a commonconnectivity behaviour;

I Many clustering methods try to group nodes that belong tothe same clique (ex: community detection)

I Toy example

SBM cluster Clustering based on cliques

Page 9: Stochastic block models for random graphs (and some variants)cmatias.perso.math.cnrs.fr/Docs/matias_statlearn_2013.pdf · Stochastic block models for random graphs (and ... (2) :173–183,2008

Particular cases and generalisations

Particular casesI Affiliation model: connectivity matrix θ has only 2 parameters

θ =

α . . . β...

. . ....

β . . . α

α 6= β

I Affiliation + α� β =⇒ community detection (cliquesclustering).

GeneralisationsI Overlapping groups [Latouche et al. 11, Airoldi et al. 08] for binary

graphs;I Adding covariates [Zanghi et al. 10b] ;I Latent block models (LBM), for array data.

Page 10: Stochastic block models for random graphs (and some variants)cmatias.perso.math.cnrs.fr/Docs/matias_statlearn_2013.pdf · Stochastic block models for random graphs (and ... (2) :173–183,2008

From SBM to LBM

I A graph is encoded through its adjacency matrix.I Clustering the nodes corresponds to simultaneous and identical

clustering of the rows and columns.

Generalise this to non square array data, without constrainingidentical rows and columns groups.

Page 11: Stochastic block models for random graphs (and some variants)cmatias.perso.math.cnrs.fr/Docs/matias_statlearn_2013.pdf · Stochastic block models for random graphs (and ... (2) :173–183,2008

Latent block models I

LBM notationI Observations: array Xn,m := {Xij}1≤i≤n,1≤j≤m withXij ∈ X ,

I Q ≥ 1 and L ≥ 1 number of row and column groups,respectively.

I Groups prior distributions π = (π1, . . . , πQ) overQ = {1, . . . , Q} and ρ = (ρ1, . . . , ρL) over L = {1, . . . , L},such that

∑q πq =

∑l ρl = 1.

I Latent variables Zn := Z1, . . . , Zn iid ∼ π over Q andWm :=W1, . . . ,Wm i.i.d. ∼ ρ over L.

Page 12: Stochastic block models for random graphs (and some variants)cmatias.perso.math.cnrs.fr/Docs/matias_statlearn_2013.pdf · Stochastic block models for random graphs (and ... (2) :173–183,2008

Latent block models II

Two models in the same frameworkI 2 cases occur

LBM : {Zi}1≤i≤n and {Wj}1≤j≤m independent.SBM : n = m,Q = L, Zi =Wi for all 1 ≤ i ≤ n and π = ρ.

I Connectivity parameters θ = (θql)(q,l)∈Q×L,I Conditional on {Zi,Wj}, random variables {Xij} are

independent, with distribution

Xij |Zi = q,Wj = l ∼ f(·; θql).

Page 13: Stochastic block models for random graphs (and some variants)cmatias.perso.math.cnrs.fr/Docs/matias_statlearn_2013.pdf · Stochastic block models for random graphs (and ... (2) :173–183,2008

Outline

Stochastic block models (and variants)

Parameter estimation and node clustering

Convergence results

Page 14: Stochastic block models for random graphs (and some variants)cmatias.perso.math.cnrs.fr/Docs/matias_statlearn_2013.pdf · Stochastic block models for random graphs (and ... (2) :173–183,2008

Parameter estimation

Existing identifiability results

I Undirected SBM, binary or weighted[Allman et al. 09, Allman et al. 11],

I Directed and binary SBM [Celisse et al. 12],I Overlapping SBM [Latouche et al. 11],I Binary LBM [Keribin et al. 13]

Parameter estimation issueI em algorithm not feasible because latent variables are not

independent conditional on observed ones.Ex (SBM) : P({Zi}i|{Xij}i,j) 6=

∏i P(Zi|{Xij}i,j)

I Alternatives: Gibbs sampling or Variational approximation toem.

Page 15: Stochastic block models for random graphs (and some variants)cmatias.perso.math.cnrs.fr/Docs/matias_statlearn_2013.pdf · Stochastic block models for random graphs (and ... (2) :173–183,2008

Parameter estimation for SBM I

MethodsI Gibbs sampling [Nowicki & Snijders 01], small graphs only (maxn = 200 nodes).

I Variational em, binary case [Daudin et al. 08, Picard et al. 09];I Variational Bayes em, binary [Latouche et al. 12];I Variational em for valued graphs [Mariadassou et al. 10], with

covariates [Zanghi et al. 10b] and online versions[Zanghi et al. 08, Zanghi et al. 10a];

I Moments methods and composite likelihood for affiliationvalued graphs [Ambroise & Matias 10];

I . . .

Page 16: Stochastic block models for random graphs (and some variants)cmatias.perso.math.cnrs.fr/Docs/matias_statlearn_2013.pdf · Stochastic block models for random graphs (and ... (2) :173–183,2008

Variational approximation (SBM case) I

(Observed) Likelihood decompositionLet q(Z) be any distribution over Qn. We have

log p(X|θ) = LML(q; θ) +KL(q(·)‖p(·|X, θ)),

with KL is the Kullback-Leibler divergence between q(Z) and thetrue posterior p(Z|X, θ), namely

KL(q(·)‖p(·|X, θ)) = −∑Z

q(Z) logp(Z|X, θ)q(Z)

and LML(q; θ) =∑Z

q(Z) logp(X,Z|θ)q(Z)

.

So thatlog p(X|θ) ≥ LML(q; θ),

with equality iff q(Z) is the true posterior p(Z|X, θ).

Page 17: Stochastic block models for random graphs (and some variants)cmatias.perso.math.cnrs.fr/Docs/matias_statlearn_2013.pdf · Stochastic block models for random graphs (and ... (2) :173–183,2008

Variational approximation (SBM case) II

Variational principle

I Maximise the lower bound LML(q; θ) (with respect to q, θ)instead of the unavailable likelihood log p(X|θ).

I Maximising LML(q; θ) with respect to q is equivalent tominimising the Kullback-Leibler divergenceKL(q(·)‖p(·|X, θ)).

I Restricting q to product distributions over Qn, you look forthe best product law that approximates the true posteriorp(Z|X, θ).

I Note that LML(q; θ) =∑

Z q(Z) log p(X,Z|θ) + c(q),For fixed value q, the quantity LML(q; ·) represents anexpectation of the complete log-likelihood log p(X,Z|θ) underdistribution q (instead of the true posterior p(Z|X, θ) in emalgorithm).

Page 18: Stochastic block models for random graphs (and some variants)cmatias.perso.math.cnrs.fr/Docs/matias_statlearn_2013.pdf · Stochastic block models for random graphs (and ... (2) :173–183,2008

Parameter estimation (follow.)

Parameters estimation for LBMI Variational methods for binary, Gaussian or Poisson data arrays

[Govaert & Nadif 03, Govaert & Nadif 08, Govaert & Nadif 10].I sem Gibbs approach (for categorical data) [Keribin et al. 13].

Model selectionI Maximal likelihood is not available (thus neither AIC or BIC),I ICL criterion is used [Daudin et al. 08, Keribin et al. 13].I MCMC approach to select number of LBM groups

[Wyse & Friel 12].

Node clusteringAutomatically performed by the previous algorithms.

Page 19: Stochastic block models for random graphs (and some variants)cmatias.perso.math.cnrs.fr/Docs/matias_statlearn_2013.pdf · Stochastic block models for random graphs (and ... (2) :173–183,2008

Outline

Stochastic block models (and variants)

Parameter estimation and node clustering

Convergence results

Page 20: Stochastic block models for random graphs (and some variants)cmatias.perso.math.cnrs.fr/Docs/matias_statlearn_2013.pdf · Stochastic block models for random graphs (and ... (2) :173–183,2008

Convergence issues

Why does the variational approximation work?

I The variational approximation appears to be efficient, both forLBM and SBM.

I Variational approximation does not converge unless the trueposterior p(Z|X; θ) is degenerate [Gunawardana & Byrne 05].

Remaining issues

I What is the (asymptotic) behaviour of the groups posteriordistribution ? Is it degenerate?

I Is variational approximation somehow equivalent to emapproach ?

I Does maximum likelihood converge in this setting anyway?

Page 21: Stochastic block models for random graphs (and some variants)cmatias.perso.math.cnrs.fr/Docs/matias_statlearn_2013.pdf · Stochastic block models for random graphs (and ... (2) :173–183,2008

Maximum likelihood and variational approach

Results from [Celisse et al. 12] in SBM case

I Variational em is asymptotically equivalent to classical em forSBM.

I Maximum likelihood is convergent in this setup.

Page 22: Stochastic block models for random graphs (and some variants)cmatias.perso.math.cnrs.fr/Docs/matias_statlearn_2013.pdf · Stochastic block models for random graphs (and ... (2) :173–183,2008

Convergence of the groups posterior distribution (LBM orSBM) [Mariadassou & Matias 12]

I In general, the groups posterior distribution converges to aDirac mass (when n,m→∞).

I However, when there exist equivalent configurations (=nodesgroups inducing the same likelihood), the posterior convergesto a mixture of Dirac located at these configurations.

I In some cases -in particular affiliation-, the number ofequivalent configurations is larger than the number of labelswitching configurations.

I When there are equivalent configurations, the posteriorconverges to a Dirac mass at the configuration with largestprior.

Page 23: Stochastic block models for random graphs (and some variants)cmatias.perso.math.cnrs.fr/Docs/matias_statlearn_2013.pdf · Stochastic block models for random graphs (and ... (2) :173–183,2008

Conclusions on SBM and LBM

I Simple and efficient models for graphs (square adjacencymatrices) or array data.

I Model based clustering of the nodes of the graph (or therows/columns of the array), that encompasses communitydetection approaches.

I Many variants, with overlapping groups or covariates. Datamay be binary or weighted, sparse or not, directed or not . . .

I Convergence results are difficult to obtain but some exist.I Variational em approximations provide good practical results

but tend to depend on initialisation: there is room forimprovement !

Page 24: Stochastic block models for random graphs (and some variants)cmatias.perso.math.cnrs.fr/Docs/matias_statlearn_2013.pdf · Stochastic block models for random graphs (and ... (2) :173–183,2008

References I

[Airoldi et al. 08] E.M. Airoldi, D.M. Blei, S.E. Fienberg andE.P. Xing.Mixed Membership Stochastic Blockmodels.J. Mach. Learn. Res., 9:1981-2014, 2008.

[Allman et al. 09] E.S. Allman, C. Matias and J.A. Rhodes.Identifiability of parameters in latent structure models withmany observed variables.Ann. Statist., 37(6A):3099-3132, 2009.

[Allman et al. 11] E.S. Allman, C. Matias and J.A. Rhodes.Parameter identifiability in a class of random graph mixturemodels.J. Statist. Planning and Inference, 141(5):1719-1736, 2011.

Page 25: Stochastic block models for random graphs (and some variants)cmatias.perso.math.cnrs.fr/Docs/matias_statlearn_2013.pdf · Stochastic block models for random graphs (and ... (2) :173–183,2008

References II

[Ambroise & Matias 10] C. Ambroise and C. Matias.New consistent and asymptotically normal estimators forrandom graph mixture models.Journal of the Royal Statistical Society: Series B, 74(1):3-35,2012.

[Celisse et al. 12] A. Celisse, J.-J. Daudin, and L. Pierre.Consistency of maximum-likelihood and variational estimatorsin the stochastic block model.Electron. J. Statist., 6:1847-1899, 2012.

[Daudin et al. 08] J.-J. Daudin, F. Picard, and S. Robin.A mixture model for random graphs.Stat. Comput., 18(2):173–183, 2008.

[Govaert & Nadif 03] G. Govaert and M. Nadif.Clustering with block mixture models.Pattern Recognition, 36(2):463–473, 2003.

Page 26: Stochastic block models for random graphs (and some variants)cmatias.perso.math.cnrs.fr/Docs/matias_statlearn_2013.pdf · Stochastic block models for random graphs (and ... (2) :173–183,2008

References III

[Govaert & Nadif 08] G. Govaert and M. Nadif.Block clustering with Bernoulli mixture models: Comparison ofdifferent approaches.Computational Statistics and Data Analysis, 52(6):3233–3245,2008.

[Govaert & Nadif 10] G. Govaert and M. Nadif.Latent block model for contingency table.Communications in Statistics - Theory and Methods, 39(3):416–425, 2010.

[Gunawardana & Byrne 05] Gunawardana and Byrne.Convergence Theorems for Generalized AlternatingMinimization Procedures.JMLR, 6:2049–2073, 2005.

Page 27: Stochastic block models for random graphs (and some variants)cmatias.perso.math.cnrs.fr/Docs/matias_statlearn_2013.pdf · Stochastic block models for random graphs (and ... (2) :173–183,2008

References IV

[Keribin et al. 13] C. Keribin, V. Brault, G. Celeux and G.Govaert.Estimation and selection for the latent block model oncategorical data.INRIA Research report 8264, 2013.

[Latouche et al. 11] P. Latouche, E. Birmelé and C. Ambroise.Overlapping Stochastic Block Models With Application to theFrench Political Blogosphere.Annals of Applied Statistics, 5(1):309-336, 2011.

[Latouche et al. 12] P. Latouche, E. Birmelé and C. Ambroise.Variational Bayesian Inference and Complexity Control forStochastic Block Models.Statistical Modelling, 12(1):93-115, 2012.

Page 28: Stochastic block models for random graphs (and some variants)cmatias.perso.math.cnrs.fr/Docs/matias_statlearn_2013.pdf · Stochastic block models for random graphs (and ... (2) :173–183,2008

References V

[Mariadassou & Matias 12] M. Mariadassou and C. Matias.Convergence of the groups posterior distribution in latent orstochastic block models.hal-00713120, 2012.

[Mariadassou et al. 10] M. Mariadassou, S. Robin, C. Vacher.Uncovering Latent Structure in Valued Graphs: A VariationalApproach.Annals of Applied Statistics, 4:2,715–742, 2010.

[Nowicki & Snijders 01] K. Nowicki and T.A.B. Snijders.Estimation and prediction for stochastic block structures.JASA 96(455):1077-1087, 2001.

Page 29: Stochastic block models for random graphs (and some variants)cmatias.perso.math.cnrs.fr/Docs/matias_statlearn_2013.pdf · Stochastic block models for random graphs (and ... (2) :173–183,2008

References VI

[Picard et al. 09] F. Picard, V. Miele, J-J. Daudin, L. Cottretand S. Robin.Deciphering the connectivity structure of biological networksusing MixNet.BMC Bioinformatics, 10:1-11, 2009.

[Wyse & Friel 12] J. Wyse and N. FrielBlock clustering with collapsed latent block models.Stat Comput 22:415–428, 2012.

[Zanghi et al. 08] H. Zanghi, C. Ambroise and V. Miele.Fast Online Graph Clustering via Erdős Rényi Mixture.Pattern Recognition, 41(12):3592-3599, 2008.

[Zanghi et al. 10a] H. Zanghi, F. Picard, V. Miele, and C.Ambroise.Strategies for online inference of network mixture.Annals of applied statistics, 4(2):687-714, 2010.

Page 30: Stochastic block models for random graphs (and some variants)cmatias.perso.math.cnrs.fr/Docs/matias_statlearn_2013.pdf · Stochastic block models for random graphs (and ... (2) :173–183,2008

References VII

[Zanghi et al. 10b] H. Zanghi, S. Volant and C. Ambroise.Clustering based on random graph model embedding vertexfeatures.Pattern Recognition Letters 31(9):830-836, 2010.